1
|
Shen Y, Lifante J, Ximendes E, Santos HDA, Ruiz D, Juárez BH, Zabala Gutiérrez I, Torres Vera V, Rubio Retama J, Martín Rodríguez E, Ortgies DH, Jaque D, Benayas A, Del Rosal B. Perspectives for Ag 2S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality. NANOSCALE 2019; 11:19251-19264. [PMID: 31560003 DOI: 10.1039/c9nr05733a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes. Among these probes, Ag2S nanoparticles (NPs) have attracted increasing attention due to their temperature-sensitive NIR-II emission, which can be exploited for deep-tissue imaging and thermometry, and their heat delivery capabilities. This multifunctionality makes Ag2S NPs ideal candidates for theranostics. This review presents a critical analysis of the synthesis routes, properties and optical features of Ag2S NPs. We also discuss the latest and most remarkable achievements enabled by these NPs in preclinical imaging and theranostics, together with a critical assessment of their potential to face forthcoming challenges in biomedicine.
Collapse
Affiliation(s)
- Yingli Shen
- Fluorescence Imaging Group, Departamento de Física de Materiales - Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - José Lifante
- Fluorescence Imaging Group, Departamento de Fisiología - Facultad de Medicina, Avda. Arzobispo Morcillo 2, Universidad Autónoma de Madrid, Madrid 28029, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Erving Ximendes
- Fluorescence Imaging Group, Departamento de Física de Materiales - Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Harrison D A Santos
- Grupo de Nano-Fotônica e Imagens, Instituto de Física, Universidade Federal de Alagoas, Maceió-AL 57072-900, Brazil
| | - Diego Ruiz
- IMDEA Nanoscience, Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Beatriz H Juárez
- IMDEA Nanoscience, Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain and Department of Applied Physical Chemistry and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Zabala Gutiérrez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Vivian Torres Vera
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Jorge Rubio Retama
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain and Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Emma Martín Rodríguez
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain and Fluorescence Imaging Group, Departamento de Física Aplicada - Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Dirk H Ortgies
- Fluorescence Imaging Group, Departamento de Física de Materiales - Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales - Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid 28034, Spain
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials; University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Blanca Del Rosal
- Centre for Micro-Photonics, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
2
|
Stam R. Electromagnetic fields and the blood–brain barrier. ACTA ACUST UNITED AC 2010; 65:80-97. [DOI: 10.1016/j.brainresrev.2010.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
|
3
|
Clark DL, DeButte-Smith M, Colbourne F. Spontaneous temperature changes in the 2-vessel occlusion model of cerebral ischemia in rats. Can J Physiol Pharmacol 2007; 85:1263-8. [DOI: 10.1139/y07-119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient global ischemia (ISC) in rats and humans causes selective and delayed neuronal death in the hippocampal CA1 sector. It is clear from rodent studies that hyperthermia aggravates, whereas hypothermia lessens, this injury. In this study we sought to relate core (Tc) and brain (Tb) temperature, measured via telemetry probes, after ISC produced in rats by bilateral common carotid artery occlusion combined with systemic hypotension (2-VO model). We also tested whether spontaneous postischemic temperature fluctuations occurred and whether they were related to cell death as previous studies indicate. We report that Tc and Tb readings are similar and are highly correlated before and after 10 min of 2-VO ISC. In the second experiment, rats were subjected to 8, 9, or 10 min of 2-VO ISC. Despite a range in CA1 injury among these animals, there was no evidence of post-ISC hyperthermia, contrary to earlier work, and neither temperature nor the physiological variables measured during ISC (e.g., glucose) predicted injury. Our findings suggest that, under the present conditions, 2-VO rats do not experience postoperative hyperthermia, which can be adequately measured with Tc telemetry probes.
Collapse
Affiliation(s)
- Darren L. Clark
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Psychology, P217 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maxine DeButte-Smith
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Psychology, P217 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Frederick Colbourne
- Centre for Neuroscience, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Psychology, P217 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
4
|
Yang Y, Li Q, Yang T, Hussain M, Shuaib A. Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats. J Neurosurg 2003; 98:397-403. [PMID: 12593629 DOI: 10.3171/jns.2003.98.2.0397] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A novel postsynaptic antagonist of N-methyl-D-aspartate (NMDA) receptors, CP-101,606-27 may attenuate the effects of focal ischemia. In current experiments, the authors investigated its neuroprotective effect alone and in combination with recombinant tissue plasminogen activator (rt-PA) in thromboembolic focal cerebral ischemia in rats. METHODS Forty-eight male Wistar rats underwent embolization of the right middle cerebral artery to produce focal cerebral ischemia. After random division into six groups (eight rats in each group), animals received: vehicle; low-dose (LD) CP-101, 606-27, 14.4 mg/kg; high-dose (HD) CP- 101,606-27, 28.8 mg/kg; rt-PA, 10 mg/kg; low-dose combination (LDC) CP- 101,606-27, 14.4 mg/kg plus rt-PA, 10 mg/kg; or high-dose combination (HDC) CP- 101,606-27, 28.8 mg/kg plus rt-PA, 10 mg/kg) 2 hours after induction of embolic stroke. Animals were killed 48 hours after the onset of focal ischemia. Brain infarction volume, neurobehavioral outcome, poststroke seizure activity, poststroke mortality, and intracranial hemorrhage incidence were observed and evaluated. Compared with vehicle-treated animals (39.4 +/- 8.6%) 2 hours posttreatment with CP-101,606-27 or rt-PA or in combination a significant reduction in the percentage of brain infarct volume was seen (LD CP-101,606-27: 20.8 +/- 14.3%, p < 0.05; HD CP-101,606-27: 10.9 +/- 3.2%, p < 0.001; rt-PA: 21.1 +/- 7.3%, p < 0.05; LDC, 18.6 +/- 11.5%, p < 0.05; and HDC: 15.2 +/- 10.1%, p < 0.05; compared with control: 39.4 +/- 8.6%). Combination of CP-101,606-27 with rt-PA did not show a significantly enhanced neuroprotective effect. Except for the control and LDC treatment groups, neurobehavioral outcome was significantly improved 24 hours after embolic stroke in animals in all other active therapeutic groups receiving CP-101,606-27 or rt-PA or in combination. The authors also observed that treatment with HD CP-101,606-27 decreased poststroke seizure activity. CONCLUSIONS The data in this study suggested that postischemia treatment with CP-101,606-27 is neuroprotective in the current stroke model; however, the authors also note that although rt-PA may offer modest protection when used alone, combination with CP-101,606-27 did not appear to enhance its effects.
Collapse
Affiliation(s)
- Yi Yang
- Acute Stroke Program, Neurology Division, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
5
|
Gajsek P, Walters TJ, Hurt WD, Ziriax JM, Nelson DA, Mason PA. Empirical validation of SAR values predicted by FDTD modeling. Bioelectromagnetics 2002; 23:37-48. [PMID: 11793404 DOI: 10.1002/bem.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rapid increase in the use of numerical techniques to predict current density or specific absorption rate (SAR) in sophisticated three dimensional anatomical computer models of man and animals has resulted in the need to understand how numerical solutions of the complex electrodynamics equations match with empirical measurements. This aspect is particularly important because different numerical codes and computer models are used in research settings as a guide in designing clinical devices, telecommunication systems, and safety standards. To ensure compliance with safety guidelines during equipment design, manufacturing and maintenance, realistic and accurate models could be used as a bridge between empirical data and actual exposure conditions. Before these tools are transitioned into the hands of health safety officers and system designers, their accuracy and limitations must be verified under a variety of exposure conditions using available analytical and empirical dosimetry techniques. In this paper, empirical validation of SAR values predicted by finite difference time domain (FDTD) numerical code on sphere and rat is presented. The results of this study show a good agreement between empirical and theoretical methods and, thus, offer a relatively high confidence in SAR predictions obtained from digital anatomical models based on the FDTD numerical code.
Collapse
Affiliation(s)
- P Gajsek
- Air Force Research Laboratory, Directed Energy Bioeffects Division, Brooks AFB, Texas 78235-5324, USA
| | | | | | | | | | | |
Collapse
|
6
|
Brambrink AM, Kopacz L, Astheimer A, Noga H, Heimann A, Kempski O. Control of brain temperature during experimental global ischemia in rats. J Neurosci Methods 1999; 92:111-22. [PMID: 10595709 DOI: 10.1016/s0165-0270(99)00100-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Temperature control during experimental ischemia continues to be of major interest. However, if exposure of brain tissue is necessary during the experiment, regional heat loss may occur even when the core temperature is maintained. Furthermore, valid non-invasive brain temperature monitoring is difficult in small rodents. This paper describes a method for both monitoring and maintenance of brain temperature during small animal preparations in a stereotaxic frame. The device used includes an ear-bar thermocouple probe and a small near-infrared radiator. The new equipment permitted to maintain peri-ischemic brain temperature at a desired level while carrying out non-invasive continuous recordings of cerebral blood flow (laser Doppler-flowmetry) and of electrical brain function (EEG). In contrast, without extracranial heat application, superficial and basal brain temperatures decreased during global cerebral ischemia by 4.1 +/- 0.1 and 4.6 +/- 0.4 degrees C (mean +/- SEM), respectively, returning to baseline values at 15-30 min of reperfusion while rectal (core) temperature remained stable at baseline values. The ear-bar thermocouple probe (tympanic membrane) reliably reflected basal brain temperature, and temperature in superficial brain areas correlated well with that in the temporal muscle. Our data show that the new system allows to exclude unwanted hypothermic neuroprotection, and does not interfere with optical and electrical measurement techniques.
Collapse
Affiliation(s)
- A M Brambrink
- Institute for Neurosurgical Pathophysiology, Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The neuroglia, especially astrocytes, constitute a cell mass capable of adaptive heat production, since both the metabolic substrates and the biochemical machinery for energy production and its regulation seem to be available in these cells. Earlier physiological studies from this laboratory have provided circumstantial evidence that rodents such as rats and rabbits may indeed be capable of increasing their cerebral heat production during acute cold exposure. Recent relevant literature on the ability of neuroglia of the mammalian CNS to synthesize and release different transmitters and modulators and to communicate mutually with neuronal elements is discussed in support of the idea that different glial cell types could also contribute to the central regulation of body temperature in addition to the more established similar function of the neuronal pathways. The present hypothesis may have relevance to changes in glial cell mass and activity that occur in patients during the course of aging, or in gliosis with a consequent tendency for epilepsy caused by head trauma, with a consequent decrease or increase of intracranial metabolic rate, respectively. Also, the possibility for glial contribution to the thermoregulatory changes seen in psychoses is discussed.
Collapse
Affiliation(s)
- Z Szelényi
- Department of Pathophysiology, University Medical School Pécs, Hungary
| |
Collapse
|
8
|
Walters TJ, Ryan KL, Belcher JC, Doyle JM, Tehrany MR, Mason PA. Regional brain heating during microwave exposure (2.06 GHz), warm-water immersion, environmental heating and exercise. Bioelectromagnetics 1998. [DOI: 10.1002/(sici)1521-186x(1998)19:6<341::aid-bem2>3.0.co;2-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Mickley GA, Cobb BL, Farrell ST. Brain hyperthermia alters local cerebral glucose utilization: a comparison of hyperthermic agents. Int J Hyperthermia 1997; 13:99-114. [PMID: 9024931 DOI: 10.3109/02656739709056434] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microwaves have been proposed to alter neural functioning through both thermal and non-thermal mechanisms. We attempted to determine if local cerebral glucose utilization (LCGU) depends on the type of hyperthermic agent employed. We exposed the heads of rats to two different hyperthermic agents (5.6 GHz microwave exposure or exposure to hot/moist air) to create a 2 degree C rise in midbrain temperature. Other rats were sham exposed and remained normothermic. The 2-Deoxy-D-glucose (2DG) autoradiographic method was then used to determine LCGU during a 45-min period of stable hyperthermia. Hyperthermia (created by either hyperthermic agent) caused a general rise in brain glucose utilization. Hot-air exposed rats showed significantly higher LCGUs than microwaved rats in portions of the motor cortex, hypothalamus, lateral lemniscus and the substantia nigra (reticulata). Microwave exposure did not produce significantly higher levels of LCGU (compared to hot-air exposed hyperthermic controls) in any of the 47 brain areas sampled. A time analysis of lateral hypothalamic (LH) temperature during these different heating procedures revealed that microwave exposure produced a more-rapid rise in temperature than did not/moist air. Thus, we wondered if the nuclei-specific differences in LCGU could be explained by localized differences in rate of brain heating during the two hyperthermic treatments. In a second study we carefully matched both the rate of lateral hypothalamic temperature rise and the peak temperatures achieved by our two hyperthermic methods and again measured LH LCGUs. We found that this precise matching eliminated the difference in hypothalamic LCGU previously observed following microwave or hot-air exposure. These data suggest that hyperthermia causes a general rise in brain metabolism and that (as long as steady state and rate of local brain temperature increase are well matched) microwave and hot-air induced hyperthermia produce similar changes in LCGU.
Collapse
Affiliation(s)
- G A Mickley
- Radiofrequency Radiation Division (AL/OER), Armstrong Laboratory, Brooks AFB, TX 78235-5324, USA
| | | | | |
Collapse
|
10
|
|
11
|
Minamisawa H, Mellergård P, Smith ML, Bengtsson F, Theander S, Boris-Möller F, Siesjö BK. Preservation of brain temperature during ischemia in rats. Stroke 1990; 21:758-64. [PMID: 2339456 DOI: 10.1161/01.str.21.5.758] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our objectives were to study the loss of heat from ischemic brain and to devise a method of maintaining brain temperature. Reversible forebrain ischemia was induced by carotid clamping and exsanguination in 30 anesthetized and artificially ventilated rats. Rectal, skull, and brain temperatures were measured, confirming previous findings that brain temperature falls by 4-5 degrees C during 15 minutes of ischemia unless measures are taken to maintain head temperature by external heating. Temperature gradients developed within the ischemic brain, superficial tissues being cooler than deep ones. These temperature gradients were reversed when skull temperature was maintained at core body (rectal) temperature by external heating. With rectal and skull temperatures maintained at 38 degrees, 37 degrees, 35 degrees, or 33 degrees C, brain temperatures nonetheless decreased by approximately 1 degree C during ischemia. This decrease in brain temperature could be prevented by placing the rat in a Plexiglas box with circulating air at temperatures close to that of the body core and a relative humidity of approximately 100%. We also found that, unless special precautions are taken, a temperature gradient develops between the brain and body core during recirculation.
Collapse
Affiliation(s)
- H Minamisawa
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|