1
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
2
|
Nazeri A, Mohammadpour A, Modaghegh MHS, Kianmehr M. Effect of static magnetic field therapy on diabetic neuropathy and quality of life: a double-blind, randomized trial. Diabetol Metab Syndr 2023; 15:148. [PMID: 37400875 DOI: 10.1186/s13098-023-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM) that can cause annoying symptoms. To address this condition, several treatment approaches have been proposed, including static magnetic field (SMF) therapy, which has shown promise in treating neurological conditions. Therefore, this study aimed to investigate the effects of SMF therapy on symptomatic DPN and the quality of life (QoL) in patients with type 2 diabetes. METHODS A double-blind, randomized, placebo-controlled trial was conducted from April to October 2021. Sixty-four DPN patients (20 males, 44 females) were recruited for the study via invitation. The participants were divided into two groups: the magnet group, which used magnetic ankle bracelets (155 mT) for 12 weeks, and the sham group, which used non-magnetic ankle bracelets for the same duration. Neuropathy Symptom Score (NSS), Neuropathic Disability Score (NDS), and Visual Analogue Scale (VAS) were used to assess neuropathy symptoms and pain. In addition, the Neuropathy Specific Quality of Life Questionnaire (Neuro-QoL) tool was used to measure the patients' quality of life. RESULTS Before treatment, there were no significant differences between the magnet and sham groups in terms of the NSS scores (P = 0.50), NDS scores (P = 0.74), VAS scores (P = 0.17), and Neuro-QoL scores (P = 0.82). However, after 12 weeks of treatment, the SMF exposure group showed a significant reduction in NSS scores (P < 0.001), NDS scores (P < 0.001), VAS scores (P < 0.001), and Neuro-QoL scores (P < 0.001) compared to the baseline. The changes in the sham group, on the other hand, were not significant. CONCLUSION According to obtained data, SMF therapy is recommended as an easy-to-use and drug-free method for reducing DPN symptoms and improving QoL in diabetic type-2 patients. Trial registration Registered at Iranian Registry of Clinical Trials: IRCT20210315050706N1, 2021/03/16.
Collapse
Affiliation(s)
- Armin Nazeri
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadpour
- Department of Nursing, School of Nursing, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mojtaba Kianmehr
- Department of Medical Physics and Radiology, School of Paramedicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
3
|
Zhang G, Liu X, Liu Y, Zhang S, Yu T, Chai X, He J, Yin D, Zhang C. The effect of magnetic fields on tumor occurrence and progression: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:38-50. [PMID: 37019340 DOI: 10.1016/j.pbiomolbio.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Malignancies are the leading human health threat worldwide. Despite rapidly developing treatments, poor prognosis and outcome are still common. Magnetic fields have shown good anti-tumoral effects both in vitro and in vivo, and represent a potential non-invasive treatment; however, the specific underlying molecular mechanisms remain unclear. We here review recent studies on magnetic fields and their effect on tumors at three different levels: organismal, cellular, and molecular. At the organismal level, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response. At the cellular level, magnetic fields affect tumor cell growth and biological functions by affecting cell morphology, cell membrane structure, cell cycle, and mitochondrial function. At the molecular level, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors. At present, scientific experimental evidence is still lacking; therefore, systematic studies on the biological mechanisms involved are urgently needed for the future application of magnetic fields to tumor treatment.
Collapse
|
4
|
Static Magnetic Fields Enhance the Chondrogenesis of Mandibular Bone Marrow Mesenchymal Stem Cells in Coculture Systems. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9962861. [PMID: 34873576 PMCID: PMC8643226 DOI: 10.1155/2021/9962861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022]
Abstract
Objectives Combining the advantages of static magnetic fields (SMF) and coculture systems, we investigated the effect of moderate-intensity SMF on the chondrogenesis and proliferation of mandibular bone marrow mesenchymal stem cells (MBMSCs) in the MBMSC/mandibular condylar chondrocyte (MCC) coculture system. The main aim of the present study was to provide an experimental basis for obtaining better cartilage tissue engineering seed cells for the effective repair of condylar cartilage defects in clinical practice. Methods MBMSCs and MCCs were isolated from SD (Sprague Dawley) rats. Flow cytometry, three-lineage differentiation, colony-forming assays, immunocytochemistry, and toluidine blue staining were used for the identification of MBMSCs and MCCs. MBMSCs and MCCs were seeded into the lower and upper Transwell chambers, respectively, at a ratio of 1 : 2, and exposed to a 280 mT SMF. MBMSCs were harvested after 3, 7, or 14 days for analysis. CCK-8 was used to detect cell proliferation, Alcian blue staining was utilized to evaluate glycosaminoglycan (GAG), and western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) detected protein and gene expression levels of SOX9, Col2A1 (Collagen Type II Alpha 1), and Aggrecan (ACAN). Results The proliferation of MBMSCs was significantly enhanced in the experimental group with MBMSCs cocultured with MCCs under SMF stimulation relative to controls (P < 0.05). GAG content was increased, and SOX9, Col2A1, and ACAN were also increased at the mRNA and protein levels (P < 0.05). Conclusions Moderate-intensity SMF improved the chondrogenesis and proliferation of MBMSCs in the coculture system, and it might be a promising approach to repair condylar cartilage defects in the clinical setting.
Collapse
|
5
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Shan Y, Han H, Zhu J, Yan X, Zhang X, Long H, Jian F, Li X, Wang Y, Lai W. The Effects of Static Magnetic Field on Orthodontic Tooth Movement in Mice. Bioelectromagnetics 2021; 42:398-406. [PMID: 34033679 DOI: 10.1002/bem.22346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
The application of static magnetic field (SMF) has been considered an effective and noninvasive method to accelerate orthodontic tooth movement. The objective of this study was to explore the effects of SMF on orthodontic tooth movement in mice. A total of 105 Balb/c mice (body mass: 25-30 g) were divided into experimental group (SMF + force, 48), control group (force only, 48), and blank group (neither SMF nor force, 9). After the placement of orthodontic appliances, the experimental group was exposed to the SMF environment generated by Neodymium-iron-boron (NdFeB) magnets with an intensity of 20-204 mT. At 1, 3, 7, 14, 21, and 28 days after appliance insertion, eight animals in both experimental and control groups were sacrificed and the left maxillae were dissected to measure the distance of tooth movement, respectively. Meanwhile, the width of periodontal ligament (PDL), length of hyalinized zone, and the number of osteoclasts were evaluated by hematoxylin-eosin and tartrate-resistant acid phosphatase staining. We finally found that the experimental group demonstrated an enhanced rate and greater cumulative amount of tooth movement than the control group (0.2887 ± 0.0041 mm vs. 0.2114 ± 0.0089 mm, P < 0.05). On Days 7, 14, and 28, the experimental group also displayed a significantly greater width of PDL. Earlier formation and removal of the hyalinized zone, and significantly more osteoclasts were observed in the experimental group as well. The results suggested that SMF may be a promising nonsurgical intervention to accelerate orthodontic tooth movement. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Yue Shan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyi Zhu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yan X, Han H, Zhang S, Lu Y, Ren L, Tang Y, Li X, Jian F, Wang Y, Long H, Lai W. N/OFQ modulates orofacial pain induced by tooth movement through CGRP-dependent pathways. BMC Neurosci 2021; 22:25. [PMID: 33836649 PMCID: PMC8034138 DOI: 10.1186/s12868-021-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nociceptin/orphanin FQ (N/OFQ) has been revealed to play bidirectional roles in orofacial pain modulation. Calcitonin gene-related peptide (CGRP) is a well-known pro-nociceptive molecule that participates in the modulation of orofacial pain. We aimed to determine the effects of N/OFQ on the modulation of orofacial pain and on the release of CGRP. METHODS Orofacial pain model was established by ligating springs between incisors and molars in rats for the simulation of tooth movement. The expression level of N/OFQ was determined and pain level was scored in response to orofacial pain. Both agonist and antagonist of N/OFQ receptor were administered to examine their effects on pain and the expression of CGRP in trigeminal ganglia (TG). Moreover, gene therapy based on the overexpression of N/OFQ was delivered to validate the modulatory role of N/OFQ on pain and CGRP expression. RESULTS Tooth movement elicited orofacial pain and an elevation in N/OFQ expression. N/OFQ exacerbated orofacial pain and upregulated CGRP expression in TG, while UFP-101 alleviated pain and downregulated CGRP expression. N/OFQ-based gene therapy was successful in overexpressing N/OFQ in TG, which resulted in pain exacerbation and elevation of CGRP expression in TG. CONCLUSIONS N/OFQ exacerbated orofacial pain possibly through upregulating CGRP.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Han Han
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Shizhen Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yanzhu Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Linghuan Ren
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yufei Tang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Xiaolong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Fan Jian
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
8
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:ani11030673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
- Correspondence:
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
9
|
Fan Y, Ji X, Zhang L, Zhang X. The Analgesic Effects of Static Magnetic Fields. Bioelectromagnetics 2021; 42:115-127. [PMID: 33508148 DOI: 10.1002/bem.22323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 11/09/2022]
Abstract
Pain is one of the most common reasons why people seek medical care, which is related to most disease states. Magnetic fields (MFs) can be applied locally to specific parts of human bodies with high penetration and temporal control, which have a long-debated history in folk therapy. The purpose of this review is to collect and analyze experimental data about the analgesic effects of static magnetic fields (SMFs) so that we can have a scientific understanding regarding this topic. We collected 28 studies (25 English and 3 Chinese papers) with proper sham controls that investigated the effects of SMFs on pain relief in humans or mice. We found that 64% of the human studies and all mice studies in the literature showed positive analgesic effects of SMFs, which are related to factors including SMF intensity, treatment time, and pain types. Higher intensity and/or longer treatment time, as well as some specific pain types, may have better pain relief effects. Initial mechanistic studies indicated that membrane receptors, such as capsaicin receptor VR1/TRPV1, opioid receptors, and P2X3 receptors, might be involved. By describing experimental evidence and analysis, we found that SMFs actually hold considerable promise for managing some specific types of pain if proper SMF parameters are used. More studies comprehensively evaluating the parameters of SMF and its corresponding analgesic effects on different pain types, as well as the underlying molecular mechanisms, will be necessary to further validate its therapeutic potential in pain management in the future. Bioelectromagnetics. 00:00-00, 2021. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| |
Collapse
|
10
|
Mayrovitz H, Milo B, Alexander B, Mastropasqua M, Moparthi Y. Effects of a Concentric Rare-Earth Magnet on Menstrual Cycle Pain: A Parallel Group Randomized Pilot Study. Cureus 2021; 13:e12801. [PMID: 33628670 PMCID: PMC7894227 DOI: 10.7759/cureus.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Based on prior reports of the use of magnets to treat pain, our goal was to determine if a concentric rare-earth alternating-pole magnet reduced period pain versus a sham-magnet. Methods Participants were females (N=36, 18 to 35 years) who regularly experienced menstrual period pain ≥ six on the numeric pain rating scale (NPRS) of 0-10. Subjects were excluded if they took pain medication on the study day or had implanted pacemakers/metallic devices or secondary dysmenorrhea. Participants were randomized to wear a concentric neodymium-iron boron active-magnet (surface-field of 0.4 Tesla) or a sham magnet. The participant and investigator applying the device were blinded to the device used. The device was placed at the abdominal location of the reported greatest pain for 40-minutes, during which time the subject was able to conduct the normal activity. Pain scores were reported prior to device wearing and afterward. Participants with post-treatment NPRS ratings reduced by ≥ 35% from their pretreatment pain ratings were scored as having reduced pain; reductions < 35% were scored as no meaningful pain change. The threshold of 35% was chosen based on a survey of 10 women as to the level of pain reduction they viewed as meaningful to them. Of the 36 women in this pilot study, 19 wore an active-magnet and 17 wore a sham-magnet. Analyses were based on chi-square and Mann-Whitney statistical tests. Results Pre-treatment pain scores (mean ± SD) were similar for both groups. Magnet-vs-sham pre-treatment scores were, respectively, 7.16 ± 0.85 vs. 6.94 ± 1.20 (p=0.330). Corresponding median values for the magnet (N=19) and sham (N=17) groups respectively were seven pre-treatment and four post-treatment vs. six pre-treatment and six post-treatment. Post-treatment scores for magnet treated subjects (4.16 ± 2.20) were significantly less (p=0.027) than for sham-treated (5.53 ± 1.50). Of the 19 who wore a magnet, 11 experienced meaningful pain-reduction, and eight did not. Of the 17 who wore a sham, three experienced meaningful pain-reduction, and 14 did not. Magnet and sham wearing responses were statistically significant via chi-square analysis (chi-square=6.12, p=0.013). Percentage reduction in pain score was 41.8% ± 31.1% for magnet-treated vs. 20.8% ± 16.1%, for sham-treated (p<0.05). Conclusions Results suggest that short-term wearing of the magnet herein investigated, produces a meaningful menstrual-pain reduction in some women. Thus, further expanded research seems warranted to determine if longer wearing times result in even greater pain reductions.
Collapse
Affiliation(s)
- Harvey Mayrovitz
- Department of Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Brittany Milo
- Department of Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Brooke Alexander
- Department of Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Marisa Mastropasqua
- Department of Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Yashaswani Moparthi
- Department of Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
11
|
Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Hernández E, Martínez-Burnes J, Whittaker AL. The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals. Animals (Basel) 2020; 10:ani10101838. [PMID: 33050267 PMCID: PMC7600890 DOI: 10.3390/ani10101838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Grimace scales for laboratory animals were first reported ten years ago. Yet, despite their promise as pain assessment tools it appears that they have not been implemented widely in animal research establishments for clinical pain assessment. We discuss potential reasons for this based on the knowledge gained to date on their use and suggest avenues for further research, which might improve uptake of their use in laboratory animal medicine. Abstract Animals’ facial expressions are widely used as a readout for emotion. Scientific interest in the facial expressions of laboratory animals has centered primarily on negative experiences, such as pain, experienced as a result of scientific research procedures. Recent attempts to standardize evaluation of facial expressions associated with pain in laboratory animals has culminated in the development of “grimace scales”. The prevention or relief of pain in laboratory animals is a fundamental requirement for in vivo research to satisfy community expectations. However, to date it appears that the grimace scales have not seen widespread implementation as clinical pain assessment techniques in biomedical research. In this review, we discuss some of the barriers to implementation of the scales in clinical laboratory animal medicine, progress made in automation of collection, and suggest avenues for future research.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Ciudad de México 04960, CDMX, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Elein Hernández
- Department of Clinical Studies and Surgery, Facultad de Estudios Superiores Cuautiltán UNAM, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd Victoria 87000, Tamaulipas, Mexico;
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, SA 5116, Australia
- Correspondence:
| |
Collapse
|
12
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
13
|
Abstract
There is currently no effective cure for trigeminal neuralgia (TN) - a relatively common disease that causes long-term pain in patients. Previous research has shown that ionotropic ATP signaling through excitatory and calcium-permeable P2X receptor channels plays a critical role in pathological pain generation and maintenance. In this paper, we review several hypotheses on the pathogenic mechanisms underlying TN. We further discuss pathways or agents that can target P2X expression in TN, thereby affecting pain induction and maintenance.
Collapse
|
14
|
Evoked and spontaneous pain assessment during tooth pulp injury. Sci Rep 2020; 10:2759. [PMID: 32066827 PMCID: PMC7026088 DOI: 10.1038/s41598-020-59742-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.
Collapse
|
15
|
Kuwajima Y, Ishida Y, Lee C, Mayama H, Satoh K, Ishikawa-Nagai S. 3D digital analysis of magnetic force-driven orthodontic tooth movement. Heliyon 2019; 5:e02861. [PMID: 31844745 PMCID: PMC6895672 DOI: 10.1016/j.heliyon.2019.e02861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/11/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
With the introduction of rare earth magnets like neodymium-iron-boron (NdFeB), it has become possible to produce small magnets with high forces, necessary for its usage in the field of dentistry, such as for orthodontic tooth movement. The ultimate goal of this project is to establish magnetic force-driven orthodontic treatment as a future treatment modality for comprehensive orthodontic treatment. In order to utilize magnets for orthodontic treatment, we must first understand the characteristics of tooth movement created by magnetic forces. In this study, we aimed to digitally assess the efficacy of magnetic attraction and repulsion forces by means of a 3D digital analysis of movement (distance, direction, angulation and duration) and rotation (yaw, pitch and roll) of the crown and root of teeth in an ex vivo typodont model. We performed space closure and space gain treatment of maxillary central incisors (n = 30) and analyzed the movement and rotation of the teeth and root apex with 3D digital analysis. The results of the typodont model indicated significant differences on amount, speed and rotation of tooth and root movement created by magnetic attraction and repulsion forces. We also mimicked a moderate crowding typodont case and successfully treated it with a combination of attraction and repulsion magnetic forces. The moderate crowding case utilized magnets and a titanium archwire to guide the planned tooth movements and prevent undesired or unexpected movement. Further ex vivo experiments and considerations for biosafety will be necessary to investigate magnet force-driven orthodontics as a future modality of orthodontic treatment.
Collapse
Affiliation(s)
- Yukinori Kuwajima
- Department of Oral Medicine, Immunity and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yoshiki Ishida
- Department of Oral Medicine, Immunity and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| | - Cliff Lee
- Department of Oral Medicine, Immunity and Infection, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Orofacial Sciences, University of California, San Francisco School of Dentistry, CA, USA
| | - Hisayo Mayama
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Iwate, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Iwate, Japan
| | - Shigemi Ishikawa-Nagai
- Department of Oral Medicine, Immunity and Infection, Harvard School of Dental Medicine, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
16
|
Liu S, Liu L, Jiang Y, Zhou J, Hu H, Wu Z, Long H, Lai W. Effect of endomorphin-2 on orofacial pain induced by orthodontic tooth movement in rats. Eur J Oral Sci 2019; 127:408-416. [PMID: 31365768 DOI: 10.1111/eos.12640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endomorphin-2 demonstrates potent antinociceptive effects in various pain models. The objectives of the present study were to explore the role of endomorphin-2 in the modulation of orofacial pain induced by orthodontic tooth movement in rats. An orthodontic pain model was established in male Sprague-Dawley rats by ligating coiled springs to mimic orthodontic force (40 g). On days 0, 1, 3, 5, 7, and 14 following orthodontic tooth movement, bite force was recorded as a surrogate measure of orthodontic pain. Ipsilateral trigeminal ganglia, trigeminal nucleus caudalis, and periodontal tissues were harvested for immunostaining. Endomorphin-2, endomorphin-2 + naloxone (a non-selective opioid receptor antagonist), naloxone, and saline were injected into trigeminal ganglia and periodontal tissues to explore the role of endomorphin-2 on orthodontic pain. The results showed that following orthodontic tooth movement, endomorphin-2 expression levels in trigeminal ganglia were elevated on days 1, 3, 5, and 7. Orthodontic pain levels were increased on days 1, 3, and 5. The administration of endomorphin-2 into both trigeminal ganglia and periodontal tissues alleviated orthodontic pain. Moreover, the effects of endomorphin-2 could be blocked by naloxone completely in trigeminal ganglia but only partially in periodontal tissues. Therefore, endomorphin-2 plays an important role in the modulation of orthodontic pain both centrally and peripherally, probably through different pathways.
Collapse
Affiliation(s)
- Sixin Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanlu Jiang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huimin Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhouqiang Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Cheng Y, Huang P, Meng B, Gan L, Wu D, Cao Y. Antinociceptive effects of the adenylyl cyclase inhibitor ST034307 on tooth-movement-induced nociception in rats. Arch Oral Biol 2018; 98:81-86. [PMID: 30465937 DOI: 10.1016/j.archoralbio.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the antinociceptive effects of the selective adenylyl cyclase type 1 (AC1) inhibitor ST034307 on tooth movement nociception through orofacial nociceptive behavior tests and molecular examination. METHODS We placed fixed nickel-titanium alloy closed-coil springs around the incisors of male Sprague-Dawley rats to induce tooth movement. We subsequently administered ST034307 (3 mg/kg), for 2 days, intraperitoneally, and then subjected the rats to a battery of behavioral tests (n = 10/group) to assess orofacial nociception. The changes in the expression of key molecules in the anterior cingulate cortex were measured by ELISA (n = 8/group) and Western blotting (n = 8/group). RESULTS Tooth movement increased face-grooming activities and rat grimace scale scores. Tooth movement was also associated with enhanced cyclic adenosine monophosphate (cAMP) generation as well as protein kinase A (PKA) activation. Moreover, the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and expression of N-methyl-d-aspartate (NMDA) receptors in the anterior cingulate cortex increased during tooth movement. ST034307 significantly decreased mouth wiping and rat grimace scale scores, accompanied by reductions in cAMP generation, PKA activation, AMPA receptor phosphorylation, and NMDA receptor expression in the anterior cingulate cortex. CONCLUSIONS These results suggest that adenylyl cyclase type 1 plays an important role in the development of orthodontic tooth movement nociception. Furthermore, ST034307 can be used as an effective pharmacotherapy for orthodontic nociception.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peina Huang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bowen Meng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Gan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Dongle Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yang Cao
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Chidiac JJ, Kassab A, Rifai K, Al-Chaer ED, Saadé NE. Contribution of capsaicin-sensitive innervation to the continuous eruption of the rat mandibular incisors. Anat Sci Int 2018; 94:136-143. [PMID: 30229540 DOI: 10.1007/s12565-018-0460-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
A major component of tooth innervation is made of capsaicin-sensitive primary afferents (CSPA). These fibers play a key role in tooth pain and inflammation; little is known, however, about the role of CSPA in tooth eruption. The aim of this study was to examine the role of the capsaicin-sensitive afferents in the process of eruption of intact rat incisors. CSPA fibers in several rat groups, were subjected to one of the following experimental procedures: systemic chemical ablation, systemic ablation followed by chemical sympathectomy and localized activation. The observed effects on incisor eruption were compared to those made on controls. The total amount of eruption in control/naïve rats, measured over a total period of 144 h, was 3.18 ± 0.07 mm and decreased to 2.43 ± 0.08 mm (n = 7; p < 0.001) following systemic ablation of CSPA. Further decrease to 2.24 ± 0.08 mm (n = 7; p < 0.001) was noticed when chemical sympathectomy was added to CSPA ablation. The average rate of eruption was 1.7 ± 0.25 mm following CSPA activation, compared to an average of 0.8 ± 0.07 mm for controls (n = 7; p < 0.001). Capsaicin sensitive fibers play an important role in tooth homeostasis, and intact neural supply is required for tooth growth under normal conditions.
Collapse
Affiliation(s)
| | - Ammar Kassab
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khaldoun Rifai
- School of Dentistry, Lebanese University, Beirut, Lebanon
| | - Elie D Al-Chaer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
19
|
Ocal I, Yilmaz MB, Kocaturk-Sel S, Tufan T, Erkoc MA, Comertpay G, Oksuz H, Barc ED. ATP sensitive K + channel subunits (Kir6.1, Kir6.2) are the candidate mediators regulating ameliorating effects of pulsed magnetic field on aortic contractility in diabetic rats. Bioelectromagnetics 2018; 39:299-311. [PMID: 29446477 DOI: 10.1002/bem.22111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (KATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (KATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isil Ocal
- Faculty of Medicine, Department of Biophysics, Cukurova University, Adana, Turkey
| | - Mehmet B Yilmaz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Sabriye Kocaturk-Sel
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Turan Tufan
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Mehmet A Erkoc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Gamze Comertpay
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Hale Oksuz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Esma D Barc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| |
Collapse
|