1
|
Li S, Wu Y, Asghar W, Li F, Zhang Y, He Z, Liu J, Wang Y, Liao M, Shang J, Ren L, Du Y, Makarov D, Liu Y, Li R. Wearable Magnetic Field Sensor with Low Detection Limit and Wide Operation Range for Electronic Skin Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304525. [PMID: 38037314 PMCID: PMC11462294 DOI: 10.1002/advs.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Flexible electronic devices extended abilities of humans to perceive their environment conveniently and comfortably. Among them, flexible magnetic field sensors are crucial to detect changes in the external magnetic field. State-of-the-art flexible magnetoelectronics do not exhibit low detection limit and large working range simultaneously, which limits their application potential. Herein, a flexible magnetic field sensor possessing a low detection limit of 22 nT and wide sensing range from 22 nT up to 400 mT is reported. With the detection range of seven orders of magnitude in magnetic field sensor constitutes at least one order of magnitude improvement over current flexible magnetic field sensor technologies. The sensor is designed as a cantilever beam structure accommodating a flexible permanent magnetic composite and an amorphous magnetic wire enabling sensitivity to low magnetic fields. To detect high fields, the anisotropy of the giant magnetoimpedance effect of amorphous magnetic wires to the magnetic field direction is explored. Benefiting from mechanical flexibility of sensor and its broad detection range, its application potential for smart wearables targeting geomagnetic navigation, touchless interactivity, rehabilitation appliances, and safety interfaces providing warnings of exposure to high magnetic fields are explored.
Collapse
Affiliation(s)
- Shengbin Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Waqas Asghar
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Mechanical Engineering DepartmentUniversity of Engineering and Technology TaxilaTaxila47050Pakistan
| | - Fali Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ye Zhang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Zidong He
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuwei Wang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Meiyong Liao
- National Institute for Materials ScienceTsukubaIbaraki305‐0044Japan
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of TechnologyWuhan430070P. R. China
| | - Yi Du
- School of PhysicsBeihang UniversityBeijing100191P. R. China
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner Landstrasse 40001328DresdenGermany
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Run‐Wei Li
- CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Gmitrov J. Carotid Baroreceptor Magnetic Activation and Beat‐to‐Beat Blood Pressure Variability, Implications to Treat Abrupt Blood Pressure Elevation in Labile Hypertension. Bioelectromagnetics 2022; 43:413-425. [DOI: 10.1002/bem.22425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/20/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Juraj Gmitrov
- Diabetology Clinic Krompachy Hospital, Agel SK Inc. Krompachy Slovakia
| |
Collapse
|
3
|
Static magnetic field induces abnormality of glucose metabolism in rats' brain and results in anxiety-like behavior. J Chem Neuroanat 2021; 113:101923. [PMID: 33549700 DOI: 10.1016/j.jchemneu.2021.101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
In this study, fifty-four male Wistar rats were randomly divided into four groups according to the static magnetic field (SMF) intensity, namely, control, low-intensity, moderate-intensity, and high-intensity groups. The rats' whole body was exposed to a superconducting magnet exposure source. The exposure SMF intensity for the low-intensity, moderate-intensity, and high-intensity groups was 50 m T, 100 m T, and 200 m T, respectively, and the exposure time was 1 h/day for consecutive 15 days. After different exposure times, glucose metabolism in rats' brain was evaluated by micro-positron emission tomography (micro-PET), and the expression of hexokinase 1(HK1) and 6-phosphate fructokinase-1(PFK1) was detected by western blot. The exploration and locomotion abilities of the rats were evaluated by conducting open field test (OFT). Furthermore, pathological changes of rats' brain were observed under a microscope by using hematoxylin-eosin staining. PET results showed that moderate-intensity SMFs could cause fluctuant changes in glucose metabolism in rats' brain and the abnormalities were SMF intensity dependent. The expression of the two rate-limiting enzymes HK1 and PFK1 in glucose metabolism in brain significantly decreased after SMF exposure. The OFT showed that the total distance, surrounding distance, activity time, and climbing and standing times significantly decreased after SMF exposure. The main pathological changes in the brain were pyknosis, edema of neurons, and slight widening of the perivascular space, which occurred after 15 times of exposure. This study indicated that SMF exposure could lead to abnormal glucose metabolism in the brain and might result in anxiety-like behaviors.
Collapse
|
4
|
Examination of Long Term Magnetic Fields on Rat Calvarial and Mandibular Bone Mass. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0025-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:14-24. [DOI: 10.1016/j.pbiomolbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/11/2023]
|
6
|
Del Seppia C, Mencacci R, Luschi P, Varanini M, Ghione S. Differential magnetic field effects on heart rate and nociception in anosmic pigeons. Bioelectromagnetics 2011; 33:309-19. [PMID: 21953246 DOI: 10.1002/bem.20708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 09/01/2011] [Indexed: 11/09/2022]
Abstract
Several studies have shown that exposure to altered magnetic fields affects nociception by suppressing stress-induced hypoalgesia, and that this effect is reduced or abolished if the treatment is performed in the absence of light. This raises the question as to whether other sources of sensory stimuli may also modulate these magnetic effects. We investigated the possible role of olfaction in the magnetically induced effects on sensitivity to nociceptive stimuli and heart rate (HR) in restraint-stressed homing pigeons exposed to an Earth-strength, irregularly varying (<1 Hz) magnetic field. The magnetic treatment decreased the nociceptive threshold in normally smelling birds and an opposite effect was observed in birds made anosmic by nostril plugging. Conversely, no differential effect of olfactory deprivation was observed on HR, which was reduced by the magnetic treatment both in smelling and anosmic pigeons. The findings highlight an important role of olfactory environmental information in the mediation of magnetic effects on nociception, although the data cannot be interpreted unambiguously because of the lack of an additional control group of olfactory-deprived, non-magnetically exposed pigeons. The differential effects on a pigeon's sensitivity to nociceptive stimulus and HR additionally indicate that the magnetic stimuli affect nociception and the cardiovascular system in different ways.
Collapse
Affiliation(s)
- Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy.
| | | | | | | | | |
Collapse
|
7
|
Gmitrov J. Static magnetic field blood pressure buffering, baroreflex vs. vascular blood pressure control mechanism. Int J Radiat Biol 2010; 86:89-101. [DOI: 10.3109/09553000903419973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Wang Z, Yang P, Xu H, Qian A, Hu L, Shang P. Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics 2009; 30:446-53. [PMID: 19405043 DOI: 10.1002/bem.20501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is critical in many normal and pathological processes such as development, reproduction, tumor growth, and metastasis. Recently, exposure to moderate-intensity static magnetic fields (1 mT to 1 T) has attracted much attention for its potential therapeutic value as a noninvasive intervening method. Nevertheless, the effects of moderate-intensity and spatial gradient static magnetic fields (GSMF) on angiogenesis have not received enough attention. In this study, the effects of GSMF (0.2-0.4 T, 2.09 T/m, 1-11 days) on angiogenesis were investigated both in vitro and in vivo. An MTT assay was used as an in vitro method to detect the proliferation ability of human umbilical veins endothelial cells (HUVECs). Two kinds of in vivo models, a chick chorioallantoic membrane (CAM) and a matrigel plug, were used to detect the effects of GSMF on angiogenesis. The results showed that the proliferation ability of HUVECs was significantly inhibited 24 h after the onset of exposure. With regard to the CAM model, vascular numbers in the CAM that was continuously exposed to the GSMF were all less than those in normal condition. In accordance with the gross appearance, the contents of hemoglobin in the models exposed to GSMF for 7-9 days were also less. In addition, similar to the CAM model, the results of vascular density and hemoglobin contents in the matrigel plug also demonstrated that the GSMF exposure for 7 or 11 days inhibited vascularization. These findings indicate that GSMF might inhibit or prevent new blood vessels formation and could be helpful for the treatment of some diseases relevant to pathological angiogenesis.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Faculty of Life Sciences, Northwestern Polytechnical University, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.
Collapse
|
10
|
László J, Reiczigel J, Székely L, Gasparics A, Bogár I, Bors L, Rácz B, Gyires K. Optimization of static magnetic field parameters improves analgesic effect in mice. Bioelectromagnetics 2008; 28:615-27. [PMID: 17654477 DOI: 10.1002/bem.20341] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study deals with the analgesic effect induced by static magnetic fields (SMF) in mice exposed to the field with their whole body. It discusses how the effect depends on the distribution of the magnetic field, that is, on the specification and arrangement of the applied individual permanent magnets. A critical analysis of different magnet arrangements is given. As a result the authors propose a magnet arrangement recipe that achieves an analgesic effect of over 80% in the writhing test. This is a widely accepted screening method for animal pain and predictor of human experimental results. As a non-drug, non-invasive, non-contact, non-pain, non-addictive method for analgesia with immediate and long-lasting effect based on the stimulus of the endogenous opioid network, the SMF treatment may attract the attention of medical doctors, nurses, magnet therapists, veterinarians, physiotherapists, masseurs, and fitness trainers among others.
Collapse
Affiliation(s)
- János László
- Section for Mathematics, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gmitrov J. Static magnetic field effect on the arterial baroreflex-mediated control of microcirculation: implications for cardiovascular effects due to environmental magnetic fields. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:281-90. [PMID: 17530271 DOI: 10.1007/s00411-007-0115-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 05/02/2007] [Indexed: 05/15/2023]
Abstract
Increasing evidence suggests that time-varying and static magnetic fields in the environment might affect the cardiovascular system. To explore the underlying physiology, the effect of static magnetic fields (SMFs) on the carotid baroreflex control of microcirculation was studied. Twenty-four hemodynamic monitorings were performed in rabbits sedated by pentobarbital infusion (5 mg/kg/h) during experiments that lasted 120 min. Mean femoral artery blood pressure, heart rate, and ear lobe skin microcirculatory blood flow, measured by microphotoelectric plethysmogram (MPPG), were simultaneously recorded before and after a 40 min exposure of the sinocarotid baroreceptors to Nd(2)-Fe(14)-B alloy magnets (n = 14) or sham magnets (n = 10, control series). The local SMF field was 350 mT, at the baroreceptors' site. Arterial baroreflex sensitivity (BRS) was estimated from heart rate/blood pressure response to intravenous bolus injections of nitroprusside and phenylephrine. A significant positive correlation was found between the SMF-induced increase in BRS (DeltaBRS = BRS(afterSMF) - BRS(priorSMF)) and the increment in microvascular blood flow (DeltaMPPG = MPPG(afterSMF) - MPPG(priorSMF)) (r = 0.66, p < 0.009). The SMF probably modulated the arterial baroreflex-mediated microcirculatory control. This could represent one possible mechanism how environmental magnetic fields act on the cardiovascular system, and a method how to complexly adjust macro- and microcirculation with potential clinical implementation.
Collapse
Affiliation(s)
- Juraj Gmitrov
- Department of Environmental Health, National Institute of Public Health, Tokyo, Japan.
| |
Collapse
|
12
|
Shen JF, Chao YL, Du L. Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neurosci Lett 2007; 415:164-8. [PMID: 17289262 DOI: 10.1016/j.neulet.2007.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/06/2007] [Accepted: 01/08/2007] [Indexed: 01/11/2023]
Abstract
To evaluated the effects of moderate-intensity static magnetic fields (SMF) on two types of voltage-gated potassium channel (VGPC) currents: I(K,A) and I(K,V), whole-cell patch-clamp experiments were conducted on acute dissociated rat trigeminal root ganglion (TRG) neurons. The results demonstrated that 125 mT SMF could influence the inactivation kinetics of these two VGPC currents by altering the inactivation rate and velocity. No significant change was observed in the activation properties. These findings supported the hypothesis that biological membrane would be deformed in moderate-intensity SMF and the physiological characteristics of ion channels on the membrane would be influenced. The mechanism underlying the different effects of SMF on the I(K,A) and I(K,V) inactivation was also discussed.
Collapse
Affiliation(s)
- Jie-Fei Shen
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, No. 14, Section 3, People's South Road, Chengdu, Sichuan 610041, China
| | | | | |
Collapse
|
13
|
Okano H, Ohkubo C. Effects of 12 mT static magnetic field on sympathetic agonist-induced hypertension in wistar rats. Bioelectromagnetics 2007; 28:369-78. [PMID: 17330852 DOI: 10.1002/bem.20307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the combined effects of a moderate-intensity static magnetic field (SMF) and two different sympathetic agonists, an alpha(1)-adrenoceptor agonist, phenylephrine and a beta(1)-adrenoceptor agonist, dobutamine, which induced hypertension and different hemodynamics in Wistar rats. Five-week-old male rats were continuously exposed to the SMF intensity of 12 mT (B(max)) with the peak spatial gradient of 3 mT/mm for 10 weeks. A loop-shaped flexible rubber magnet was adjusted to fit snugly around the neck region of a rat (diameter-adjustable to an animal size). Sham exposure was performed using a dummy magnet. Six experimental groups of six animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip phenylephrine (1.0 microg/g) injection (PE); (4) SMF exposure with ip phenylephrine injection (SMF + PE); (5) sham exposure with ip dobutamine (4.0 microg/g) injection (DOB); (6) SMF exposure with ip dobutamine injection (SMF + DOB). Fifteen minutes after the injection of each agent, the first set of parameters, arterial blood pressure (BP) and heart rate (HR), the second set of parameters, skin blood flow (SBF) and skin blood velocity (SBV), or the third set of parameters, the number of rearing (exploratory behavior) responses and body weight was monitored. Each agent was administered three times a week for 10 weeks, and each set of parameters was monitored on different days, once a week. The dose of phenylephrine significantly increased BP and decreased HR, SBF, SBV, and the number of rearing responses in the PE group compared with those in the respective age-matched control group. The dose of dobutamine significantly increased BP and HR, increased SBF, SBV, and the number of rearing responses in the DOB group compared with those in the control group. Continuous neck exposure to the SMF alone for up to 10 weeks induced no significant changes in any of the measured cardiovascular and behavioral parameters. The SMF exposure for at least 2 weeks (1) significantly depressed phenylephrine effects on BP, SBF, SBV, and rearing activity (SMF + PE group vs. PE group); (2) significantly depressed dobutamine effects on BP, SBF, and SBV, and suppressed dobutamine-induced increase in the rearing activity (SMF + DOB group vs. DOB group). These results suggest that continuous neck exposure to 12 mT SMF for at least 2 weeks may depress or suppress sympathetic agonists-induced hypertension, hemodynamics, and behavioral changes by modulating sympathetic nerve activity.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| | | |
Collapse
|
14
|
Taniguchi N, Kanai S. Efficacy of static magnetic field for locomotor activity of experimental osteopenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 4:99-105. [PMID: 17342247 PMCID: PMC1810356 DOI: 10.1093/ecam/nel067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 08/26/2006] [Indexed: 11/24/2022]
Abstract
In order to examine the effectiveness of applying a static magnetic field (SMF) for increasing bone mineral density (BMD), we assessed the degree of osteopenia by dual-energy X-ray absorptiometry (DEXA), the metabolism measuring system, and histological examination of bone tissue in an ovariectomized (OVX) rat model. Thirty-six female Wistar rats (8 weeks old, 160–180 g) were divided into three groups. The rats in the OVX-M group were exposed to SMF for 12 weeks after ovariectomy. The ovariectomized rats in the OVX-D group were not exposed to SMF as a control. The rats in the normal group received neither ovariectomy nor exposure to SMF. Twelve-week exposure to SMF in the OVX-M group inhibited the reduction in BMD that was observed in the OVX-D group. Moreover, in the OVX rats, before exposure to SMF, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After exposure of OVX rats to SMF, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the normal group. In the OVX-M group, the continuity of the trabecular bone was maintained more favorably and bone mass was higher than the respective parameters in the OVX-D group. These results demonstrate that exposure to SMF increased the level of locomotor activity in OVX rats, thereby increasing BMD.
Collapse
Affiliation(s)
- Norimasa Taniguchi
- Kansai College of Oriental Medicine, 2-11-1 Wakaba Kumatori-cho Sennan-gun, Osaka 590-0482, Department of Pharmacology, Medicine Kinki University School of Medicine 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511 and Department of Science, Pip-Fujimoto Co. Ltd, 1-36 Noninbashi 2-choume, Chuo-ku, Osaka 540-0011, Japan
| | | |
Collapse
|
15
|
Okano H, Onmori R, Tomita N, Ikada Y. Effects of a moderate-intensity static magnetic field on VEGF-A stimulated endothelial capillary tubule formation in vitro. Bioelectromagnetics 2006; 27:628-40. [PMID: 16838273 DOI: 10.1002/bem.20246] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of a moderate-intensity static magnetic field (SMF) on the early-stage development of endothelial capillary tubule formation were examined during the initial cell growth periods using co-cultured human umbilical vein endothelial cells and human diploid fibroblasts. The co-cultured cells within a well (16 mm in diameter) were exposed to SMF intensity up to 120 mT (Bmax) with the maximum spatial gradient of 21 mT/mm using a disc-shaped permanent magnet (16 mm in diameter and 2.5 mm in height) for up to 10 days. Control exposure was performed without magnet. Some vascular endothelial cells were treated with vascular endothelial growth factor (VEGF)-A (10 ng/ml) to promote the tubule formation every 2-3 days. Four experimental protocols were performed: (1) non-exposure (control); (2) SMF exposure alone; (3) non-exposure with VEGF-A; (4) SMF exposure with VEGF-A. Photomicrographs of tubule cells immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31[) antibody as a pan-endothelial marker, were analyzed after culture at 37 degrees C for 4, 7, and 10 days. The mean values of the area density and the length of tubules (related mainly to arteriogenesis) as well as the number of bifurcations (related mainly to angiogenesis) were determined as parameters of tubule formation and were compared between the groups. After a 10 day incubation, in the peripheral part of the culture wells, SMF alone significantly promoted the tubule formation in terms of the area density and the length of tubules, compared with control group. In the central part of the wells, however, SMF did not cause any significant changes in the parameters of tubule formation. After a 7 day incubation, VEGF-A significantly promoted all the parameters of tubule formation in any part of the wells, compared with control group. With regard to the synergistic effects of SMF and VEGF-A on tubule formation, after a 10 day incubation, SMF significantly promoted the VEGF-A-increased area density and length of tubules in the peripheral part of the wells, compared with the VEGF-A treatment alone. However, SMF did not induce any significant changes in the VEGF-A-increased number of bifurcations in any part of the wells. The tubule cells observed in the wells had elongated, spindle-like shapes, and the direction of cell elongation was random, irrespective of the presence and direction of SMF. These findings suggest that the application of SMF to intact or VEGF-A-stimulated vascular endothelial cells leads mainly to promote or enhance arteriogenesis in the peripheral part of the wells, where the spatial gradient increases relative to the central part. The effects of SMF on the VEGF-A-enhanced tubule formation appear to be synergistic or additive in arteriogenesis but not in angiogenesis.
Collapse
Affiliation(s)
- Hideyuki Okano
- International Innovation Center, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
16
|
Okano H, Ohkubo C. Effects of neck exposure to 5.5 mT static magnetic field on pharmacologically modulated blood pressure in conscious rabbits. Bioelectromagnetics 2005; 26:469-80. [PMID: 16108042 DOI: 10.1002/bem.20115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Static magnetic fields (SMF) in the millitesla (mT) range have been reported to modulate microcirculatory hemodynamics and/or blood pressure (BP) under pharmacologically modified state in mammals. This study was designed to investigate the acute effects of local application of a SMF to neck or pelvic region under pharmacologically modulated BP; norepinephrine (NE)-induced hypertension as well as an L-type voltage-gated Ca(2+) channel blocker, nicardipine (NIC)-induced hypotension in conscious rabbits. Magnetic flux densities were up to 5.5 mT and the spatial magnetic gradient peaked in neck (carotid sinus baroreceptor) region at the level of approximately 0.06 mT/mm. The duration of exposure was 30 min (including 10 min of pretreatment) and the effects on BP were investigated up to 100 min postexposure. Baroreflex sensitivity (BRS) was estimated from invasive recordings of systolic BP and pulse interval. Neck exposure to 5.5 mT significantly attenuated the pharmacologically induced vasoconstriction or vasodilation, and subsequently suppressed the increase or decrease in BP compared with sham exposure. In contrast, pelvic exposure to 5.5 mT did not significantly antagonized NE-elevated BP or NIC-reduced BP. The neck exposure to 5.5 mT has a biphasic and restorative effect on vascular tone and BP acting to normalize the tone and BP. The neck exposure to 5.5 mT caused a significant increase in BRS in NE-elevated BP compared with sham exposure. The buffering effects of the SMF on increased hemodynamic variability under NE-induced high vascular tone and NIC-induced low vascular tone might be, in part, dependent on baroreflex pathways, which could modulate NE-mediated response in conjunction with Ca(2+) dynamics.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| | | |
Collapse
|
17
|
Okano H, Masuda H, Ohkubo C. Decreased plasma levels of nitric oxide metabolites, angiotensin II, and aldosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics 2005; 26:161-72. [PMID: 15768432 DOI: 10.1002/bem.20055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously, we found that whole body exposure to static magnetic fields (SMF) at 10 mT (B(max)) and 25 mT (B(max)) for 2-9 weeks suppressed and delayed blood pressure (BP) elevation in young, stroke resistant, spontaneously hypertensive rats (SHR). In this study, we investigated the interrelated antipressor effects of lower field strengths and nitric oxide (NO) metabolites (NO(x) = NO(2)(-) + NO(3)(-)) in SHR. Seven-week-old male rats were exposed to two different ranges of SMF intensity, 0.3-1.0 mT or 1.5-5.0 mT, for 12 weeks. Three experimental groups of 20 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham-exposed control); (2) 1 mT SMF exposure with ip saline injection (1 mT); (3) 5 mT SMF exposure with ip saline injection (5 mT). Arterial BP, heart rate (HR), skin blood flow (SBF), plasma NO metabolites (NO(x)), and plasma catecholamine levels were monitored. SMF at 5 mT, but not 1 mT, significantly suppressed and retarded the early stage development of hypertension for several weeks, compared with the age matched, unexposed (sham exposed) control. Exposure to 5 mT resulted in reduced plasma NO(x) concentrations together with lower levels of angiotensin II and aldosterone in SHR. These results suggest that SMF may suppress and delay BP elevation via the NO pathways and hormonal regulatory systems.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Environmental Health, National Institute of Public Health, Tokyo 108-8638, Japan.
| | | | | |
Collapse
|
18
|
Okano H, Ohkubo C. Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats. Bioelectromagnetics 2005; 26:611-23. [PMID: 16189831 DOI: 10.1002/bem.20144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the combined effects of a moderate intensity static magnetic field (SMF) and an L-type voltage-gated Ca(2+) channel blocker, nicardipine in stroke-resistant spontaneously hypertensive rats during the development of hypertension. Five-week-old male rats were exposed to SMF intensity up to 180 mT (B(max)) with a peak spatial gradient of 133 mT/mm for 14 weeks. Four experimental groups of 14 animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip nicardipine injection (NIC); (4) SMF exposure with ip nicardipine injection (SMF + NIC). A disc-shaped permanent magnet or a dummy magnet was implanted in the vicinity adjacent to the left carotid sinus baroreceptor region in the neck of each rat. Nicardipine (2 mg/kg ip) was administered three times a week for 14 weeks, and then 15 min after each injection, arterial blood pressure (BP), heart rate (HR), baroreflex sensitivity (BRS), skin blood flow (SBF), skin blood velocity (SBV), plasma nitric oxide (NO) metabolites (NO(x) = NO(2) (-) + NO(3) (-)), plasma catecholamine levels and behavioral parameters of a functional observational battery were monitored. The action of nicardipine significantly decreased BP, and increased HR, SBF, SBV, plasma epinephrine and norepinephrine in the NIC group compared with the control respective age-matched group without changing plasma NO(x) levels. Neck exposure to SMF alone for 5-8 weeks significantly suppressed or retarded the development of hypertension together with increased BRS in SMF group. Furthermore, the exposure to SMF for 1-8 weeks significantly promoted the nicardipine-induced BP decrease in the SMF + NIC group compared with the respective NIC group. Moreover, the SMF induced a significant increase in plasma NO(x) in the nicardipine-induced hypotension. There were no significant differences in any of the physiological or behavioral parameters measured between the SMF + NIC and the NIC groups, nor between the SMF and the control groups. These results suggest that the SMF may enhance nicardipine-induced hypotension by more effectively antagonizing the Ca(2+) influx through the Ca(2+) channels compared with the NIC treatment alone. Furthermore, the enhanced antihypertensive effects of the SMF on the nicardipine-treated group appear to be partially related to the increased NO(x). Theoretical considerations suggest that the applied SMF (B(max) 40 mT, 0 Hz) can be converted into a changing magnetic field (B(max) 30-40 mT, 5.7-6.5 Hz or 7.5-8.3 Hz) in the baroreceptor region by means of the carotid artery pulsation. Therefore, we propose that the moderate intensity changing magnetic field, i.e., the magnetic field modulated by the pulse rate, may influence the activity of baroreceptor and baroreflex function.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| | | |
Collapse
|
19
|
Okano H, Masuda H, Ohkubo C. Effects of 25 mT static magnetic field on blood pressure in reserpine-induced hypotensive Wistar-Kyoto rats. Bioelectromagnetics 2004; 26:36-48. [PMID: 15605399 DOI: 10.1002/bem.20052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the interrelated antihypotensive effects of static magnetic fields (SMF) and plasma catecholamine levels in reserpine-induced hypotensive Wistar-Kyoto rats. Seven-week-old male rats were exposed to two different ranges of SMF intensities, 3.0-10 mT (Bmax) or 7.5-25 mT (Bmax) for 12 weeks. Six experimental groups of 10 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham exposed control); (2) 10 mT SMF exposure with ip saline injection (10 mT); (3) 25 mT SMF exposure with ip saline injection (25 mT); (4) no exposure with ip reserpine injection (RES); (5) 10 mT SMF exposure with ip reserpine injection (10 mT + RES); (6) 25 mT SMF exposure with ip reserpine injection (25 mT + RES). Reserpine (5 mg/kg) was administered three times a week for 12 weeks, and 18 h after each injection, arterial blood pressure (BP), heart rate, skin blood flow, plasma nitric oxide metabolites, plasma catecholamine levels, and behavioral parameters of a functional observational battery (FOB) were monitored. The action of reserpine significantly decreased BP, reduced plasma norepinephrine (NE), increased the FOB hunched posture score and decreased the number of rearing events in the RES group, compared with the respective age-matched control group. Exposure to 25 mT, but not 10 mT, for 2-12 weeks significantly prevented the reserpine-induced decrease of BP in the 25 mT + RES group compared with the respective RES group. Moreover, exposure to 25 mT for 5 weeks partially suppressed the reserpine-induced NE reduction, but did not bring about a complete reversal of reserpine effects. NE levels for the 25 mT + RES group for 5 weeks were significantly higher compared with the RES group, but still lower compared with the control group. In addition, the FOB hunched posture score for the 25 mT + RES group was significantly lower and the number of rearing events was higher compared with the RES group, but these behavioral parameters did not revert to control levels. There were no significant differences in any of the physiological or behavioral parameters measured between the 10 mT + RES and RES groups, nor between the two different SMF groups and the control group. These results indicate that 25 mT SMF with spatial gradients significantly suppressed the reserpine-induced hypotension and bradykinesia. The antihypotensive effects of SMF on the reserpine-treated group might be at least partially related to the inhibition of NE depletion.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Environmental Health, National Institute of Public Health, Shirokanedai, Minato-ku, Tokyo, Japan.
| | | | | |
Collapse
|