1
|
Turrel O, Ramesh N, Escher MJF, Pooryasin A, Sigrist SJ. Transient active zone remodeling in the Drosophila mushroom body supports memory. Curr Biol 2022; 32:4900-4913.e4. [PMID: 36327980 DOI: 10.1016/j.cub.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.
Collapse
Affiliation(s)
- Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Atefeh Pooryasin
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
2
|
Abstract
This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without prior knowledge based on excitatory and inhibitory neural mechanisms accounts for the process through which survival-relevant or task-relevant representations are either reinforced or suppressed. The basic mechanisms of unsupervised biological learning drive synaptic plasticity and adaptation for behavioral success in living brains with different levels of complexity. The insights collected here point toward the Hebbian model as a choice solution for “intelligent” robotics and sensor systems.
Collapse
|
3
|
Liang X, Chen X, Yang X, Ni J. The fabrication of LiNbO 3 memristors for electronic synapses using oxygen annealing. NANOTECHNOLOGY 2021; 32:025706. [PMID: 33055384 DOI: 10.1088/1361-6528/abb1eb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Based on the LiNbO3 (LN) single crystal thin film prepared using Ar+ etching, an LN thin film memristor was fabricated by oxygen annealing. Atomic force microscope, scanning electron microscope and electron paramagnetic resonance test results show that the method uniformly reduces the amount of oxygen vacancies on the surface of the material. The current-voltage scanning (I-V scanning), retention and endurance test results show that this method effectively reduces the possibility of breakdown and increases the retention and endurance performance of the device. By adjusting the parameters of the electric pulse, the annealed sample successfully emulated spike-rate dependent plasticity, pulse-paired facilitation, post-tetanic potentiation, Ebbinghaus forgetting curve and the spike-time dependent plasticity. These results indicate that the device prepared herein could be used as an electronic synapse in the field of brain-like neuromorphic computing systems.
Collapse
Affiliation(s)
- Xiang Liang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Cheng Du, People's Republic of China
| | - Xuhao Chen
- School of mechanical and electrical engineering, University of Electronic Science and Technology of China, Cheng Du, People's Republic of China
| | - Xiaoni Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Cheng Du, People's Republic of China
| | - Jing Ni
- School of Materials Science and Engineering, Xihua University, Cheng Du, People's Republic of China
| |
Collapse
|
4
|
Seven Properties of Self-Organization in the Human Brain. BIG DATA AND COGNITIVE COMPUTING 2020. [DOI: 10.3390/bdcc4020010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: (1) modular connectivity, (2) unsupervised learning, (3) adaptive ability, (4) functional resiliency, (5) functional plasticity, (6) from-local-to-global functional organization, and (7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward.
Collapse
|
5
|
Hoshino O, Zheng M, Watanabe K. Improved Perceptual Learning by Control of Extracellular GABA Concentration by Astrocytic Gap Junctions. Neural Comput 2017; 30:184-215. [PMID: 29064786 DOI: 10.1162/neco_a_01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Learning of sensory cues is believed to rely on synchronous pre- and postsynaptic neuronal firing. Evidence is mounting that such synchronicity is not merely caused by properties of the underlying neuronal network but could also depend on the integrity of gap junctions that connect neurons and astrocytes in networks too. In this perspective, we set out to investigate the effect of astrocytic gap junctions on perceptual learning, introducing a model for coupled neuron-astrocyte networks. In particular, we focus on the fact that astrocytes are rich of GABA transporters (GATs) which can either uptake or release GABA depending on the astrocyte membrane potential, which is a function of local neural activity. We show that GABAergic signaling is a crucial component of intracolumnar neuronal synchronization, thereby promoting learning by neurons in the same cell assembly that are activated by a shared sensory cue. At the same time, we show that this effect can critically depend on astrocytic gap junctions insofar as these latter could synchronize extracellular GABA levels around many neurons and throughout entire cell assemblies. These results are supported by extensive computational arguments and predict that astrocytic gap junctions could improve perceptual learning by controlling extracellular GABA.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan, and Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, 963-8563, Japan
| | - Meihong Zheng
- Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, 963-8563, Japan
| |
Collapse
|
6
|
Activity-Induced Synaptic Structural Modifications by an Activator of Integrin Signaling at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:3246-3263. [PMID: 28219985 DOI: 10.1523/jneurosci.3128-16.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic structural modification is crucial for neural development and synaptic plasticity, but the molecular players involved in this process are not well defined. Here, we report that a protein named Shriveled (Shv) regulates synaptic growth and activity-dependent synaptic remodeling at the Drosophila neuromuscular junction. Depletion of Shv causes synaptic overgrowth and an accumulation of immature boutons. We find that Shv physically and genetically interacts with βPS integrin. Furthermore, Shv is secreted during intense, but not mild, neuronal activity to acutely activate integrin signaling, induce synaptic bouton enlargement, and increase postsynaptic glutamate receptor abundance. Consequently, loss of Shv prevents activity-induced synapse maturation and abolishes post-tetanic potentiation, a form of synaptic plasticity. Our data identify Shv as a novel trans-synaptic signal secreted upon intense neuronal activity to promote synapse remodeling through integrin receptor signaling.SIGNIFICANCE STATEMENT The ability of neurons to rapidly modify synaptic structure in response to neuronal activity, a process called activity-induced structural remodeling, is crucial for neuronal development and complex brain functions. The molecular players that are important for this fundamental biological process are not well understood. Here we show that the Shriveled (Shv) protein is required during development to maintain normal synaptic growth. We further demonstrate that Shv is selectively released during intense neuronal activity, but not mild neuronal activity, to acutely activate integrin signaling and trigger structural modifications at the Drosophila neuromuscular junction. This work identifies Shv as a key modulator of activity-induced structural remodeling and suggests that neurons use distinct molecular cues to differentially modulate synaptic growth and remodeling to meet synaptic demand.
Collapse
|
7
|
Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H, Miao X. Ultrafast synaptic events in a chalcogenide memristor. Sci Rep 2013; 3:1619. [PMID: 23563810 PMCID: PMC3619133 DOI: 10.1038/srep01619] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/20/2013] [Indexed: 11/09/2022] Open
Abstract
Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.
Collapse
Affiliation(s)
- Yi Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Froemke RC, Debanne D, Bi GQ. Temporal modulation of spike-timing-dependent plasticity. Front Synaptic Neurosci 2010; 2:19. [PMID: 21423505 PMCID: PMC3059714 DOI: 10.3389/fnsyn.2010.00019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/27/2010] [Indexed: 11/13/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) has attracted considerable experimental and theoretical attention over the last decade. In the most basic formulation, STDP provides a fundamental unit – a spike pair – for quantifying the induction of long-term changes in synaptic strength. However, many factors, both pre- and postsynaptic, can affect synaptic transmission and integration, especially when multiple spikes are considered. Here we review the experimental evidence for multiple types of nonlinear temporal interactions in STDP, focusing on the contributions of individual spike pairs, overall spike rate, and precise spike timing for modification of cortical and hippocampal excitatory synapses. We discuss the underlying processes that determine the specific learning rules at different synapses, such as postsynaptic excitability and short-term depression. Finally, we describe the success of efforts toward building predictive, quantitative models of how complex and natural spike trains induce long-term synaptic modifications.
Collapse
Affiliation(s)
- Robert C Froemke
- Molecular Neurobiology Program, Departments of Otolaryngology and Physiology/Neuroscience, The Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine New York, NY, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Marco Del Giudice
- Center for Cognitive Science, Department of Psychology, University of Turin, Torino, Italy.
| | | | | |
Collapse
|
10
|
Lim H, Choe Y. Extrapolative delay compensation through facilitating synapses and its relation to the flash-lag effect. ACTA ACUST UNITED AC 2008; 19:1678-88. [PMID: 18842473 DOI: 10.1109/tnn.2008.2001002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural conduction delay is a serious issue for organisms that need to act in real time. Various forms of flash-lag effect (FLE) suggest that the nervous system may perform extrapolation to compensate for delay. For example, in motion FLE, the position of a moving object is perceived to be ahead of a brief flash when they are actually colocalized. However, the precise mechanism for extrapolation at a single-neuron level has not been fully investigated. Our hypothesis is that facilitating synapses, with their dynamic sensitivity to the rate of change in the input, can serve as a neural basis for extrapolation. To test this hypothesis, we constructed and tested models of facilitating dynamics. First, we derived a spiking neuron model of facilitating dynamics at a single-neuron level, and tested it in the luminance FLE domain. Second, the spiking neuron model was extended to include multiple neurons and spike-timing-dependent plasticity (STDP), and was tested with orientation FLE. The results showed a strong relationship between delay compensation, FLE, and facilitating synapses/STDP. The results are expected to shed new light on real time and predictive processing in the brain, at the single neuron level.
Collapse
Affiliation(s)
- Heejin Lim
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | | |
Collapse
|
11
|
|
12
|
Wang HX, Gerkin RC, Nauen DW, Bi GQ. Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat Neurosci 2005; 8:187-93. [PMID: 15657596 DOI: 10.1038/nn1387] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 12/20/2004] [Indexed: 11/08/2022]
Abstract
Neuronal synaptic connections can be potentiated or depressed by paired pre- and postsynaptic spikes, depending on the spike timing. We show that in cultured rat hippocampal neurons a calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated potentiation process and a calcineurin-mediated depression process can be activated concomitantly by spike triplets or quadruplets. The integration of the two processes critically depends on their activation timing. Depression can cancel previously activated potentiation, whereas potentiation tends to override previously activated depression. The time window for potentiation to dominate is about 70 ms, beyond which the two processes cancel. These results indicate that the signaling machinery underlying spike timing-dependent plasticity (STDP) may be separated into functional modules that are sensitive to the spatiotemporal dynamics (rather than the amount) of calcium influx. The timing dependence of modular interaction provides a quantitative framework for understanding the temporal integration of STDP.
Collapse
Affiliation(s)
- Huai-Xing Wang
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|