1
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
2
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Dhiman SK, Wu F, Galland P. Effects of weak static magnetic fields on the development of seedlings of Arabidopsis thaliana. PROTOPLASMA 2023; 260:767-786. [PMID: 36129584 DOI: 10.1007/s00709-022-01811-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
To study magnetoreception of Arabidopsis thaliana, we analysed several developmental responses including cryptochrome-independent seed germination and the phytochrome- and cryptochrome-dependent hypocotyl elongation and photo-accumulation of anthocyanins and chlorophylls in weak static magnetic fields ranging from near null to 122 μT. A field of 50 μT accelerated seed germination by about 20 h relative to samples maintained in a near-null field. The double mutant, cry1cry2, lacking cryptochromes 1 and 2 displayed the same magnetic field-induced germination acceleration under blue light as the wild-type strain. Magnetic field-induced germination acceleration was masked in the presence of exogenous sucrose. Stimulus-response curves for hypocotyl elongation in a range between near-null to 122 μT indicated maxima near 9 and 60 μT for the wild-type strain as well as mutant cry1cry2. The photo-accumulation of anthocyanins and chlorophylls could be effectively modulated by magnetic fields in the presence of low-irradiance red and blue light, respectively. The findings indicate that Arabidopsis thaliana possesses light-independent mechanisms of magnetic field reception, which remain presently unidentified. Our results are in better agreement with predictions of the level crossing mechanism (LCM) of magnetoreception rather than those of the cryptochrome-associated radical-pair mechanism (RPM).
Collapse
Affiliation(s)
- Sunil Kumar Dhiman
- Kirori Mal College, Delhi University (North Campus), Delhi, 110007, India.
| | - Fan Wu
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| |
Collapse
|
4
|
Hypomagnetic Fields and Their Multilevel Effects on Living Organisms. Processes (Basel) 2023. [DOI: 10.3390/pr11010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Earth’s magnetic field is one of the basic abiotic factors in all environments, and organisms had to adapt to it during evolution. On some occasions, organisms can be confronted with a significant reduction in a magnetic field, termed a “hypomagnetic field—HMF”, for example, in buildings with steel reinforcement or during interplanetary flight. However, the effects of HMFs on living organisms are still largely unclear. Experimental studies have mostly focused on the human and rodent models. Due to the small number of publications, the effects of HMFs are mostly random, although we detected some similarities. Likely, HMFs can modify cell signalling by affecting the contents of ions (e.g., calcium) or the ROS level, which participate in cell signal transduction. Additionally, HMFs have different effects on the growth or functions of organ systems in different organisms, but negative effects on embryonal development have been shown. Embryonal development is strictly regulated to avoid developmental abnormalities, which have often been observed when exposed to a HMF. Only a few studies have addressed the effects of HMFs on the survival of microorganisms. Studying the magnetoreception of microorganisms could be useful to understand the physical aspects of the magnetoreception of the HMF.
Collapse
|
5
|
Hafeez MB, Zahra N, Ahmad N, Shi Z, Raza A, Wang X, Li J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:8-23. [PMID: 35929950 DOI: 10.1111/plb.13459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The Earth's geomagnetic field (GMF) is an inescapable environmental factor for plants that affects all growth and yield parameters. Both strong and weak magnetic fields (MF), as compared to the GMF, have specific roles in plant growth and development. MF technology is an eco-friendly technique that does not emit waste or generate harmful radiation, nor require any external power supply, so it can be used in sustainable modern agriculture. Thus, exposure of plants to MF is a potential affordable, reusable and safe practice for enhancing crop productivity by changing physiological and biochemical processes. However, the effect of MF on plant physiological and biochemical processes is not yet well understood. This review describes the effects of altering MF conditions (higher or lower values than the GMF) on physiological and biochemical processes of plants. The current contradictory and inconsistent outcomes from studies on varying effects of MF on plants could be related to species and/or MF exposure time and intensity. The reviewed literature suggests MF have a role in changing physiological processes, such as respiration, photosynthesis, nutrient uptake, water relations and biochemical attributes, including genes involved in ROS, antioxidants, enzymes, proteins and secondary metabolites. MF application might efficiently increase growth and yield of many crops, and as such, should be the focus for future research.
Collapse
Affiliation(s)
- M B Hafeez
- College of Agronomy, Northwest A&F University, Yangling, China
| | - N Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - N Ahmad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Z Shi
- College of Agronomy, Northwest A&F University, Yangling, China
| | - A Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - X Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - J Li
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Pophof B, Henschenmacher B, Kattnig DR, Kuhne J, Vian A, Ziegelberger G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. HEALTH PHYSICS 2023; 124:39-52. [PMID: 36480584 PMCID: PMC9722389 DOI: 10.1097/hp.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ABSTRACT This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively. Radical pairs and magnetite are discussed mechanisms of magnetoreception in insects, birds, and mammals. Moreover, several insects as well as marine species possess specialized electroreceptors, and behavioral reactions to anthropogenic fields have been reported. Plants react to experimental modifications of their magnetic environment by growth changes. Strong adverse effects of anthropogenic fields have not been described, but knowledge gaps were identified; further studies, aiming at the identification of the interaction mechanisms and the ecological consequences, are recommended.
Collapse
Affiliation(s)
- Blanka Pophof
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Bernd Henschenmacher
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Jens Kuhne
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gunde Ziegelberger
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| |
Collapse
|
7
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
8
|
Binhi VN, Rubin AB. Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells 2022; 11:274. [PMID: 35053390 PMCID: PMC8773520 DOI: 10.3390/cells11020274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
This review contains information on the development of magnetic biology, one of the multidisciplinary areas of biophysics. The main historical facts are presented and the general observed properties of magnetobiological phenomena are listed. The unavoidable presence of nonspecific magnetobiological effects in the everyday life of a person and society is shown. Particular attention is paid to the formation of theoretical concepts in magnetobiology and the state of the art in this area of research. Some details are provided on the molecular mechanisms of the nonspecific action of a magnetic field on organisms. The prospects of magnetobiology for the near and distant future are discussed.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Andrei B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia;
| |
Collapse
|
9
|
Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Ozcelik S, Kayed TS. Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:36-48. [PMID: 34844116 DOI: 10.1016/j.plaphy.2021.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The magnetic field (MF) interacts with biological systems and has the potential to increase germination, plant growth and productivity. Although it is known as a low cost and promising approach, the mechanism that increases growth is not fully understood yet. In this study, the effect of different MF strengths (20, 42, 125, and 250 mT) was investigated on barley (Hordeum vulgare L.). In addition to phenological parameters, possible cell damage, electron transport rate, chlorophyll fluorescence, magnetic character and elemental status of tissues were determined. Results showed that lower strengths (≤125 mT) of MF treatment improve germination. Confocal microscopy analyzes revealed MF-induced cell membrane damage in roots that could alter the elemental content of tissues. Elemental analyzes found that the content of macroelements (Ca, Mg, P, and K) are gradually reduced with increasing MF forces; in opposite the microelement contents (Fe, B, Cu, Mn, Zn, and Mo) are increased in roots. Diamagnetism is the dominant magnetic character in all root and leaf samples. However, the roots became surprisingly superparamagnetic in 250 mT application. It seems that MF treatment at higher strength (250 mT in this study) could influence the orientation of magnetic moments. These findings suggest that MF application: i) can alter the magnetic character of plants, ii) enhances the germination, photosynthetic machinery, and growth, and iii) affects the nutrient uptake and abundance in tissues, depending on the MF strength. This comprehensive study can help in understanding the interaction of magnetic field with plants.
Collapse
Affiliation(s)
- Ismail Ercan
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia.
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Noha Alqahtani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Bayan Alotaibi
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Muruj Bamhrez
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Raghdah Alshumrani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34221, Saudi Arabia
| | - Sezen Ozcelik
- Department of Food Engineering, Faculty of Engineering, Hakkari University, 30000, Hakkari, Turkey
| | - Tarek Said Kayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Xu C, Feng S, Yu Y, Zhang Y, Wei S. Near-Null Magnetic Field Suppresses Fruit Growth in Arabidopsis. Bioelectromagnetics 2021; 42:593-602. [PMID: 34289513 DOI: 10.1002/bem.22363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022]
Abstract
We previously found that a near-null magnetic field affected reproductive growth in Arabidopsis under white light. To test whether the effect of a near-null magnetic field on fruit growth of Arabidopsis is related to cryptochrome, we grew wild-type Arabidopsis and cryptochrome double mutant, cry1/cry2, in a near-null magnetic field under blue light. We found that fruit growth of wild-type Arabidopsis instead of the cry1/cry2 mutant was suppressed by the near-null magnetic field. Furthermore, gibberellin (GA) levels of GA4 , GA9 , GA34 , and GA51 in fruits of wild-type plants in the near-null magnetic fields were significantly lower than local geomagnetic field controls. However, in cry1/cry2 mutants, levels of the four detected GAs in fruits in the near-null magnetic fields did not differ significantly from controls. Expressions of GA20-oxidase (GA20ox) genes (GA20ox1 and GA20ox2) and GA3-oxidase (GA3ox) genes (GA3ox1 and GA3ox3) in fruits of wild-type plants rather than cry1/cry2 mutants were downregulated by the near-null magnetic field. In contrast, expressions of GA2-oxidase (GA2ox) genes and GA signaling genes were not affected by the near-null magnetic field. These results indicate that suppression of fruit growth by the near-null magnetic field is mediated by cryptochrome and that GAs are involved in the regulation of fruit growth by the near-null magnetic field. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Chunxiao Xu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shanshan Feng
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shufeng Wei
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Zhang Z, Xue Y, Yang J, Shang P, Yuan X. Biological Effects of Hypomagnetic Field: Ground-Based Data for Space Exploration. Bioelectromagnetics 2021; 42:516-531. [PMID: 34245597 DOI: 10.1002/bem.22360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
The future of mankind is tied to the exploration and eventual colonization of space. Currently, people have resided in orbit at a space station. In the future, we will have opportunities to stay on the moon, Mars, or in deeper space, where astronauts are exposed to the hypomagnetic field (HMF), which refers to an extremely weak magnetic field environment compared with the geomagnetic field. However, the potential risks of HMF exposure to human health are often overlooked. Here, we summarize the literature related to the biological effects of HMF and calculate the magnitude of the effect. Briefly, HMF impairs multiple animal systems, especially in the central nervous system. Additionally, HMF is a stress factor in plant growth and reproduction. Finally, HMF combined with other space environments, such as radiation and microgravity, can affect organisms. Further studies are required to explore (i) countermeasures to the adverse effects of HMF, (ii) combined effects of HMF with other factors, and (iii) the intensity-effect relationship. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Zheyuan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yanru Xue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Department of Spine Surgery, The People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Peng Shang
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Xichen Yuan
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
12
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
13
|
Islam M, Vigani G, Maffei ME. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121729. [PMID: 33302398 PMCID: PMC7762565 DOI: 10.3390/plants9121729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 μT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.
Collapse
|
14
|
Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M, Kaminaka H. Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. PLANT & CELL PHYSIOLOGY 2020; 61:565-575. [PMID: 31790118 DOI: 10.1093/pcp/pcz222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizas (AMs) are divided into two types according to morphology: Arum- and Paris-type AMs. Gibberellins (GAs) mainly inhibit the establishment of Arum-type AM symbiosis in most model plants, whereas the effects of GAs on Paris-type AM symbiosis are unclear. To provide insight into the mechanism underlying this type of symbiosis, the roles of GAs were investigated in Eustoma grandiflorum when used as the host plant for Paris-type AM establishment. Eustoma grandiflorum seedlings were inoculated with the model AM fungus, Rhizophagus irregularis, and the effects of GA and the GA biosynthesis inhibitor uniconazole-P on the symbiosis were quantitatively evaluated. Exogenous GA significantly increased hyphopodium formation at the epidermis, thus leading to the promotion of fungal colonization and arbuscule formation in the root cortex. By contrast, the suppression of GA biosynthesis and signaling attenuated fungal entry to E. grandiflorum roots. Moreover, the exudates from GA-treated roots strongly induced the hyphal branching of R. irregularis. Our results show that GA has an contrasting effect on Paris-type AM symbiosis in E. grandiflorum compared with Arum-type AM symbiosis. This finding could be explained by the differential regulation of the early colonization stage, where fungal hyphae make contact with and penetrate the epidermis.
Collapse
Affiliation(s)
- Takaya Tominaga
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, 680-8553 Japan
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Naoya Takeda
- School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337 Japan
| | - Yuri Kanno
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | | | - Mitsunori Seo
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, Chiba, 263-8522 Japan
| | | |
Collapse
|
15
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:325. [PMID: 32373135 PMCID: PMC7186349 DOI: 10.3389/fpls.2020.00325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
|
16
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020. [PMID: 32373135 DOI: 10.3389/2ffpls.2020.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
Affiliation(s)
- Monirul Islam
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Jin Y, Guo W, Hu X, Liu M, Xu X, Hu F, Lan Y, Lv C, Fang Y, Liu M, Shi T, Ma S, Fang Z, Huang J. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci Rep 2019; 9:14384. [PMID: 31591431 PMCID: PMC6779896 DOI: 10.1038/s41598-019-50970-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Static magnetic field (SMF) plays important roles in biological processes of many living organisms. In plants, however, biological significance of SMF and molecular mechanisms underlying SMF action remain largely unknown. To address these questions, we treated Arabidopsis young seedlings with different SMF intensities and directions. Magnetic direction from the north to south pole was adjusted in parallel (N0) with, opposite (N180) and perpendicular to the gravity vector. We discovered that root growth is significantly inhanced by 600 mT treatments except for N180, but not by any 300 mT treatments. N0 treatments lead to more active cell division of the meristem, and higher auxin content that is regulated by coordinated expression of PIN3 and AUX1 in root tips. Consistently, N0-promoted root growth disappears in pin3 and aux1 mutants. Transcriptomic and gene ontology analyses revealed that in roots 85% of the total genes significantly down-regulated by N0 compared to untreatment are enriched in plastid biological processes, such as metabolism and chloroplast development. Lastly, no difference in root length is observed between N0-treated and untreated roots of the double cryptochrome mutant cry1 cry2. Taken together, our data suggest that SMF-regulated root growth is mediated by CRY and auxin signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Yue Jin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wei Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xupeng Hu
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yiheng Lan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chenkai Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Mengyu Liu
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang, 313300, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Baranova E, Sarimov R, Gulevich A. Stress induced «railway for pre-ribosome export» structure as a new model for studying eukaryote ribosome biogenesis. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.2.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
19
|
Dhiman SK, Galland P. Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:9-18. [PMID: 30199755 DOI: 10.1016/j.jplph.2018.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Magnetic-field reception of animals and plants is currently discussed in the framework of a cryptochrome-based radical-pair mechanism. Efforts to unravel magnetoreception in plants suffered historically from several shortcomings, most prominently, the conspicuous absence of detailed stimulus-response relationships. To determine the sensitivity of seedlings of Arabidopsis thaliana to weak static magnetic fields we generated stimulus-response curves between near zero and 188 μT for the transcript levels of the genes rbcl, cab4, pal4 and ef1. The moderate magneto-responsiveness of dark-grown seedlings was greatly enhanced under blue light, and for rbcl and pal4 also under red light. The stimulus-response curves obtained under blue light of constant photon-fluence rate displayed multiple maxima and thus a pattern fundamentally different from that prevalent in plant and animal physiology. A double mutant lacking cryptochromes 1 and 2 displayed altered stimulus-response curves without losing, however, magneto-responsiveness completely. A reversal of the magnetic field direction substantially affected the gene expression and the quantity of CAB-protein (chlorophyll a,b-binding protein). The majority of our results are at variance with the notion of cryptochromes acting as the only magnetic-field sensors. They do not, however, exclude the possibility that cryptochromes participate in the magnetic field reception of Arabidopsis. The findings have the unexpected implication that cryptochrome- and phytochrome-mediated plant responses can be modulated by the strength and the orientation of the local geomagnetic field.
Collapse
Affiliation(s)
- Sunil K Dhiman
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany; Kirori Mal College, Delhi University (North Campus), Delhi-110007, India.
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany.
| |
Collapse
|
20
|
Narayana R, Fliegmann J, Paponov I, Maffei ME. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects Arabidopsis thaliana root mineral nutrition. LIFE SCIENCES IN SPACE RESEARCH 2018; 19:43-50. [PMID: 30482280 DOI: 10.1016/j.lssr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
The Earth magnetic field (or geomagnetic field, GMF) is a natural component of our planet and variations of the GMF are perceived by plants with a still uncharacterized magnetoreceptor. The purpose of this work was to assess the effect of near null magnetic field (NNMF, ∼40 nT) on Arabidopsis thaliana Col0 root ion modulation. A time-course (from 10 min to 96 h) exposure of Arabidopsis to NNMF was compared to GMF and the content of some cations (NH4+, K+, Ca2+ and Mg2+) and anions (Cl-, SO4=, NO3- and PO4=) was evaluated by capillary electrophoresis. The expression of several cation and anion channel- and transporter-related genes was assessed by gene microarray. A few minutes after exposure to NNMF, Arabidopsis roots responded with a significant change in the content and gene expression of all nutrient ions under study, indicating the presence of a plant magnetoreceptor that responds immediately to MF variations by modulating channels, transporters and genes involved in mineral nutrition. The response of Arabidopsis to reduced MF was a general reduction of plant ion uptake and transport. Our data suggest the importance to understand the nature and function of the plant magnetoreceptor for future space programs involving plant growth in environments with a reduced MF.
Collapse
Affiliation(s)
- Ravishankar Narayana
- Department of Entomology, Penn State University, W249 Millennium Science Complex, University Park, PA 16802, USA
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ivan Paponov
- Norwegian Institute of Bioeconomy Research, Dept. of Fruit and Vegetables, Ås, Norway
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
21
|
Xue J, Li T, Wang S, Xue Y, Hu F, Zhang X. Elucidation of the mechanism of reflowering in tree peony (Paeonia suffruticosa) 'Zi Luo Lan' by defoliation and gibberellic acid application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:571-578. [PMID: 30326436 DOI: 10.1016/j.plaphy.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
In this study, the reflowering mechanism of tree peony (Paeonia suffruticosa 'Zi Luo Lan') after defoliation and gibberellic acid (GA) application (autumn-flowering treatment) was investigated by monitoring the morphological changes, measuring the endogenous GA3 and abscisic acid (ABA) contents, and determining the expression patterns of six GA- and two ABA-related genes. The results show that autumn-flowering treatment induced tree peony reflowering in autumn, which was accompanied by nutrient absorption in buds. The application of exogenous GA3 induced a simultaneous increase in GA3 and decrease in ABA levels, suggesting that the high ratios of GA3/ABA may play a key role in inducing tree peony reflowering. RT-qPCR analysis shows that PsCPS and PsGA2ox were significantly induced and inhibited by GA3 application, respectively, which supports the hypothesis that GA3 treatment induces endogenous GA3 production. In addition, GA3 treatment inhibited the expression of the PsGID1c, but its effect on PsGAI1 was limited, whereas the expression of PsGAMYB could be GA- or ABA-related. Furthermore, autumn-flowering treatment significantly inhibited the expression of PsNCED and PsbZIP, which coincides with the observed changes in ABA levels. Therefore, we postulate that autumn-flowering treatment induces tree peony reflowering by inhibiting the function of ABA accumulation and signaling.
Collapse
Affiliation(s)
- Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Tingting Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Institute of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
| | - Shunli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Fengrong Hu
- Institute of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
22
|
Binhi VN, Prato FS. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Sci Rep 2018; 8:13495. [PMID: 30202025 PMCID: PMC6131245 DOI: 10.1038/s41598-018-31847-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
We have previously proposed that there are at least two initial molecular transduction mechanisms needed to explain specific and nonspecific biological effects of weak magnetic fields. For the specific effect associated with animal magnetic navigation, the radical pair mechanism is the leading hypothesis; it associates the specialised magnetic sense with the radical pairs located in the eye retina. In contrast to the magnetic sense, nonspecific effects occur through the interaction of magnetic fields with magnetic moments dispersed over the organism. However, it is unlikely that the radical pair mechanism can explain such nonspecific phenomena. In order to explain these, we further develop our physical model for the case of magnetic moments residing in rotating molecules. It is shown that, in some conditions, the precession of the magnetic moments that reside on rotating molecules can be slowed relative to the immediate biophysical structures. In terms of quantum mechanics this corresponds to the mixing of the quantum levels of magnetic moments. Hence this mechanism is called the Level Mixing Mechanism, or the LMM. The results obtained are magnetic field-dependences that are in good agreement with known experiments where biological effects arise in response to the reversal of the magnetic field vector.
Collapse
Affiliation(s)
| | - Frank S Prato
- Lawson Health Research Institute, Ontario, N6A 4V2, Canada.
| |
Collapse
|
23
|
Agliassa C, Narayana R, Christie JM, Maffei ME. Geomagnetic field impacts on cryptochrome and phytochrome signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:32-40. [DOI: 10.1016/j.jphotobiol.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
|
24
|
Agliassa C, Narayana R, Bertea CM, Rodgers CT, Maffei ME. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018; 39:361-374. [PMID: 29709075 PMCID: PMC6032911 DOI: 10.1002/bem.22123] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col‐0, near‐null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time‐course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1‐ and F2‐NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361–374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia M Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Christopher T Rodgers
- The Wolfson Brain Imaging Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Vanderstraeten J, Gailly P, Malkemper EP. Low-Light Dependence of the Magnetic Field Effect on Cryptochromes: Possible Relevance to Plant Ecology. FRONTIERS IN PLANT SCIENCE 2018; 9:121. [PMID: 29491873 PMCID: PMC5817061 DOI: 10.3389/fpls.2018.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/23/2018] [Indexed: 05/20/2023]
Abstract
Various responses to static magnetic fields (MF) have been reported in plants, and it has been suggested that the geomagnetic field influences plant physiology. Accordingly, diverse mechanisms have been proposed to mediate MF effects in plants. The currently most probable sensor candidates are cryptochromes (Cry) which are sensitive to submillitesla MF. Here, we propose a quantitative approach of the MF effect on Cry depending on light intensity, and try to link it to a possible functional role for magnetic sensitivity in plants. Based on a theoretical evaluation and on a review of relevant data on Arabidopsis thaliana Cry 1, we point out that the MF effect on the signaling state of Cry, as well as the possible consequences of that effect on certain phenotypes (growth in particular) show parallel dependences on light intensity, being most prominent at low light levels. Based on these findings, we propose that Cry magnetosensitivity in plants could represent an ecological adaptation which regulates the amount of Cry signaling state under low light conditions. That hypothesis would preferentially be tested by studying sensitive and specific endpoints, such as the expression of clock proteins that are downregulated by Cry, but under light intensities lower than those used so far. Finally, we highlight that the low-light dependence of the MF effect described here could also apply to light-dependent functions of animal Cry, in particular magnetoreception which, from the present evaluation, would be based on the magnetic sensitivity of the photoreduction reaction, like in plants.
Collapse
Affiliation(s)
- Jacques Vanderstraeten
- Environmental and Work Health Research Center, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Jacques Vanderstraeten
| | - Philippe Gailly
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - E. Pascal Malkemper
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Department of Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czechia
| |
Collapse
|
26
|
Xu C, Zhang Y, Yu Y, Li Y, Wei S. Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin. Bioelectromagnetics 2017; 39:15-24. [DOI: 10.1002/bem.22086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Chunxiao Xu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Yang Yu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Yue Li
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing P.R. China
| | - Shufeng Wei
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
27
|
Binhi VN, Prato FS. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS One 2017; 12:e0179340. [PMID: 28654641 PMCID: PMC5487043 DOI: 10.1371/journal.pone.0179340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
Abstract
During interplanetary flights in the near future, a human organism will be exposed to prolonged periods of a hypomagnetic field that is 10,000 times weaker than that of Earth's. Attenuation of the geomagnetic field occurs in buildings with steel walls and in buildings with steel reinforcement. It cannot be ruled out also that a zero magnetic field might be interesting in biomedical studies and therapy. Further research in the area of hypomagnetic field effects, as shown in this article, is capable of shedding light on a fundamental problem in biophysics-the problem of primary magnetoreception. This review contains, currently, the most extensive bibliography on the biological effects of hypomagnetic field. This includes both a review of known experimental results and the putative mechanisms of magnetoreception and their explanatory power with respect to the hypomagnetic field effects. We show that the measured correlations of the HMF effect with HMF magnitude and inhomogeneity and type and duration of exposure are statistically absent. This suggests that there is no general biophysical MF target similar for different organisms. This also suggests that magnetoreception is not necessarily associated with evolutionary developed specific magnetoreceptors in migrating animals and magnetotactic bacteria. Independently, there is nonspecific magnetoreception that is common for all organisms, manifests itself in very different biological observables as mostly random reactions, and is a result of MF interaction with magnetic moments at a physical level-moments that are present everywhere in macromolecules and proteins and can sometimes transfer the magnetic signal at the level of downstream biochemical events. The corresponding universal mechanism of magnetoreception that has been given further theoretical analysis allows one to determine the parameters of magnetic moments involved in magnetoreception-their gyromagnetic ratio and thermal relaxation time-and so to better understand the nature of MF targets in organisms.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- A.M. Prokhorov General Physics Institute, Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Frank S. Prato
- Lawson Health Research Institute, Ontario, Canada
- University of Western Ontario, Ontario, Canada
| |
Collapse
|