1
|
Pophof B, Kuhne J, Schmid G, Weiser E, Dorn H, Henschenmacher B, Burns J, Danker-Hopfe H, Sauter C. The effect of exposure to radiofrequency electromagnetic fields on cognitive performance in human experimental studies: Systematic review and meta-analyses. ENVIRONMENT INTERNATIONAL 2024; 191:108899. [PMID: 39265322 DOI: 10.1016/j.envint.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The objective of this review is to evaluate the associations between short-term exposure to radiofrequency electromagnetic fields (RF-EMF) and cognitive performance in human experimental studies. METHODS Online databases (PubMed, Embase, Scopus, Web of Science and EMF-Portal) were searched for studies that evaluated effects of exposure to RF-EMF on seven domains of cognitive performance in human experimental studies. The assessment of study quality was based on the Risk of Bias (RoB) tool developed by the Office of Health Assessment and Translation (OHAT). Random effects meta-analyses of Hedges's g were conducted separately for accuracy- and speed-related performance measures of various cognitive domains, for which data from at least two studies were available. Finally, the certainty of evidence for each identified outcome was assessed according to Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS 57,543 records were identified and 76 studies (80 reports) met the inclusion criteria. The included 76 studies with 3846 participants, consisting of humans of different age, sex and health status from 19 countries, were conducted between 1989 and 2021. Quantitative data from 50 studies (52 reports) with 2433 participants were included into the meta-analyses. These studies were performed in 15 countries between 2001 and 2021. The majority of the included studies used head exposure with GSM 900 uplink. None of the meta-analyses observed a statistically significant effect of RF-EMF exposure compared to sham on cognitive performance as measured by the confidence interval surrounding the Hedges's g or the significance of the z-statistic. For the domain Orientation and Attention, subclass Attention - Attentional Capacity RF-EMF exposure results in little to no difference in accuracy (Hedges's g 0.024, 95 % CI [-0.10; 0.15], I2 = 28 %, 473 participants). For the domain Orientation and Attention, subclass Attention - Concentration / Focused Attention RF-EMF exposure results in little to no difference in speed (Hedges's g 0.005, 95 % CI [-0.17; 0.18], I2 = 7 %, 132 participants) and probably results in little to no difference in accuracy; it does not reduce accuracy (Hedges's g 0.097, 95 % CI [-0.05; 0.24], I2 = 0 %, 217 participants). For the domain Orientation and Attention, subclass Attention - Vigilance RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.118, 95 % CI [-0.04; 0.28], I2 = 41 %, 247 participants) and results in little to no difference in accuracy (Hedges's g 0.042, 95 % CI, [-0.09; 0.18], I2 = 0 %, 199 participants). For the domain Orientation and Attention, subclass Attention - Selective Attention RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.080, 95 % CI [-0.09; 0.25], I2 = 63 %, 452 participants); it may result in little to no difference in accuracy, but it probably does not reduce accuracy (Hedges's g 0.178, 95 % CI [-0.02; 0.38], I2 = 68 %, 480 participants). For the domain Orientation and Attention, subclass Attention - Divided Attention RF-EMF exposure results in little to no difference in speed (Hedges's g -0.010, 95 % CI [-0.14; 0.12], I2 = 5 %, 307 participants) and may result in little to no difference in accuracy (Hedges's g -0.089, 95 % CI [-0.35; 0.18], I2 = 53 %, 167 participants). For the domain Orientation and Attention, subclass Processing Speed - Simple Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g 0.069, 95 % CI [-0.02; +0.16], I2 = 29 %, 820 participants). For the domain Orientation and Attention, subclass Processing Speed - 2-Choice Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g -0.023, 95 % CI [-0.13; 0.08], I2 = 0 %, 401 participants), and may result in little to no difference in accuracy (Hedges's g -0.063, 95 % CI [-0.38; 0.25], I2 = 63 %, 117 participants). For the domain Orientation and Attention, subclass Processing Speed - >2-Choice Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g -0.054, 95 % CI [-0.14; 0.03], I2 = 0 %, 544 participants) and probably results in little to no difference in accuracy (Hedges's g -0.129, 95 % CI [-0.30; 0.04], I2 = 0 %, 131 participants). For the domain Orientation and Attention, subclass Processing Speed - Other Tasks RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.067, 95 % CI [-0.12; 0.26], I2 = 38 %, 249 participants); it results in little to no difference in accuracy (Hedges's g 0.036, 95 % CI [-0.08; 0.15], I2 = 0 %, 354 participants). For the domain Orientation and Attention, subclass Working Memory - n-back Task (0-3-back) we found Hedges's g ranging from -0.090, 95 % CI [-0.18; 0.01] to 0.060, 95 % CI [-0.06; 0.18], all I2 = 0 %, 237 to 474 participants, and conclude that RF-EMF exposure results in little to no difference in both speed and accuracy. For the domain Orientation and Attention, subclass Working Memory - Mental Tracking RF-EMF exposure results in little to no difference in accuracy (Hedges's g -0.047, 95 % [CI -0.15; 0.05], I2 = 0 %, 438 participants). For the domain Perception, subclass Visual and Auditory Perception RF-EMF exposure may result in little to no difference in speed (Hedges's g -0.015, 95 % CI [-0.23; 0.195], I2 = 0 %, 84 participants) and probably results in little to no difference in accuracy (Hedges's g 0.035, 95 % CI [-0.13; 0.199], I2 = 0 %, 137 participants). For the domain Memory, subclass Verbal and Visual Memory RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.042, 95 % CI [-0.15; 0.23], I2 = 0 %, 102 participants); it may result in little to no difference in accuracy (Hedges's g -0.087, 95 % CI [-0.38; 0.20], I2 = 85 %, 625 participants). For the domain Verbal Functions and Language Skills, subclass Verbal Expression, a meta-analysis was not possible because one of the two included studies did not provide numerical values. Results of both studies did not indicate statistically significant effects of RF-EMF exposure on both speed and accuracy. For the domain Construction and Motor Performance, subclass Motor Skills RF-EMF exposure may reduce speed, but the evidence is very uncertain (Hedges's g -0.919, 95 % CI [-3.09; 1.26], I2 = 96 %, 42 participants); it probably results in little to no difference in accuracy and does not reduce accuracy (Hedges's g 0.228, 95 % CI [-0.01; 0.46], I2 = 0 %, 109 participants). For the domain Concept Formation and Reasoning, subclass Reasoning RF-EMF exposure results in little to no difference in speed (Hedges's g 0.010, 95 % CI [-0.11; 0.13], I2 = 0 %, 263 participants) and probably results in little to no difference in accuracy and does not reduce accuracy (Hedges's g 0.051, 95 % CI [-0.14; 0.25], I2 = 0 %, 100 participants). For the domain Concept Formation and Reasoning, subclass Mathematical Procedures RF-EMF exposure results in little to no difference in speed (Hedges's g 0.033, 95 % CI [-0.12; 0.18], I2 = 0 %, 168 participants) and may result in little to no difference in accuracy but probably does not reduce accuracy (Hedges's g 0.232, 95 % CI [-0.12; +0.59], I2 = 86 %, 253 participants). For the domain Executive Functions there were no studies. DISCUSSION Overall, the results from all domains and subclasses across their speed- and accuracy-related outcome measures according to GRADE provide high to low certainty of evidence that short-term RF-EMF exposure does not reduce cognitive performance in human experimental studies. For 16 out of 35 subdomains some uncertainty remains, because of limitations in the study quality, inconsistency in the results or imprecision of the combined effect size estimate. Future research should focus on construction and motor performance, elderly, and consideration of both sexes. OTHER This review was partially funded by the WHO radioprotection programme. The protocol for this review was registered in Prospero reg. no. CRD42021236168 and published in Environment International (Pophof et al. 2021).
Collapse
Affiliation(s)
- Blanka Pophof
- Federal Office for Radiation Protection, Competence Centre EMF, Oberschleißheim, Germany.
| | - Jens Kuhne
- Federal Office for Radiation Protection, Competence Centre EMF, Oberschleißheim, Germany
| | | | - Evelyn Weiser
- Federal Office for Radiation Protection, Competence Centre EMF, Cottbus, Germany
| | - Hans Dorn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| | - Bernd Henschenmacher
- Federal Office for Radiation Protection, Optical Radiation, Oberschleißheim, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Germany
| | - Heidi Danker-Hopfe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| | - Cornelia Sauter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| |
Collapse
|
2
|
Leszczynski D. Review of the scientific evidence on the individual sensitivity to electromagnetic fields (EHS). REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:423-450. [PMID: 34229366 DOI: 10.1515/reveh-2021-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Part of the population considers themselves as sensitive to the man-made electromagnetic radiation (EMF) emitted by powerlines, electric wiring, electric home appliance and the wireless communication devices and networks. Sensitivity is characterized by a broad variety of non-specific symptoms that the sensitive people claim to experience when exposed to EMF. While the experienced symptoms are currently considered as a real life impairment, the factor causing these symptoms remains unclear. So far, scientists were unable to find causality link between symptoms experienced by sensitive persons and the exposures to EMF. However, as presented in this review, the executed to-date scientific studies, examining sensitivity to EMF, are of poor quality to find the link between EMF exposures and sensitivity symptoms of some people. It is logical to consider that the sensitivity to EMF exists but the scientific methodology used to find it is of insufficient quality. It is time to drop out psychology driven provocation studies that ask about feelings-based non-specific symptoms experienced by volunteers under EMF exposure. Such research approach produces only subjective and therefore highly unreliable data that is insufficient to prove, or to disprove, causality link between EHS and EMF. There is a need for a new direction in studying sensitivity to EMF. The basis for it is the notion of a commonly known phenomenon of individual sensitivity, where individuals' responses to EMF depend on the genetic and epigenetic properties of the individual. It is proposed here that new studies, combining provocation approach, where volunteers are exposed to EMF, and high-throughput technologies of transcriptomics and proteomics are used to generate objective data, detecting molecular level biochemical responses of human body to EMF.
Collapse
Affiliation(s)
- Dariusz Leszczynski
- Adjunct Professor of Biochemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Hinrikus H, Koppel T, Lass J, Orru H, Roosipuu P, Bachmann M. Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact. Int J Radiat Biol 2022; 98:1210-1221. [PMID: 34995145 DOI: 10.1080/09553002.2022.2026516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The deployment of new 5G NR technology has significantly raised public concerns in possible negative effects on human health by radiofrequency electromagnetic fields (RF EMF). The current review is aimed to clarify the differences between possible health effects caused by the various generations of telecommunication technology, especially discussing and projecting possible health effects by 5G. The review of experimental studies on the human brain over the last fifteen years and the discussion on physical mechanisms and factors determining the dependence of the RF EMF effects on frequency and signal structure have been performed to discover and explain the possible distinctions between health effects by different telecommunication generations. CONCLUSIONS The human experimental studies on RF EMF effects on the human brain by 2G, 3G and 4G at frequencies from 450 to 2500 MHz were available for analyses. The search for publications indicated no human experimental studies by 5G nor at the RF EMF frequencies higher than 2500 MHz. The results of the current review demonstrate no consistent relationship between the character of RF EMF effects and parameters of exposure by different generations (2G, 3G, 4G) of telecommunication technology. At the RF EMF frequencies lower than 10 GHz, the impact of 5G NR FR1 should have no principal differences compared to the previous generations. The radio frequencies used in 5G are even higher and the penetration depths of the fields are smaller, therefore the effect is rather lower than at previous generations. At the RF EMF frequencies higher than 10 GHz, the mechanism of the effects might differ and the impact of 5G NR FR2 becomes unpredictable. Existing knowledge about the mechanism of RF EMF effects at millimeter waves lacks sufficient experimental data and theoretical models for reliable conclusions. The insufficient knowledge about the possible health effects at millimeter waves and the lack of in vivo experimental studies on 5G NR underline an urgent need for the theoretical and experimental investigations of health effects by 5G NR, especially by 5G NR FR2.
Collapse
Affiliation(s)
- Hiie Hinrikus
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Tarmo Koppel
- Department of Business Administration, School of Business and Governance, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hans Orru
- Department of Public Health, Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Priit Roosipuu
- Thomas Johann Seebeck Department of Electronics, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
4
|
Hinrikus H, Lass J, Bachmann M. Threshold of radiofrequency electromagnetic field effect on human brain. Int J Radiat Biol 2021; 97:1505-1515. [PMID: 34402382 DOI: 10.1080/09553002.2021.1969055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE This review aims to estimate the threshold of radiofrequency electromagnetic field (RF EMF) effects on human brain based on analyses of published research results. To clarify the threshold of the RF EMF effects, two approaches have been applied: (1) the analyses of restrictions in sensitivity for different steps of the physical model of low-level RF EMF mechanism and (2) the analyses of experimental data to clarify the dependence of the RF EMF effect on exposure level based on the results of published original neurophysiological and behavioral human studies for 15 years 2007-2021. CONCLUSIONS The analyses of the physical model of nonthermal mechanisms of RF EMF effect leads to conclusion that no principal threshold of the effect can be determined. According to the review of experimental data, the rate of detected RF EMF effects is 76.7% in resting EEG studies, 41.7% in sleep EEG and 38.5% in behavioral studies. The changes in EEG probably appear earlier than alterations in behavior become evident. The lowest level of RF EMF at which the effect in EEG was detected is 2.45 V/m (SAR = 0.003 W/kg). There is a preliminary indication that the dependence of the effect on the level of exposure follows rather field strength than SAR alterations. However, no sufficient data are available for clarifying linearity-nonlinearity of the dependence of effect on the level of RF EMF. The finding that only part of people are sensitive to RF EMF exposure can be related to immunity to radiation or hypersensitivity. The changes in EEG caused by RF EMF appeared similar in the majority of analyzed studies and similar to these in depression. The possible causal relationship between RF EMF effect and depression among young people is highly important problem.
Collapse
Affiliation(s)
| | - Jaanus Lass
- Tallinn University of Technology, Tallinn, Estonia
| | | |
Collapse
|
5
|
Song Y, Sepulveda F. Comparison between covert sound-production task (sound-imagery) vs. motor-imagery for onset detection in real-life online self-paced BCIs. J Neuroeng Rehabil 2020; 17:14. [PMID: 32028964 PMCID: PMC7006387 DOI: 10.1186/s12984-020-0651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even though the BCI field has quickly grown in the last few years, it is still mainly investigated as a research area. Increased practicality and usability are required to move BCIs to the real-world. Self-paced (SP) systems would reduce the problem but there is still the big challenge of what is known as the 'onset detection problem'. METHODS Our previous studies showed how a new sound-imagery (SI) task, high-tone covert sound production, is very effective for onset detection scenarios and we expect there are several advantages over most common asynchronous approaches used thus far, i.e., motor-imagery (MI): 1) Intuitiveness; 2) benefits to people with motor disabilities and, especially, those with lesions on cortical motor areas; and 3) no significant overlap with other common, spontaneous cognitive states, making it easier to use in daily-life situations. The approach was compared with MI tasks in online real-life scenarios, i.e., during activities such as watching videos and reading text. In our scenario, when a new message prompt from a messenger program appeared on the screen, participants watching a video (or reading text, browsing images) were asked to open the message by executing the SI or MI tasks, respectively, for each experimental condition. RESULTS The results showed the SI task performed statistically significantly better than the MI approach: 84.04% (SI) vs 66.79 (MI) True-False positive rate for the sliding image scenario, 80.84% vs 61.07% for watching video. The classification performance difference between SI and MI was found not to be significant in the text-reading scenario. Furthermore, the onset response speed showed SI (4.08 s) being significantly faster than MI (5.46 s). In terms of basic usability, 75% of subjects found SI easier to use. CONCLUSIONS Our novel SI task outperforms typical MI for SP onset detection BCIs, therefore it would be more easily used in daily-life situations. This could be a significant step forward for the BCI field which has so far been mainly restricted to research-oriented indoor laboratory settings.
Collapse
Affiliation(s)
- Youngjae Song
- BCI-Neural Engineering Group - School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK.
| | - Francisco Sepulveda
- BCI-Neural Engineering Group - School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| |
Collapse
|
6
|
Selmaoui B, Andrianome S, Ghosn R, de Seze R. Effect of acute exposure to radiofrequency electromagnetic fields emitted by a mobile phone (GSM 900 MHz) on electrodermal responsiveness in healthy human. Int J Radiat Biol 2018; 94:890-895. [PMID: 30028653 DOI: 10.1080/09553002.2018.1503431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The present study aimed to determine the effect of acute exposure to electromagnetic fields (EMF) emitted by a mobile phone on electrodermal activity (EDA) in response to an auditory stimulus. MATERIALS AND METHODS The EDA of 28 young volunteers was recorded following 26 min of exposure to a GSM mobile phone (900 MHz). Palmar sensors enabled repeat recording of 2 min 45 s in the pre-exposure, exposure and post-exposure phases in response to sound stimuli. RESULTS The latency, amplitude of skin conductance responses (SCRs), integral of skin conductance response and number of SCRs in response to the auditory stimuli were not modified by exposure. Skin conductance and tonic activity decomposition of the recorded signal were significantly different between the two sessions (p < .0001), but the changes could not be attributed to EMF exposure. There was also a tendency toward a fast reduction in the amplitude and number of electrodermal responses after placement of the mobile phone. In response to successive stimuli, there was a significant difference between the first response and subsequent responses for all variables except latency. CONCLUSIONS Our results showed a decrease in the number of responses and their amplitude as a result of placement of the mobile device and whether it was turned 'on' or 'off', but there were no changes associated with exposure to GSM radiofrequency waves in this group of volunteers.
Collapse
Affiliation(s)
- Brahim Selmaoui
- a Department of Experimental Toxicology , Institut National de l'Environnement Industriel et des Risques (INERIS) , Verneuil-en-Halatte , France.,b Université de Picardie Jules Verne Peritox-Laboratoire de Périnatalité et Risques Toxiques UMR-I-01 Unité mixte INERIS , Amiens , France
| | - Soafara Andrianome
- a Department of Experimental Toxicology , Institut National de l'Environnement Industriel et des Risques (INERIS) , Verneuil-en-Halatte , France.,b Université de Picardie Jules Verne Peritox-Laboratoire de Périnatalité et Risques Toxiques UMR-I-01 Unité mixte INERIS , Amiens , France
| | - Rania Ghosn
- a Department of Experimental Toxicology , Institut National de l'Environnement Industriel et des Risques (INERIS) , Verneuil-en-Halatte , France.,b Université de Picardie Jules Verne Peritox-Laboratoire de Périnatalité et Risques Toxiques UMR-I-01 Unité mixte INERIS , Amiens , France
| | - René de Seze
- a Department of Experimental Toxicology , Institut National de l'Environnement Industriel et des Risques (INERIS) , Verneuil-en-Halatte , France.,b Université de Picardie Jules Verne Peritox-Laboratoire de Périnatalité et Risques Toxiques UMR-I-01 Unité mixte INERIS , Amiens , France
| |
Collapse
|
7
|
Descriptive self-reporting survey of people with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): similarities and comparisons with previous studies. J Public Health (Oxf) 2017. [DOI: 10.1007/s10389-017-0886-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Andrianome S, Gobert J, Hugueville L, Stéphan-Blanchard E, Telliez F, Selmaoui B. An assessment of the autonomic nervous system in the electrohypersensitive population: a heart rate variability and skin conductance study. J Appl Physiol (1985) 2017; 123:1055-1062. [DOI: 10.1152/japplphysiol.00229.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was twofold: first, to compare the activity of the autonomic nervous system (ANS) between the population self-declared as electrohypersensitive (EHS) and their matched control individuals without intended exposure to electromagnetic fields (EMF). The second objective was to determine whether acute exposure to different radiofrequency signals modifies ANS activity in EHS. For that purpose, two different experiments were undertaken, in which ANS activity was assessed through heart rate variability (HRV) and skin conductance (SC). In the first experiment, a comparison between the EHS group ( n = 30) and the control group ( n = 25) showed that the EHS has an increased number of responses to auditory stimuli as measured by skin conductance activity, and that none of the short-term heart rate variability parameters differ between the two matched study groups. The second experiment, performed in a shielded chamber, involved 10 EHS from the first experiment. The volunteers participated in two different sessions (sham and exposure). The participants were consecutively exposed to four EMF signals (GSM 900, GSM 1800, DECT, and Wi-Fi) at environmental level (1 V/m). The experiment was double blinded and counterbalanced. The HRV variables studied did not differ between the two sessions. Concerning electrodermal activity, the data issued from skin conductance and tonic activity did not differ between the sessions, but showed a time variability. In conclusion, the HRV and SC profiles did not significantly differ between the EHS and control populations under no exposure. Exposure did not have an effect on the ANS parameters we have explored. NEW & NOTEWORTHY This study provided analysis on the skin conductance parameters using a newly developed method (peak/min, extraction of skin conductance responses) that had not been performed previously. Additionally, the skin conductance signal was decomposed, considering tonic and phasic activities to be a distinct compound. Moreover, this is the first time a study has been designed into two steps to understand whether the autonomic nervous system is disturbed in the EHS population.
Collapse
Affiliation(s)
- Soafara Andrianome
- Unité de toxicologie expérimentale TOXI-PériTox UMR-I 01, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
- PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France
| | - Jonathan Gobert
- Unité de toxicologie expérimentale TOXI-PériTox UMR-I 01, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
- PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France
| | - Laurent Hugueville
- Centre National de la Recherche Scientifique, Centre MEG-EEG, CRICM et CENIR, UMR 7225, Paris, France; and
| | - Erwan Stéphan-Blanchard
- Unité de toxicologie expérimentale TOXI-PériTox UMR-I 01, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
- PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France
| | - Frederic Telliez
- PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France
| | - Brahim Selmaoui
- Unité de toxicologie expérimentale TOXI-PériTox UMR-I 01, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
- PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France
| |
Collapse
|
9
|
Bräscher AK, Raymaekers K, Van den Bergh O, Witthöft M. Are media reports able to cause somatic symptoms attributed to WiFi radiation? An experimental test of the negative expectation hypothesis. ENVIRONMENTAL RESEARCH 2017; 156:265-271. [PMID: 28371755 DOI: 10.1016/j.envres.2017.03.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 05/04/2023]
Abstract
People suffering from idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) experience numerous non-specific symptoms that they attribute to EMF. The cause of this condition remains vague and evidence shows that psychological rather than bioelectromagnetic mechanisms are at work. We hypothesized a role of media reports in the etiology of IEI-EMF and investigated how somatosensory perception is affected. 65 healthy participants were instructed that EMF exposure can lead to enhanced somatosensory perception. Participants were randomly assigned to watch either a television report on adverse health effects of EMF or a neutral report. During the following experiment, participants rated stimulus intensities of tactile (electric) stimuli while being exposed to a sham WiFi signal in 50% of the trials. Sham WiFi exposure led to increased intensity ratings of tactile stimuli in the WiFi film group, especially in participants with higher levels of somatosensory amplification. Participants of the WiFi group reported more anxiety concerning WiFi exposure than the Control group and tended to perceive themselves as being more sensitive to EMF after the experiment compared to before. Sensational media reports can facilitate enhanced perception of tactile stimuli in healthy participants. People tending to perceive bodily symptoms as intense, disturbing, and noxious seem most vulnerable. Receiving sensational media reports might sensitize people to develop a nocebo effect and thereby contribute to the development of IEI-EMF. By promoting catastrophizing thoughts and increasing symptom-focused attention, perception might more readily be enhanced and misattributed to EMF.
Collapse
Affiliation(s)
- Anne-Kathrin Bräscher
- Johannes Gutenberg University Mainz, Department for Clinical Psychology, Psychotherapy, and Experimental Psychopathology, Wallstraße 3, 55122 Mainz, Germany.
| | - Koen Raymaekers
- Johannes Gutenberg University Mainz, Department for Clinical Psychology, Psychotherapy, and Experimental Psychopathology, Wallstraße 3, 55122 Mainz, Germany; KU Leuven - University of Leuven, School Psychology and Development in Context, Belgium
| | | | - Michael Witthöft
- Johannes Gutenberg University Mainz, Department for Clinical Psychology, Psychotherapy, and Experimental Psychopathology, Wallstraße 3, 55122 Mainz, Germany
| |
Collapse
|
10
|
Zubko O, Gould RL, Gay HC, Cox HJ, Coulson MC, Howard RJ. Effects of electromagnetic fields emitted by GSM phones on working memory: a meta-analysis. Int J Geriatr Psychiatry 2017; 32:125-135. [PMID: 27645289 DOI: 10.1002/gps.4581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Current treatments for Alzheimer's Disease (AD) do not affect the course of the illness and brain stimulation techniques are increasingly promoted as potential therapeutic interventions for AD. This study reviews the effects of electromagnetic field (EMF) exposure versus sham exposure on working memory (WM) performance of healthy human participants. METHOD Online literature databases and previous systematic reviews were searched for studies of EMF and WM in participants without reported memory problems. Two thousand eight hundred and fifty seven studies were identified, and 10 studies met the inclusion criteria. An assessment of study quality was completed, and separate, random effects meta-analyses were conducted for each of the three WM tasks included: n-back, substitution and digit span forward. RESULTS No differences were found between participants exposed to active EMF versus sham conditions in any of the three working memory tasks examined. CONCLUSION Results indicate that EMF does not affect WM during the n-back, substitution and digit-span tasks. Future studies should focus on the possible effects of chronic exposure to EMF in older adults with AD using a battery of comparable WM and attention tasks, before EMF can be seriously considered as a potential modulator of WM in AD. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- O Zubko
- Department of Old Age Psychiatry, King's College London, UK
| | - R L Gould
- Department of Old Age Psychiatry, King's College London, UK
| | - H C Gay
- Department of Old Age Psychiatry, King's College London, UK
| | - H J Cox
- Department of Old Age Psychiatry, King's College London, UK
| | - M C Coulson
- Department of Psychology, Middlesex University, UK
| | - R J Howard
- Department of Old Age Psychiatry, King's College London, UK.,Division of Psychiatry, University College London, UK
| |
Collapse
|
11
|
Guxens M, Vermeulen R, van Eijsden M, Beekhuizen J, Vrijkotte TGM, van Strien RT, Kromhout H, Huss A. Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 years old children. ENVIRONMENTAL RESEARCH 2016; 150:364-374. [PMID: 27348251 DOI: 10.1016/j.envres.2016.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/06/2016] [Accepted: 06/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. METHODS Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. RESULTS Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. CONCLUSIONS We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years.
Collapse
Affiliation(s)
- Mònica Guxens
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, PO Box 80178, 3508 TD Utrecht, The Netherlands; Center for Research in Environmental Epidemiology, C/ Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, C/ Doctor Aiguader 88, 08003 Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenue de Monforte de Lemos, 5, 28029 Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, PO Box 2060, 3000 CB Rotterdam, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, PO Box 80178, 3508 TD Utrecht, The Netherlands; Julius Centre for Public Health Sciences and Primary Care, University Medical Centre, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Manon van Eijsden
- Department of Epidemiology and Health Promotion, Public Health Service of Amsterdam (GGD), PO Box 2200, 1000 CE Amsterdam, The Netherlands.
| | - Johan Beekhuizen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, PO Box 80178, 3508 TD Utrecht, The Netherlands.
| | - Tanja G M Vrijkotte
- Department of Public Health, Academic Medical Center, University of Amsterdam, Meidergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Rob T van Strien
- Department of Environmental Health, Public Health Service of Amsterdam (GGD), PO Box 2200, 1000 CE Amsterdam, The Netherlands.
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, PO Box 80178, 3508 TD Utrecht, The Netherlands.
| | - Anke Huss
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, PO Box 80178, 3508 TD Utrecht, The Netherlands; Institute for Social and Preventive Medicine, University of Bern, Finkenhubelweg 9, 3012 Bern, Switzerland.
| |
Collapse
|
12
|
Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 2016; 17:841-857. [DOI: 10.1007/s10522-016-9654-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
|
13
|
2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration. Brain Res 2016; 1635:1-11. [DOI: 10.1016/j.brainres.2016.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/15/2022]
|
14
|
Klaps A, Ponocny I, Winker R, Kundi M, Auersperg F, Barth A. Mobile phone base stations and well-being--A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:24-30. [PMID: 26657246 DOI: 10.1016/j.scitotenv.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
It is unclear whether electromagnetic fields emitted by mobile phone base stations affect well-being in adults. The existing studies on this topic are highly inconsistent. In the current paper we attempt to clarify this question by carrying out a meta-analysis which is based on the results of 17 studies. Double-blind studies found no effects on human well-being. By contrast, field or unblinded studies clearly showed that there were indeed effects. This provides evidence that at least some effects are based on a nocebo effect. Whether there is an influence of electromagnetic fields emitted by mobile phone base stations thus depends on a person's knowledge about the presence of the presumed cause. Taken together, the results of the meta-analysis show that the effects of mobile phone base stations seem to be rather unlikely. However, nocebo effects occur.
Collapse
Affiliation(s)
- Armin Klaps
- Department of Psychology, Sigmund Freud University Vienna, Austria
| | - Ivo Ponocny
- Department of Applied Statistics and Economics, MODUL University Vienna, Austria
| | - Robert Winker
- Health and Prevention Center of the Insurance Institution for Vienna Employees, Austria
| | - Michael Kundi
- Department of Public Health, Medical University Vienna, Austria
| | | | - Alfred Barth
- Department of Psychology, Sigmund Freud University Linz, Austria.
| |
Collapse
|
15
|
Gherardini L, Ciuti G, Tognarelli S, Cinti C. Searching for the perfect wave: the effect of radiofrequency electromagnetic fields on cells. Int J Mol Sci 2014; 15:5366-87. [PMID: 24681584 PMCID: PMC4013569 DOI: 10.3390/ijms15045366] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/17/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Selene Tognarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pisa 56025, Italy.
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche Siena, Strada Petriccio e Belriguardo, Siena 53100, Italy.
| |
Collapse
|
16
|
Gómez-Perretta C, Navarro EA, Segura J, Portolés M. Subjective symptoms related to GSM radiation from mobile phone base stations: a cross-sectional study. BMJ Open 2013; 3:e003836. [PMID: 24381254 PMCID: PMC3885815 DOI: 10.1136/bmjopen-2013-003836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES We performed a re-analysis of the data from Navarro et al (2003) in which health symptoms related to microwave exposure from mobile phone base stations (BSs) were explored, including data obtained in a retrospective inquiry about fear of exposure from BSs. DESIGN Cross-sectional study. SETTING La Ñora (Murcia), Spain. PARTICIPANTS Participants with known illness in 2003 were subsequently disregarded: 88 participants instead of 101 (in 2003) were analysed. Since weather circumstances can influence exposure, we restricted data to measurements made under similar weather conditions. OUTCOMES AND METHODS A statistical method indifferent to the assumption of normality was employed: namely, binary logistic regression for modelling a binary response (eg, suffering fatigue (1) or not (0)), and so exposure was introduced as a predictor variable. This analysis was carried out on a regular basis and bootstrapping (95% percentile method) was used to provide more accurate CIs. RESULTS The symptoms most related to exposure were lack of appetite (OR=1.58, 95% CI 1.23 to 2.03); lack of concentration (OR=1.54, 95% CI 1.25 to 1.89); irritability (OR=1.51, 95% CI 1.23 to 1.85); and trouble sleeping (OR=1.49, 95% CI 1.20 to 1.84). Changes in -2 log likelihood showed similar results. Concerns about the BSs were strongly related with trouble sleeping (OR =3.12, 95% CI 1.10 to 8.86). The exposure variable remained statistically significant in the multivariate analysis. The bootstrapped values were similar to asymptotic CIs. CONCLUSIONS This study confirms our preliminary results. We observed that the incidence of most of the symptoms was related to exposure levels-independently of the demographic variables and some possible risk factors. Concerns about adverse effects from exposure, despite being strongly related with sleep disturbances, do not influence the direct association between exposure and sleep.
Collapse
Affiliation(s)
| | - Enrique A Navarro
- Department of Applied Physics, Universitat de València, Valencia, Spain
| | - Jaume Segura
- Department of Computer Sciences, ETSE-Universitat de València, Valencia, Spain
| | | |
Collapse
|
17
|
Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L, Yong Z, Zuo H, Zhao L, Dong J, Xu X, Su Z. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol 2013; 89:1100-7. [PMID: 23786183 DOI: 10.3109/09553002.2013.817701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the impact of microwave exposure on learning and memory and to explore the underlying mechanisms. MATERIALS AND METHODS 100 Wistar rats were exposed to a 2.856 GHz pulsed microwave field at average power densities of 0 mW/cm(2), 5 mW/cm(2), 10 mW/cm(2) and 50 mW/cm(2) for 6 min. The spatial memory was assessed by the Morris Water Maze (MWM) task. An in vivo study was conducted soon after microwave exposure to evaluate the changes of population spike (PS) amplitudes of long-term potentiation (LTP) in the medial perforant path (MPP)-dentate gyrus (DG) pathway. The structure of the hippocampus was observed by the light microscopy and the transmission electron microscopy (TEM) at 7 d after microwave exposure. RESULTS Our results showed that the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave displayed significant deficits in spatial learning and memory at 6 h, 1 d and 3 d after exposure. Decreased PS amplitudes were also found after 10 mW/cm(2) and 50 mW/cm(2) microwave exposure. In addition, varying degrees of degeneration of hippocampal neurons, decreased synaptic vesicles and blurred synaptic clefts were observed in the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave. Compared with the sham group, the rats exposed in 5 mW/cm(2) microwave showed no difference in the above experiments. CONCLUSIONS This study suggested that impairment of LTP induction and the damages of hippocampal structure, especially changes of synapses, might contribute to cognitive impairment after microwave exposure.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Elwood JM. Microwaves in the cold war: the Moscow embassy study and its interpretation. Review of a retrospective cohort study. Environ Health 2012; 11:85. [PMID: 23151144 PMCID: PMC3509929 DOI: 10.1186/1476-069x-11-85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND From 1953 to 1976, beams of microwaves of 2.5 to 4.0 GHz were aimed at the US embassy building in Moscow. An extensive study investigated the health of embassy staff and their families, comparing Moscow embassy staff with staff in other Eastern European US embassies. The resulting large report has never been published in peer reviewed literature. METHODS The original report and other published comments or extracts from the report were reviewed. RESULTS The extensive study reports on mortality and morbidity, recorded on medical records and by regular examinations, and on self-reported symptoms. Exposure levels were low, but similar or greater than present-day exposures to radiofrequencies sources such as cell phone base stations. The conclusions were that no adverse health effects of the radiation were shown. The study validity depends on the assumption that staff at the other embassies were not exposed to similar radiofrequencies. This has been questioned, and other interpretations of the data have been presented. CONCLUSIONS The conclusions of the original report are supported. Contrary conclusions given in some other reports are due to misinterpretation of the results.
Collapse
Affiliation(s)
- J Mark Elwood
- Epidemiology & Biostatistics, School of Population Health, The University of Auckland, Private Bag 92019, Auckland, Mail Centre 1142, New Zealand.
| |
Collapse
|
19
|
Ng TP, Lim ML, Niti M, Collinson S. Long-term digital mobile phone use and cognitive decline in the elderly. Bioelectromagnetics 2011; 33:176-85. [DOI: 10.1002/bem.20698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/17/2011] [Indexed: 11/11/2022]
|
20
|
Rubin GJ, Hillert L, Nieto-Hernandez R, van Rongen E, Oftedal G. Do people with idiopathic environmental intolerance attributed to electromagnetic fields display physiological effects when exposed to electromagnetic fields? A systematic review of provocation studies. Bioelectromagnetics 2011; 32:593-609. [PMID: 21769898 DOI: 10.1002/bem.20690] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 06/17/2011] [Indexed: 11/10/2022]
Abstract
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial illness in which people report symptoms that they believe are triggered by exposure to EMF. Double-blind experiments have found no association between the presence of EMF and self-reported outcomes in people with IEI-EMF. No systematic review has assessed whether EMF exposure triggers physiological or cognitive changes in this group. Using a systematic literature search, we identified 29 single or double-blind experiments in which participants with IEI-EMF were exposed to different EMF levels and in which objectively measured outcomes were assessed. Five studies identified significant effects of exposure such as reduced heart rate and blood pressure, altered pupillary light reflex, reduced visual attention and perception, improved spatial memory, movement away from an EMF source during sleep and altered EEG during sleep. In most cases, these were isolated results that other studies failed to replicate. For the sleep EEG findings, the results reflected similar changes in the IEI-EMF participants and a non-IEI-EMF control group. At present, there is no reliable evidence to suggest that people with IEI-EMF experience unusual physiological reactions as a result of exposure to EMF. This supports suggestions that EMF is not the main cause of their ill health.
Collapse
Affiliation(s)
- G James Rubin
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
21
|
Spichtig S, Scholkmann F, Chin L, Lehmann H, Wolf M. Assessment of intermittent UMTS electromagnetic field effects on blood circulation in the human auditory region using a near-infrared system. Bioelectromagnetics 2011; 33:40-54. [PMID: 21695708 DOI: 10.1002/bem.20682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/06/2011] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to assess the potential effects of intermittent Universal Mobile Telecommunications System electromagnetic fields (UMTS-EMF) on blood circulation in the human head (auditory region) using near-infrared spectroscopy (NIRS) on two different timescales: short-term (effects occurring within 80 s) and medium-term (effects occurring within 80 s to 30 min). For the first time, we measured potential immediate effects of UMTS-EMF in real-time without any interference during exposure. Three different exposures (sham, 0.18 W/kg, and 1.8 W/kg) were applied in a controlled, randomized, crossover, and double-blind paradigm on 16 healthy volunteers. In addition to oxy-, deoxy-, and total haemoglobin concentrations ([O(2) Hb], [HHb], and [tHb], respectively), the heart rate (HR), subjective well-being, tiredness, and counting speed were recorded. During exposure to 0.18 W/kg, we found a significant short-term increase in Δ[O(2) Hb] and Δ[tHb], which is small (≈17%) compared to a functional brain activation. A significant decrease in the medium-term response of Δ[HHb] at 0.18 and 1.8 W/kg exposures was detected, which is in the range of physiological fluctuations. The medium-term ΔHR was significantly higher (+1.84 bpm) at 1.8 W/kg than for sham exposure. The other parameters showed no significant effects. Our results suggest that intermittent exposure to UMTS-EMF has small short- and medium-term effects on cerebral blood circulation and HR.
Collapse
Affiliation(s)
- Sonja Spichtig
- Biomedical Optics Research Laboratory, Division of Neonatology, Department of Obstetrics and Gynecology, University Hospital Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Wallace D, Eltiti S, Ridgewell A, Garner K, Russo R, Sepulveda F, Walker S, Quinlan T, Dudley S, Maung S, Deeble R, Fox E. Cognitive and physiological responses in humans exposed to a TETRA base station signal in relation to perceived electromagnetic hypersensitivity. Bioelectromagnetics 2011; 33:23-39. [DOI: 10.1002/bem.20681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/01/2011] [Indexed: 11/09/2022]
|
23
|
Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release. PLoS One 2011; 6:e19437. [PMID: 21573218 PMCID: PMC3088670 DOI: 10.1371/journal.pone.0019437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/06/2011] [Indexed: 12/30/2022] Open
Abstract
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.
Collapse
|
24
|
Kwon MS, Hämäläinen H. Effects of mobile phone electromagnetic fields: Critical evaluation of behavioral and neurophysiological studies. Bioelectromagnetics 2010; 32:253-72. [DOI: 10.1002/bem.20635] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 11/05/2010] [Indexed: 11/07/2022]
|