1
|
Jakubowska-Lehrmann M, Białowąs M, Otremba Z, Hallmann A, Śliwińska-Wilczewska S, Urban-Malinga B. Do magnetic fields related to submarine power cables affect the functioning of a common bivalve? MARINE ENVIRONMENTAL RESEARCH 2022; 179:105700. [PMID: 35841831 DOI: 10.1016/j.marenvres.2022.105700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study was to determine the effect of static magnetic field (SMF) and electromagnetic field (EMF), of values usually recorded near submarine cables, on the bioenergetics, oxidative stress, and neurotoxicity in the cockle Cerastoderma glaucum. Bivalves maintained a positive energy balance, but the filtration rate and energy available for individual production were significantly lower in SMF-exposed animals compared to the control treatment. No changes in the respiration were noted but ammonia excretion rate was significantly lower after exposure to EMF. Changes in the activities of antioxidant enzymes and the lipid peroxidation were not observed however, exposure to both fields resulted in increased protein carbonylation. After exposure to EMF a significant inhibition of acetylcholinesterase activity was observed. As the present study for the first time revealed the oxidative damage and neurotoxicity in marine invertebrate after exposure to artificial magnetic fields, the need for further research is highlighted.
Collapse
Affiliation(s)
| | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Zbigniew Otremba
- Department of Physics, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Piłsudskiego 46, 81-378, Gdynia, Poland; Mount Allison University, 62 York St, Sackville, NB, E4L 1E2, Canada
| | | |
Collapse
|
2
|
Environmental Compatibility of the Parc Tramuntana Offshore Wind Project in Relation to Marine Ecosystems. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parc Tramuntana is the first offshore wind project being promoted in the Catalonian waters, and due to this newness, it has generated a strong social debate surrounding expected environmental and socioeconomic impacts traditionally associated to marine wind farms, as there are no relevant references in this area. The objective of this report is to provide a specific analysis of some of the main potential impacts, based on detailed information and quantitative data, in order to place these impacts in a realistic context and determine their actual magnitude. This analysis is fed by diverse and detailed studies carried out over the last two years to assess the environmental impact of the project, in accordance with current regulations. According to environmental impact assessment, which is based on a standardized methodology, the impact of the project is objectively qualified as MODERATE on vectors such as turbidity and sedimentation, underwater noise, hydrodynamic circulation or the alteration of electromagnetic fields, and NOT SIGNIFICANT on aspects such as the proliferation of invasive exotic species. As this is an ongoing assessment process, this report presents initial conclusions that do not yet address all possible impacts. Nevertheless, the authors stress the importance of framing the debate on offshore wind in Catalonia in the context of the urgency of the climate emergency and its inevitable impacts on the natural environment.
Collapse
|
3
|
Albert L, Deschamps F, Jolivet A, Olivier F, Chauvaud L, Chauvaud S. A current synthesis on the effects of electric and magnetic fields emitted by submarine power cables on invertebrates. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104958. [PMID: 32662447 DOI: 10.1016/j.marenvres.2020.104958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The goal of clean renewable energy production has promoted the large-scale deployment of marine renewable energy devices, and their associated submarine cable network. Power cables produce both electric and magnetic fields that raise environmental concerns as many marine organisms have magneto and electroreception abilities used for vital purposes. Magnetic and electric fields' intensities decrease with distance away from the cable. Accordingly, the benthic and the sedimentary compartments are exposed to the highest field values. Although marine invertebrate species are the major fauna of these potentially exposed areas, they have so far received little attention. We provide extensive background knowledge on natural and anthropogenic marine sources of magnetic and electric fields. We then compile evidence for magneto- and electro-sensitivity in marine invertebrates and further highlight what is currently known about their interactions with artificial sources of magnetic and electric fields. Finally we discuss the main gaps and future challenges that require further investigation.
Collapse
Affiliation(s)
- Luana Albert
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France; Univ. Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont D'Urville, 29280, Plouzané, France.
| | - François Deschamps
- RTE, Immeuble Window, 7C place du Dôme, 92073, Paris La Défense Cedex, France.
| | - Aurélie Jolivet
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France.
| | - Frédéric Olivier
- Biologie des Organismes et écosystèmes Aquatiques (BOREA, UMR 7208), MNHN/SU/UNICAEN/UA/CNRS/IRD, 61 Rue Buffon CP53, 75005, Paris, France; Station Marine de Concarneau, Muséum National d'Histoire Naturelle, Place de la Croix, BP 225, 29182, Concarneau Cedex, France.
| | - Laurent Chauvaud
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont D'Urville, 29280, Plouzané, France.
| | - Sylvain Chauvaud
- TBM Environnement, Porte Océane Bloc 03, 2 rue de Suède, 56400, Auray, France.
| |
Collapse
|
4
|
Jakubowska M, Urban-Malinga B, Otremba Z, Andrulewicz E. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hediste diversicolor. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104766. [PMID: 31404727 DOI: 10.1016/j.marenvres.2019.104766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to determine the effect of an electromagnetic field (EMF) of value typically recorded in the vicinity of submarine cables (50 Hz, 1 mT) on the behavior and bioenergetics of the polychaete Hediste diversicolor. No avoidance or attraction behavior to EMF was shown, but the burrowing activity of H. diversicolor was enhanced in EMF treatment, indicating a stimulating effect on bioturbation potential. The polychaete maintained a positive energy balance and high amount (85% of assimilated energy) of energy available for individual production (scope for growth) after exposure to EMF. Food consumption and respiration rates were not affected but ammonia excretion rate was significantly reduced in EMF-exposed animals compared to the control conditions (geomagnetic field). The mechanisms behind this effect remain, however, unclear. This is the first study demonstrating the effects of environmentally realistic EMF value on the behavior and physiology of marine invertebrates, thus there is a need for more research.
Collapse
Affiliation(s)
- Magdalena Jakubowska
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland.
| | - Barbara Urban-Malinga
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Zbigniew Otremba
- Department of Physics, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland
| | - Eugeniusz Andrulewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| |
Collapse
|
5
|
Safari M, Jadidi M, Baghian A, Hasanzadeh H. Proliferation and differentiation of rat bone marrow stem cells by 400μT electromagnetic field. Neurosci Lett 2015; 612:1-6. [PMID: 26639423 DOI: 10.1016/j.neulet.2015.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The interaction between environment electromagnetic field (EMF) and cells can effect on various physiological processes. EMF as an external inducing factor, could effect on proliferation or differentiation of cells. The purpose of this study was to evaluate the influence of the electromagnetic field on the viability, proliferation and differentiation rate of bone marrow stem cells (BMSCs) to neuron. BMSCs were obtained from 42 adult male rats. The cells incubated and cultured in 96-wells and 6-wells plates and exposed to electromagnetic field (40 or 400μT) with a selected waveform: AC (alternative current), rectified half wave (RHW) and rectified full wave (RFW), for a week. To assess the viability and proliferation rate of treated cells, MTT assay was done, and then immunocytochemistry staining Neu N was used to evaluate cell differentiation to neuron. Results showed that EMF decreases the viability and proliferation in treated groups. But in AC group's reduction was significant. Minimum viability and proliferation rate was observed in RHW 400μT group compared with sham. Immunocytochemistry showed that EMF can induce BMSC differentiation into neuron in AC 400μT and RFW 400μT. Evidences of this research support the hypothesis that EMF can induce differentiation of BMSCs to neuron.
Collapse
Affiliation(s)
- Manouchehr Safari
- Research Center of Nervous System Stem Cells and Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Jadidi
- Department of Medical Physics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Atefeh Baghian
- Department of Medical Physics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Hasanzadeh
- Department of Medical Physics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cell Dev Biol Anim 2013; 49:212-9. [DOI: 10.1007/s11626-013-9580-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
|
7
|
Bernardini C, Zannoni A, Turba ME, Bacci ML, Forni M, Mesirca P, Remondini D, Castellani G, Bersani F. Effects of 50 Hz sinusoidal magnetic fields on Hsp27, Hsp70, Hsp90 expression in porcine aortic endothelial cells (PAEC). Bioelectromagnetics 2007; 28:231-7. [PMID: 17080460 DOI: 10.1002/bem.20299] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to investigate the influence of 50 Hz sinusoidal magnetic field on Hsp27, Hsp70, and Hsp90 expression in a model of primary culture of porcine aortic endothelial cells (PAEC). We took into consideration the Hsp profile in terms of mRNA expression, protein expression and protein localization inside the cells. The choice of the cell system was motivated by the involvement of the endothelial cells in the onset of many diseases; moreover, only few reports describe the effects of extremely low frequency magnetic fields (ELF-MFs) on such cells. ELF-MF exposure induced an increase in the mRNA levels of the three proteins, which was statistically significant for Hsp70. On the contrary, we did not observe any influence on Hsp27, Hsp70, and Hsp90 protein levels. Analysis in situ by immunofluorescence revealed that ELF-MF exposure affected the cellular distribution of Hsp27; in particular a partial relocalization in the nucleus was observed.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Morphophysiology and Animal Production DIMORFIPA, Bologna University, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chionna A, Tenuzzo B, Panzarini E, Dwikat MB, Abbro L, Dini L. Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics 2005; 26:275-86. [PMID: 15832333 DOI: 10.1002/bem.20081] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Morphological modifications, i.e., cell shape, cell surface sugar residues, cytoskeleton, and apoptosis of Hep G2 cells during 24 h exposure to 6 mT static magnetic field (static MF) were studied by means of light and electron microscopy and cytochemistry. Progressive modifications of cell shape and surface were observed during the entire period of exposure to static MF. Control cells were polyhedric with short microvilli covering the cell surface, while those exposed to static MF, were elongated with many irregular microvilli randomly distributed on the cell surface. At the end of the exposure period, the cells had a less flat shape due to partial detachment from the culture dishes. However, throughout the period of exposure under investigation, the morphology of the organelles remained unmodified and cell proliferation was only partially affected. In parallel with cell shape changes, the microfilaments and microtubules, as well as the quantity and distribution of surface ConA-FITC and Ricinus communnis-FITC labeling sites, were modified in a time dependent manner. Apoptosis, which was almost negligible at the beginning of experiment, increased to about 20% after 24 h of continuous exposure. The induction of apoptosis was likely due to the increment of [Ca2+]i during exposure. In conclusion, the data reported in the present work indicates that 6 mT static MF exposure exerts time dependent biological effects on Hep G2 cells.
Collapse
Affiliation(s)
- Alfonsina Chionna
- Department of Biological and Environmental Science and Technology, University of Lecce, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 2005; 36:195-217. [PMID: 15725590 DOI: 10.1016/j.micron.2004.12.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/07/2004] [Accepted: 12/09/2004] [Indexed: 01/16/2023]
Abstract
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. However, despite the increasing number of studies on the effects of the interaction of SMFs with living organisms, many gaps in our knowledge still remain. One reason why it is extremely important to deeply understand the true mode of action of MFs on living organisms, is the need to protect human health in consideration of the probable future introduction of new technologies such as magnetically levitated trains and the therapeutical use of MFs (e.g. magnetic resonance imaging, MRI, coupling of MF exposure with chemotherapy). The lack of knowledge of the morphological modifications brought about by exposure to moderate-intensity SMFs prompted us to investigate the bioeffects of 6mT SMFs on different cell types, by means of light and electron microscopy, confocal laser scanning microscopy and immuno- or cytochemistry. In the present article we report our own and other data from the literature on the morphological studies of the bioeffects of moderate-intensity SMFs. We focus on morphological modifications related to cell shape, cell surface, cytoskeleton, and plasma membrane expression of molecules and carbohydrate residues. The effects of exposure to moderate-intensity SMF for 24 or 48 h, on apoptosis, on apoptotic related gene products, on macrophagic differentiation and on phagocytosis of apoptotic cells in primary cell cultures (transformed or stabilized cell lines) will be also discussed. Moderate-intensity (6mT) SMFs induced modifications of cell shape, cell surface and cytoskeleton, progressively achieved during the entire period of exposure. In general, at the end of the exposure period, the cells had a less flat shape due to partial detachment from the culture dishes or a more round-elongated shape (in relation to adhesion growth or in suspension growth respectively) with many irregular lamellar microvilli, while the morphology of the organelles remained unmodified. In parallel with cell shape changes, the microfilaments and microtubules, as well as the quantity and distribution of surface ConA-FITC and Ricinus Comm.-FITC labelling sites, were modified in a time-dependent manner. Apoptosis was influenced in a cell type-dependent manner: for some cells spontaneous apoptosis decreased while, for others, it increased to about 20% after 24h of continuous exposure. The induction of apoptosis was likely due to the increment of [Ca(2+)]i during exposure. Cell proliferation was only slightly affected. Indeed, in addition to the cell type, the time of exposure was also an important factor in the intensity of the effects produced. Both apoptotic rate and cell and surface shape were influenced by exposure to SMFs when simultaneously administered with apoptogenic drugs. Apoptotic cells were cleared by an efficient and fast process of phagocytosis mediated by specific epitopes, externalized during the formation of the apoptotic cells, on the dead cells and by specific receptors on the phagocytes (both "professional" and "nonprofessional"). The recognition of apoptotic lymphocytes as well as of control cells exposed for at least 24h to 6mT SMF by liver sinusoidal cells was influenced by the cell surface modifications which both apoptotic or normal exposed cells underwent during the induction of apoptosis or SMF exposure. The degree of macrophagic differentiation of human pro-monocytic U937 cells induced by phorbol ester was decreased by exposure to 6mT SMFs, with a consequent fall in cell adhesion and increased polarization of pseudopodia and cytoplasmic protrusions. Differentiation alone, or in combination with exposure to SMFs, affects distribution and quantity of cell surface carbohydrate residues, surface expression of markers of macrophage differentiation, and phagocytic capability. The increasing amount of data reporting on the bioeffects of SMFs is leading researchers to an understanding of how important it is to fully understand the mode of action of MFs on living organisms. Indeed, even if the perturbations of biological systems by SMFs are sublethal at shorter times of exposure, these perturbations could, especially at longer times of exposure, evolve into a progressive accumulation of modifications, whose ultimate effects still need to be clarified.
Collapse
Affiliation(s)
- Luciana Dini
- Department of Biological and Enviromental Science and Technology, University of Lecce, Via per Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
10
|
Malagoli D, Lusvardi M, Gobba F, Ottaviani E. 50 Hz magnetic fields activate mussel immunocyte p38 MAP kinase and induce HSP70 and 90. Comp Biochem Physiol C Toxicol Pharmacol 2004; 137:75-9. [PMID: 14984706 DOI: 10.1016/j.cca.2003.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/21/2003] [Accepted: 11/21/2003] [Indexed: 11/15/2022]
Abstract
Fifty hertz magnetic fields (MFs) induced the expression of heat shock proteins (HSPs) 70 and 90 in immunocytes of the mussel Mytilus galloprovincialis. Animals exposed at 300 microT for three different times (30; 2 x 30; 3 x 30 min), did not show differences in the HSP densitometric values in comparison with non-exposed mussels. At 400 microT, exposed animals showed a time-dependent increase in HSP expression as revealed by Western blot. After exposure to 600 microT, the HSP densitometric values were significantly higher than controls but not related to exposure duration. The induction of HSPs is concomitant with the activation of p38 MAP kinase signalling pathway. The present findings suggest the possibility to modulate the expression of HSPs by an appropriate time-intensity magnetic field exposure.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | | | |
Collapse
|
11
|
Malagoli D, Gobba F, Ottaviani E. Effects of 50-Hz magnetic fields on the signalling pathways of fMLP-induced shape changes in invertebrate immunocytes: the activation of an alternative "stress pathway". BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:185-90. [PMID: 12595088 DOI: 10.1016/s0304-4165(02)00531-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-formyl-Meth-Leu-Phe (fMLP)-induced immunocyte shape changes in the mussel Mytilus galloprovincialis through both the phosphatidylinositol and the cAMP pathways are studied. Fifteen- and thirty-minute exposures of mussels to 50-Hz magnetic fields (MFs) at intensities of 300 and 400 microT do not provoke permanent cell damage, since immunocytes maintain the capacity to respond to fMLP. This avoidance of external insult seems to be achieved through the activation of a "stress pathway" which is not functionally detectable in nonexposed animals and which involves mitogen activated protein (MAP) kinase members. This phenomenon is clearly evident at 400 microT. Contemporaneously, a different expression of Jun transcriptional regulatory proteins is also found.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, Italy
| | | | | |
Collapse
|