1
|
Chukrallah LG, Snyder EM. Modern tools applied to classic structures: Approaches for mammalian male germ cell RNA granule research. Andrology 2023; 11:872-883. [PMID: 36273399 DOI: 10.1111/andr.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures. While these methods have given light to potential granule functions, much work remains to be done. The current expansion of imaging technologies and omics-scale analyses to germ cell granule research will drive the field forward considerably. Many of these methods, both current and upcoming, have considerable caveats and limitations that necessitate a holistic approach to the study of germ granules. By combining and balancing different techniques, the field is poised to elucidate the nature of these critical structures.
Collapse
Affiliation(s)
- Lauren G Chukrallah
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Elizabeth M Snyder
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Jeon P, Ham HJ, Park S, Lee JA. Regulation of Cellular Ribonucleoprotein Granules: From Assembly to Degradation via Post-translational Modification. Cells 2022; 11:cells11132063. [PMID: 35805146 PMCID: PMC9265587 DOI: 10.3390/cells11132063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cells possess membraneless ribonucleoprotein (RNP) granules, including stress granules, processing bodies, Cajal bodies, or paraspeckles, that play physiological or pathological roles. RNP granules contain RNA and numerous RNA-binding proteins, transiently formed through the liquid–liquid phase separation. The assembly or disassembly of numerous RNP granules is strongly controlled to maintain their homeostasis and perform their cellular functions properly. Normal RNA granules are reversibly assembled, whereas abnormal RNP granules accumulate and associate with various neurodegenerative diseases. This review summarizes current studies on the physiological or pathological roles of post-translational modifications of various cellular RNP granules and discusses the therapeutic methods in curing diseases related to abnormal RNP granules by autophagy.
Collapse
|
3
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Jung KM, Seo M, Kim YM, Kim JL, Han JY. Single-Cell RNA Sequencing Revealed the Heterogeneity of Gonadal Primordial Germ Cells in Zebra Finch ( Taeniopygia guttata). Front Cell Dev Biol 2021; 9:791335. [PMID: 34957119 PMCID: PMC8695979 DOI: 10.3389/fcell.2021.791335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Primordial germ cells (PGCs) are undifferentiated gametes with heterogeneity, an evolutionarily conserved characteristic across various organisms. Although dynamic selection at the level of early germ cell populations is an important biological feature linked to fertility, the heterogeneity of PGCs in avian species has not been characterized. In this study, we sought to evaluate PGC heterogeneity in zebra finch using a single-cell RNA sequencing (scRNA-seq) approach. Using scRNA-seq of embryonic gonadal cells from male and female zebra finches at Hamburger and Hamilton (HH) stage 28, we annotated nine cell types from 20 cell clusters. We found that PGCs previously considered a single population can be separated into three subtypes showing differences in apoptosis, proliferation, and other biological processes. The three PGC subtypes were specifically enriched for genes showing expression patterns related to germness or pluripotency, suggesting functional differences in PGCs according to the three subtypes. Additionally, we discovered a novel biomarker, SMC1B, for gonadal PGCs in zebra finch. The results provide the first evidence of substantial heterogeneity in PGCs previously considered a single population in birds. This discovery expands our understanding of PGCs to avian species, and provides a basis for further research.
Collapse
Affiliation(s)
- Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Minseok Seo
- Department of Computer Convergence Software, Korea University, Sejong, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Hocaoglu H, Wang L, Yang M, Yue S, Sieber M. Heritable shifts in redox metabolites during mitochondrial quiescence reprogramme progeny metabolism. Nat Metab 2021; 3:1259-1274. [PMID: 34545253 PMCID: PMC8462065 DOI: 10.1038/s42255-021-00450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Changes in maternal diet and metabolic defects in mothers can profoundly affect health and disease in their progeny. However, the biochemical mechanisms that induce the initial reprogramming events at the cellular level have remained largely unknown owing to limitations in obtaining pure populations of quiescent oocytes. Here, we show that the precocious onset of mitochondrial respiratory quiescence causes a reprogramming of progeny metabolic state. The premature onset of mitochondrial respiratory quiescence drives the lowering of Drosophila oocyte NAD+ levels. NAD+ depletion in the oocyte leads to reduced methionine cycle production of the methyl donor S-adenosylmethionine in embryos and lower levels of histone H3 lysine 27 trimethylation, resulting in enhanced intestinal lipid metabolism in progeny. In addition, we show that triggering cellular quiescence in mammalian cells and chemotherapy-resistant human cancer cell models induces cellular reprogramming events identical to those seen in Drosophila, suggesting a conserved metabolic mechanism in systems reliant on quiescent cells.
Collapse
Affiliation(s)
- Helin Hocaoglu
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengye Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sibiao Yue
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Choi HJ, Jin SD, Rengaraj D, Kim JH, Pain B, Han JY. Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. J Anim Sci Biotechnol 2021; 12:40. [PMID: 33658075 PMCID: PMC7931612 DOI: 10.1186/s40104-021-00563-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. Results We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5′ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG. Conclusions We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.
Collapse
Affiliation(s)
- Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Dam Jin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Hwa Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Bertrand Pain
- Univ Lyon, Universite ́Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea. .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
7
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
8
|
Abstract
Many proteins, particularly those that are intrinsically disordered and carry charges have a tendency to undergo liquid liquid phase separation (LLPS). Phase separation is a widespread mechanism by which cells concentrate a set of proteins to perform molecular reactions, and appear to compartmentalize molecular functions. Among the intrinsically disordered proteins are a subset that tend to form solid inclusions in cells and contribute to the pathology of several neurodegenerative diseases. Among this subset is the tau protein, a critically important inclusion in a class of conditions known as the tauopathies, which include Alzheimer's disease. Tau in neurons strongly and selectively associates with RNA species, most notably tRNA with a nanomolar dissociation constant. Furthermore, tau and RNA, under charge matching conditions, undergo LLPS in a process known as complex coacervation. Tau-RNA LLPS is reversible, and can persist for more than 15 h without subsequent fibrilization, although after longer time periods β-sheet content can be detected by thioflavin T. These findings suggest that LLPS tau droplets or condensates can be placed on a pathway to fibrillization and be arrested by solidification or dissolve into a soluble state, depending on the condition at hand, suggesting a regulatory and physiological role for the phase separated state of tau.
Collapse
|
9
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
11
|
McDonald L, Cayla M, Ivens A, Mony BM, MacGregor P, Silvester E, McWilliam K, Matthews KR. Non-linear hierarchy of the quorum sensing signalling pathway in bloodstream form African trypanosomes. PLoS Pathog 2018; 14:e1007145. [PMID: 29940034 PMCID: PMC6034907 DOI: 10.1371/journal.ppat.1007145] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/06/2018] [Accepted: 06/07/2018] [Indexed: 01/23/2023] Open
Abstract
Trypanosoma brucei, the agents of African trypanosomiasis, undergo density-dependent differentiation in the mammalian bloodstream to prepare for transmission by tsetse flies. This involves the generation of cell-cycle arrested, quiescent, stumpy forms from proliferative slender forms. The signalling pathway responsible for the quorum sensing response has been catalogued using a genome-wide selective screen, providing a compendium of signalling protein kinases phosphatases, RNA binding proteins and hypothetical proteins. However, the ordering of these components is unknown. To piece together these components to provide a description of how stumpy formation arises we have used an extragenic suppression approach. This exploited a combinatorial gene knockout and overexpression strategy to assess whether the loss of developmental competence in null mutants of pathway components could be compensated by ectopic expression of other components. We have created null mutants for three genes in the stumpy induction factor signalling pathway (RBP7, YAK, MEKK1) and evaluated complementation by expression of RBP7, NEK17, PP1-6, or inducible gene silencing of the proposed differentiation inhibitor TbTOR4. This indicated that the signalling pathway is non-linear. Phosphoproteomic analysis focused on one pathway component, a putative MEKK, identified molecules with altered expression and phosphorylation profiles in MEKK1 null mutants, including another component in the pathway, NEK17. Our data provide a first molecular dissection of multiple components in a signal transduction cascade in trypanosomes.
Collapse
Affiliation(s)
- Lindsay McDonald
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Binny M. Mony
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paula MacGregor
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty McWilliam
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Keith R. Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Lehtiniemi T, Kotaja N. Germ granule-mediated RNA regulation in male germ cells. Reproduction 2017; 155:R77-R91. [PMID: 29038333 DOI: 10.1530/rep-17-0356] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
Germ cells have exceptionally diverse transcriptomes. Furthermore, the progress of spermatogenesis is accompanied by dramatic changes in gene expression patterns, the most drastic of them being near-to-complete transcriptional silencing during the final steps of differentiation. Therefore, accurate RNA regulatory mechanisms are critical for normal spermatogenesis. Cytoplasmic germ cell-specific ribonucleoprotein (RNP) granules, known as germ granules, participate in posttranscriptional regulation in developing male germ cells. Particularly, germ granules provide platforms for the PIWI-interacting RNA (piRNA) pathway and appear to be involved both in piRNA biogenesis and piRNA-targeted RNA degradation. Recently, other RNA regulatory mechanisms, such as the nonsense-mediated mRNA decay pathway have also been associated to germ granules providing new exciting insights into the function of germ granules. In this review article, we will summarize our current knowledge on the role of germ granules in the control of mammalian male germ cell's transcriptome and in the maintenance of fertility.
Collapse
Affiliation(s)
| | - Noora Kotaja
- Institute of BiomedicineUniversity of Turku, Turku, Finland
| |
Collapse
|
13
|
Milani L, Pecci A, Ghiselli F, Passamonti M, Bettini S, Franceschini V, Maurizii MG. VASA expression suggests shared germ line dynamics in bivalve molluscs. Histochem Cell Biol 2017; 148:157-171. [PMID: 28386635 PMCID: PMC5508042 DOI: 10.1007/s00418-017-1560-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 11/25/2022]
Abstract
Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of "primordial stem cells" among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Pecci
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Simone Bettini
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Valeria Franceschini
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
14
|
Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 2017; 239:97-114. [PMID: 27291647 DOI: 10.1016/j.cis.2016.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions.
Collapse
|
15
|
Kaymak E, Farley BM, Hay SA, Li C, Ho S, Hartman DJ, Ryder SP. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using library MosSCI. Dev Dyn 2016; 245:925-36. [PMID: 27294288 PMCID: PMC4981527 DOI: 10.1002/dvdy.24426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M. Farley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Samantha A. Hay
- Virginia Commonwealth University School of Medicine, VA, USA
| | - Chihua Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Samantha Ho
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
16
|
Abstract
Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.
Collapse
Affiliation(s)
- Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 3EG, United Kingdom Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute & Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
17
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
18
|
Wolniak SM, Boothby TC, van der Weele CM. Posttranscriptional control over rapid development and ciliogenesis in Marsilea. Methods Cell Biol 2015; 127:403-44. [PMID: 25837402 DOI: 10.1016/bs.mcb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Corine M van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| |
Collapse
|
19
|
Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells. Genetics 2014; 198:1495-512. [PMID: 25342717 DOI: 10.1534/genetics.114.172031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival.
Collapse
|
20
|
Eun SH, Shi Z, Cui K, Zhao K, Chen X. A non-cell autonomous role of E(z) to prevent germ cells from turning on a somatic cell marker. Science 2014; 343:1513-6. [PMID: 24675960 PMCID: PMC4040133 DOI: 10.1126/science.1246514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In many metazoans, germ cells are separated from somatic lineages early in development and maintain their identity throughout life. Here, we show that a Polycomb group (PcG) component, Enhancer of Zeste [E(z)], a histone transferase that generates trimethylation at lysine 27 of histone H3, maintains germline identity in Drosophila adult testes. We find excessive early-stage somatic gonadal cells in E(z) mutant testes, which originate from both overproliferative cyst stem cells and germ cells turning on an early-stage somatic cell marker. Using complementary lineage-tracing experiments in E(z) mutant testes, a portion of excessive early-stage somatic gonadal cells are found to originate from early-stage germ cells, including germline stem cells. Moreover, knocking down E(z) specifically in somatic cells caused this change, which suggests a non-cell autonomous role of E(z) to antagonize somatic identity in germ cells.
Collapse
Affiliation(s)
- Suk Ho Eun
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
21
|
Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo 2013; 4:2. [PMID: 23294912 PMCID: PMC3599645 DOI: 10.1186/2041-9139-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 01/14/2023] Open
Abstract
Background Germline determination is believed to occur by either preformation or epigenesis. Animals that undergo germ cell specification by preformation have a continuous germline. However, animals with germline determination by epigenesis have a discontinuous germline, with somatic cells intercalated. This vision is contrary to August Weismann’s Germ Plasm Theory and has led to several controversies. Recent data from metazoans as diverse as planarians, annelids and sea urchins reveal the presence of pluripotent stem cell populations that express germ plasm components, despite being considered to be somatic. These data also show that germ plasm is continuous in some of these animals, despite their discontinuous germline. Presentation of the hypothesis Here, based on recent molecular data on germ plasm components, I revise the germline concept. I introduce the concept of primordial stem cells, which are evolutionarily conserved stem cells that carry germ plasm components from the zygote to the germ cells. These cells, delineated by the classic concept of the Weismann barrier, can contribute to different extents to somatic tissues or be present in a rudimentary state. The primordial stem cells are a part of the germline that can drive asexual reproduction. Testing the hypothesis Molecular information on the expression of germ plasm components is needed during early development of non-classic model organisms, with special attention to those capable of undergoing asexual reproduction and regeneration. The cell lineage of germ plasm component-containing cells will also shed light on their position with respect to the Weismann barrier. This information will help in understanding the germline and its associated stem cells across metazoan phylogeny. Implications of the hypothesis This revision of the germline concept explains the extensive similarities observed among stem cells and germline cells in a wide variety of animals, and predicts the expression of germ plasm components in many others. The life history of these animals can be simply explained by changes in the extent of self-renewal, proliferation and developmental potential of the primordial stem cells. The inclusion of the primordial stem cells as a part of the germline, therefore, solves many controversies and provides a continuous germline, just as originally envisaged by August Weismann.
Collapse
Affiliation(s)
- Jordi Solana
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
22
|
Moser JJ, Fritzler MJ. Relationship of other cytoplasmic ribonucleoprotein bodies (cRNPB) to GW/P bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:213-42. [PMID: 23224973 DOI: 10.1007/978-1-4614-5107-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GW/P body components are involved in the post-transcriptional -processing of messenger RNA (mRNA) through the RNA interference and 5' → 3' mRNA degradation pathways, as well as functioning in mRNA transport and stabilization. It is currently thought that the relevant mRNA silencing and degrading factors are partitioned to these cytoplasmic microdomains thus effecting post-transcriptional regulation and the prevention of accidental degradation of functional mRNA. Although much attention has focused on GW/P bodies, a variety of other cytoplasmic RNP bodies (cRNPB) also have highly specialized functions and have been shown to interact or co-localize with components of GW/P bodies. These cRNPB include neuronal transport RNP granules, stress granules, RNP-rich cytoplasmic germline granules or chromatoid bodies, sponge bodies, cytoplasmic prion protein-induced RNP granules, U bodies and TAM bodies. Of clinical relevance, autoantibodies directed against protein and miRNA components of GW/P bodies have been associated with autoimmune diseases, neurological diseases and cancer. Understanding the molecular function of GW/P bodies and their interactions with other cRNPB may provide clues to the etiology or pathogenesis of diseases associated with autoantibodies directed to these structures. This chapter will focus on the similarities and differences of the various cRNPB as an approach to understanding their functional relationships to GW/P bodies.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
23
|
Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 2012; 193:109-23. [PMID: 23105015 DOI: 10.1534/genetics.112.146993] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of ribonucleoprotein (RNP) granules form in eukaryotic cells to regulate the translation, decay, and localization of the encapsulated messenger RNA (mRNAs). The work here examined the assembly and function of two highly conserved RNP structures, the processing body (P body) and the stress granule, in the yeast Saccharomyces cerevisiae. These granules are induced by similar stress conditions and contain translationally repressed mRNAs and a partially overlapping set of protein constituents. However, despite these similarities, the data indicate that these RNP complexes are independently assembled and that this assembly is controlled by different signaling pathways. In particular, the cAMP-dependent protein kinase (PKA) was found to control P body formation under all conditions examined. In contrast, the assembly of stress granules was not affected by changes in either PKA or TORC1 signalling activity. Both of these RNP granules were also detected in stationary-phase cells, but each appears at a distinct time. P bodies were formed prior to stationary-phase arrest, and the data suggest that these foci are important for the long-term survival of these quiescent cells. Stress granules, on the other hand, were not assembled until after the cells had entered into the stationary phase of growth and their appearance could therefore serve as a specific marker for the entry into this quiescent state. In all, the results here provide a framework for understanding the assembly of these RNP complexes and suggest that these structures have distinct but important activities in quiescent cells.
Collapse
|
24
|
Makabe KW, Nishida H. Cytoplasmic localization and reorganization in ascidian eggs: role of postplasmic/PEM RNAs in axis formation and fate determination. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:501-18. [PMID: 23801532 DOI: 10.1002/wdev.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Localization of maternal molecules in eggs and embryos and cytoplasmic movements to relocalize them are fundamental for the orderly cellular and genetic processes during early embryogenesis. Ascidian embryos have been known as 'mosaic eggs' because of their autonomous differentiation abilities based on localized cell fate determinants. This review gives a historical overview of the concept of cytoplasmic localization, and then explains the key features such as ooplasmic movements and cell lineages that are essential to grasp the process of ascidian development mediated by localized determinant activities. These activities are partly executed by localized molecules named postplasmic/PEM RNAs, originating from approximately 50 genes, of which the muscle determinant, macho-1, is an example. The cortical domain containing these RNAs is relocalized to the posterior-vegetal region of the egg by cytoskeletal movements after fertilization, and plays crucial roles in axis formation and cell fate determination. The cortical domain contains endoplasmic reticulum and characteristic granules, and gives rise to a subcellular structure called the centrosome-attracting body (CAB), in which postplasmic/PEM RNAs are highly concentrated. The CAB is responsible for a series of unequal partitionings of the posterior-vegetal cytoplasmic domain and the postplasmic/PEM RNAs at the posterior pole during cleavage. Some components of this domain, which is rich in granules, are eventually inherited by prospective germline cells with particular postplasmic/PEM RNAs such as vasa. The postplasmic/PEM RNAs are classified into two groups according to their final cellular destinations and localization pathways. Localization of these RNAs is regulated by specific nucleotide sequences in the 3' untranslated regions (3'UTRs).
Collapse
Affiliation(s)
- Kazuhiro W Makabe
- Institute of Socio-Arts and Sciences, University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
25
|
|
26
|
Liu Q, Stumpf C, Thomas C, Wickens M, Haag ES. Context-dependent function of a conserved translational regulatory module. Development 2012; 139:1509-21. [PMID: 22399679 DOI: 10.1242/dev.070128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
27
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|
28
|
Chong T, Stary JM, Wang Y, Newmark PA. Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2011; 11:69. [PMID: 22074376 PMCID: PMC3224759 DOI: 10.1186/1471-213x-11-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022]
Abstract
Background The freshwater planarian Schmidtea mediterranea exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making S. mediterranea a useful model for studying germline development and sexual differentiation. Results To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent in situ hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs. Conclusions Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
29
|
Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 2011; 21:1462-77. [PMID: 21685128 PMCID: PMC3166831 DOI: 10.1101/gr.121426.111] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and novel small RNA classes through gametogenesis and embryo development in the parasitic nematode Ascaris suum and compared them with known small RNAs of Caenorhabditis elegans. piRNAs, Piwi-clade Argonautes, and other proteins associated with the piRNA pathway have been lost in Ascaris. miRNAs are synthesized immediately after fertilization in utero, before pronuclear fusion, and before the first cleavage of the zygote. This is the earliest expression of small RNAs ever described at a developmental stage long thought to be transcriptionally quiescent. A comparison of the two classes of Ascaris endo-siRNAs, 22G-RNAs and 26G-RNAs, to those in C. elegans, suggests great diversification and plasticity in the use of small RNA pathways during spermatogenesis in different nematodes. Our data reveal conserved characteristics of nematode small RNAs as well as features unique to Ascaris that illustrate significant flexibility in the use of small RNAs pathways, some of which are likely an adaptation to Ascaris' life cycle and parasitism. The transcriptome assembly has been submitted to NCBI Transcriptome Shotgun Assembly Sequence Database(http://www.ncbi.nlm.nih.gov/genbank/TSA.html) under accession numbers JI163767–JI182837 and JI210738–JI257410.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Benjamin Czech
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Amanda Crunk
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Wallace
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Makedonka Mitreva
- Genetics and Genome Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
30
|
Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011; 142:195-209. [DOI: 10.1530/rep-11-0057] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromatoid body (CB) is a germ granule in the cytoplasm of postmeiotic haploid round spermatids that is loaded with RNA and RNA-binding proteins. Following the discovery of small non-coding RNA-mediated gene regulation and the identification of PIWI-interacting RNAs (piRNAs) that have crucial roles in germ line development, the function of the CB has slowly begun to be revealed. Male germ cells utilise small RNAs to control the complex and specialised process of sperm production. Several microRNAs have been identified during spermatogenesis. In addition, a high number of piRNAs are present both in embryonic and postnatal male germ cells, with their expression being impressively induced in late meiotic cells and haploid round spermatids. At postmeiotic stage of germ cell differentiation, the CB accumulates piRNAs and proteins of piRNA machinery, as well as several other proteins involved in distinct RNA regulation pathways. All existing evidence suggests a role for the CB in mRNA regulation and small RNA-mediated gene control, but the mechanisms remain uncharacterised. In this review, we summarise the current knowledge of the CB and its association with small RNA pathways.
Collapse
|
31
|
Post-transcriptional control of gene expression in mouse early embryo development: a view from the tip of the iceberg. Genes (Basel) 2011; 2:345-59. [PMID: 24710195 PMCID: PMC3924817 DOI: 10.3390/genes2020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022] Open
Abstract
Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s) underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.
Collapse
|
32
|
Lai F, Zhou Y, Luo X, Fox J, King ML. Nanos1 functions as a translational repressor in the Xenopus germline. Mech Dev 2010; 128:153-63. [PMID: 21195170 DOI: 10.1016/j.mod.2010.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 02/01/2023]
Abstract
Nanos family members have been shown to act as translational repressors in the Drosophila and Caenorhabditis elegans germline, but direct evidence is missing for a similar function in vertebrates. Using a tethered function assay, we show that Xenopus Nanos1 is a translational repressor and that association with the RNA is required for this repression. We identified a 14 amino acid region within the N-terminal domain of Nanos1 that is conserved in organisms as diverse as sponge and Human. The region is found in all vertebrates but notably lacking in Drosophila and C. elegans. Deletion and substitution analysis revealed that this conserved region was required for Nanos1 repressive activity. Consistent with this observation, deletion of this region was sufficient to prevent abnormal development that results from ectopic expression of Nanos1 in oocytes. Although Nanos1 can repress capped and polyadenylated RNAs, Nanos1 mediated repression did not require the targeted RNA to have a cap or to be polyadenylated. These results suggest that Nanos1 is capable of repressing translation by several different mechanisms. We found that Nanos1, like Drosophila Nanos, associates with cyclin B1 RNA in vivo indicating that some Nanos targets may be evolutionarily conserved. Nanos1 protein was detected and thus available to repress mRNAs while PGCs were in the endoderm, but was not observed in PGCs after this stage.
Collapse
Affiliation(s)
- Fangfang Lai
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
33
|
Isaeva VV. The diversity of ontogeny in animals with asexual reproduction and plasticity of early development. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410050048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Seo HW, Kim TM, Choi JW, Han BK, Song G, Han JY. Evaluation of combinatorial cis-regulatory elements for stable gene expression in chicken cells. BMC Biotechnol 2010; 10:69. [PMID: 20849657 PMCID: PMC2949789 DOI: 10.1186/1472-6750-10-69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/19/2010] [Indexed: 01/05/2023] Open
Abstract
Background Recent successes in biotechnological application of birds are based on their unique physiological traits such as unlimited manipulability onto developing embryos and simple protein constituents of the eggs. However it is not likely that target protein is produced as kinetically expected because various factors affect target gene expression. Although there have been various attempts to minimize the silencing of transgenes, a generalized study that uses multiple cis-acting elements in chicken has not been made. The aim of the present study was to analyze whether various cis-acting elements can help to sustain transgene expression in chicken fibroblasts. Results We investigated the optimal transcriptional regulatory elements for enhancing stable transgene expression in chicken cells. We generated eight constructs that encode enhanced green fluorescent protein (eGFP) driven by either CMV or CAG promoters (including the control), containing three types of key regulatory elements: a chicken lysozyme matrix attachment region (cMAR), 5'-DNase I-hypersensitive sites 4 (cHS4), and the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Then we transformed immortalized chicken embryonic fibroblasts with these constructs by electroporation, and after cells were expanded under G418 selection, analyzed mRNA levels and mean fluorescence intensity (MFI) by quantitative real-time PCR and flow cytometry, respectively. We found that the copy number of each construct significantly decreased as the size of the construct increased (R2 = 0.701). A significant model effect was found in the expression level among various constructs in both mRNA and protein (P < 0.0001). Transcription with the CAG promoter was 1.6-fold higher than the CMV promoter (P = 0.027) and the level of eGFP expression activity in cMAR- or cHS4-flanked constructs increased by two- to three-fold compared to the control CMV or CAG promoter constructs. In addition, flow cytometry analysis showed that constructs having cis-acting elements decreased the level of gene silencing as well as the coefficient of variance of eGFP-expressing cells (P < 0.0001). Conclusions Our current data show that an optimal combination of cis-acting elements and promoters/enhancers for sustaining gene expression in chicken cells is suggested. These results provide important information for avian transgenesis and gene function studies in poultry.
Collapse
Affiliation(s)
- Hee W Seo
- Department of Agricultural Biotechnology, WCU Biomodulation Major, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome 2010; 53:83-102. [DOI: 10.1139/g09-090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of a fully developed gamete from an undifferentiated germ cell requires progression through numerous developmental stages and cell fate decisions. The precise timing and level of gene expression guides cells through these stages. Translational regulation is highly utilized in the germ line of many species, including Caenorhabditis elegans , to regulate gene expression and ensure the proper formation of gametes. In this review, we discuss some of the developmental stages and cell fate decisions involved in the formation of functional gametes in the C. elegans germ line in which translational control has been implicated. These stages include the mitosis versus meiosis decision, the sperm/oocyte decision, and gamete maturation. We also discuss some of the techniques used to identify mRNA targets; the identification of these targets is necessary to clearly understand the role each RNA-binding protein plays in these decisions. Relatively few mRNA targets have been identified, thus providing a major focus for future research. Finally, we propose some reasons why translational control may be utilized so heavily in the germ line. Given that many species have this substantial reliance on translational regulation for the control of gene expression in the germ line, an understanding of translational regulation in the C. elegans germ line is likely to increase our understanding of gamete formation in general.
Collapse
Affiliation(s)
- Hilary Racher
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Dave Hansen
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
36
|
Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009; 10:430-6. [PMID: 19461665 DOI: 10.1038/nrm2694] [Citation(s) in RCA: 672] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The composition of cytoplasmic messenger ribonucleoproteins (mRNPs) is determined by their nuclear and cytoplasmic histories and reflects past functions and future fates. The protein components of selected mRNP complexes promote their assembly into microscopically visible cytoplasmic RNA granules, including stress granules, processing bodies and germ cell (or polar) granules. We propose that RNA granules can be both a cause and a consequence of altered mRNA translation, decay or editing. In this capacity, RNA granules serve as key modulators of post-transcriptional and epigenetic gene expression.
Collapse
Affiliation(s)
- Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
37
|
Nicholas CR, Xu EY, Banani SF, Hammer RE, Hamra FK, Reijo Pera RA. Characterization of a Dazl-GFP germ cell-specific reporter. Genesis 2009; 47:74-84. [PMID: 19133679 DOI: 10.1002/dvg.20460] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we characterized the promoter activity of a 1.7 kb sequence in the 5' flanking region of the mouse Deleted in Azoospermia-Like (Dazl) gene. We found the 1.7 kb sequence sufficient to drive robust germ cell-specific expression of green fluorescent protein (GFP) in adult mouse testis and lower levels of expression in adult ovary and in fetal and newborn gonads of both sexes. This expression pattern was confirmed in two independently-derived transgenic mouse lines. In adult testis, Dazl-GFP exhibited a developmentally-regulated, stage-specific expression pattern during spermatogenesis. GFP was highly expressed in spermatocyte stages, with strongest expression in pachytene spermatocytes. Weaker expression was observed in round and elongating spermatids, as well as spermatogonial cells. In the fetal gonad, GFP transcript was detected by e12.5 in both sexes; however, GFP fluorescence was only detected during later embryonic stages. In addition, we produced mouse embryonic stem cell (ESC) lines harboring the Dazl-GFP reporter and used this reporter to isolate putative germ cell populations derived from mouse ESCs following embryoid body differentiation and fluorescence activated cell sorting.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Isaeva VV, Akhmadieva AV, Aleksandrova YN, Shukalyuk AI. Morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409020015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Brubacher JL, Huebner E. Development of polarized female germline cysts in the polychaete,Ophryotrocha labronica. J Morphol 2009; 270:413-29. [DOI: 10.1002/jmor.10687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ. Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Mol Reprod Dev 2008; 75:1163-75. [PMID: 18213680 DOI: 10.1002/mrd.20859] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genome of germline committed cells is thought to be protected by mechanisms of transcriptional silencing, posing a barrier to transgenesis using cultured germline cells. We found that selection for transgene integration into the primordial germ cell genome required that the transgenes be flanked by the chicken beta-globin insulator. However, integration frequency was low, and sequencing of the insertion sites revealed that the transgenes preferentially inserted into active promoter regions, implying that silencing prohibited recovery of insertions in other regions. Much higher frequencies of integration were achieved when the phiC31 integrase was used to insert transgenes into endogenous pseudo attP sites. Despite the evidence for transcriptional silencing in PGCs, gene targeting of a nonexpressed gene was also achieved. The ability to make genetic modifications in PGCs provides unprecedented opportunities to study the biology of PGCs, as well as produce transgenic chickens for applications in biotechnology and developmental biology.
Collapse
Affiliation(s)
- Philip A Leighton
- Origen Therapeutics, 1450 Rollins Road, Burlingame, California 94010, USA.
| | | | | | | | | |
Collapse
|
41
|
Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y. Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 2007; 236:1698-715. [PMID: 17366574 DOI: 10.1002/dvdy.21109] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ascidian is a good model to understand the cellular and molecular mechanisms responsible for mRNA localization with the discovery of a large family of localized maternal mRNAs, called postplasmic/PEM RNAs, which includes more than 40 members in three different ascidian species (Halocynthia roretzi, Ciona intestinalis, and C. savignyi). Among these mRNAs, two types (Type I and Type II) have been identified and show two different localization patterns from fertilization to the eight-cell stage. At the eight-cell stage, both types concentrate to a macromolecular cortical structure called CAB (for Centrosome Attracting Body) in the posterior-vegetal B4.1 blastomeres. The CAB is responsible for unequal cleavages and the partitioning of postplasmic/PEM RNAs at the posterior pole of embryos during cleavage stages. It has also been suggested that the CAB region could contain putative germ granules. In this review, we discuss recent data obtained on the distribution of Type I postplasmic/PEM RNAs from oogenesis to late development, in relation to their localization and translational control. We have first regrouped localization patterns for Type I and Type II into a comparative diagram and included all important definitions in the field. We also have made an exhaustive classification of their embryonic expression profiles (Type I or Type II), and analyzed their functions after knockdown and/or overexpression experiments and the role of the 3'-untranslated region (3'UTR) controlling both their localization and translation. Finally, we propose a speculative model integrating recent data, and we also discuss the relationship between postplasmic/PEM RNAs, posterior specification, and germ cell formation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
42
|
Crother BI, White ME, Johnson AD. Inferring developmental constraint and constraint release: Primordial germ cell determination mechanisms as examples. J Theor Biol 2007; 248:322-30. [PMID: 17602708 DOI: 10.1016/j.jtbi.2007.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/08/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Developmental constraint and its converse constraint release are significant concepts in understanding pattern and process in macroevolution. The purpose of this paper is to propose a two-step method for identifying constraints and constraint release. The first step is a phylogenetic optimization procedure to identify which trait/process is primitive and which is derived. The primitive trait is inferred to be the constraint and the convergently derived trait the release. The second criterion uses sister-clade asymmetry. Clades diagnosed by the constraint will have fewer taxa than clades diagnosed by the release. As an example, we use the process of germ cell specification, in which there are three modes of specification. Our results corroborate previous conclusions that the induced mode is the constraint and the predetermined mode is the release and we speculate on the importance of these two processes in terms of robustness and evolvability.
Collapse
|
43
|
van der Weele CM, Tsai CW, Wolniak SM. Mago nashi is essential for spermatogenesis in Marsilea. Mol Biol Cell 2007; 18:3711-22. [PMID: 17634289 PMCID: PMC1995738 DOI: 10.1091/mbc.e06-11-0979] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spermatogenesis in Marsilea vestita is a rapid process that is activated by placing dry microspores into water. Nine division cycles produce seven somatic cells and 32 spermatids, where size and position define identity. Spermatids undergo de novo formation of basal bodies in a particle known as a blepharoplast. We are interested in mechanisms responsible for spermatogenous initial formation. Mago nashi (Mv-mago) is a highly conserved gene present as stored mRNA and stored protein in the microspore. Mv-mago protein increases in abundance during development and it localizes at discrete cytoplasmic foci (Mago-dots). RNA interference experiments show that new Mv-mago protein is required for development. With Mv-mago silenced, asymmetric divisions become symmetric, cell fate is disrupted, and development stops. The alpha-tubulin protein distribution, centrin translation, and Mv-PRP19 mRNA distribution are no longer restricted to the spermatogenous cells. Centrin aggregations, resembling blepharoplasts, occur in jacket cells. Mago-dots are undetectable after the silencing of Mv-mago, Mv-Y14, or Mv-eIF4AIII, three core components of the exon junction complex (EJC), suggesting that Mago-dots are either EJCs in the cytoplasm, or Mv-mago protein aggregations dependent on EJCs. Mv-mago protein and other EJC components apparently function in cell fate determination in developing male gametophytes of M. vestita.
Collapse
Affiliation(s)
- Corine M. van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Chia-Wei Tsai
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Stephen M. Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
44
|
Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 2007; 21:11-42. [PMID: 17210785 DOI: 10.1101/gad.1484207] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large portion of the eukaryotic genome is transcribed as noncoding RNAs (ncRNAs). While once thought of primarily as "junk," recent studies indicate that a large number of these RNAs play central roles in regulating gene expression at multiple levels. The increasing diversity of ncRNAs identified in the eukaryotic genome suggests a critical nexus between the regulatory potential of ncRNAs and the complexity of genome organization. We provide an overview of recent advances in the identification and function of eukaryotic ncRNAs and the roles played by these RNAs in chromatin organization, gene expression, and disease etiology.
Collapse
|
45
|
Abstract
Oocytes and sperm are some of the most differentiated cells in our bodies, yet they generate all cell types after fertilization. Accumulating evidence suggests that this extraordinary potential is conferred to germ cells from the time of their formation during embryogenesis. In this Review, we describe common themes emerging from the study of germ cells in vertebrates and invertebrates. Transcriptional repression, chromatin remodeling, and an emphasis on posttranscriptional gene regulation preserve the totipotent genome of germ cells through generations.
Collapse
Affiliation(s)
- Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Bosch TCG. Symmetry breaking in stem cells of the basal metazoan Hydra. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 45:61-78. [PMID: 17585496 DOI: 10.1007/978-3-540-69161-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the earliest diverging animal phyla are the Cnidaria. Cnidaria were not only first in evolution having a tissue layer construction and a nervous system but also have cells of remarkable plasticity in their differentiation capacity. How a cell chooses to proliferate or to differentiate is an important issue in stem cell biology and as critical to human stem cells as it is to any other stem cell. Here I revise the key properties of stem cells in the freshwater polyp Hydra with special emphasis on the nature of signals that control the growth and differentiation of these cells.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
47
|
Checchi PM, Kelly WG. emb-4 is a conserved gene required for efficient germline-specific chromatin remodeling during Caenorhabditis elegans embryogenesis. Genetics 2006; 174:1895-906. [PMID: 17028322 PMCID: PMC1698644 DOI: 10.1534/genetics.106.063701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In C. elegans, germline blastomeres are initially kept transcriptionally quiescent by the maternally loaded CCCH zinc-finger protein PIE-1. PIE-1 disappears upon the birth of the primordial germ cells Z2 and Z3, yet these cells appear to remain quiescent. We have previously demonstrated that there is a chromatin-based repression that succeeds PIE-1 degradation. The chromatin in Z2/Z3 loses certain histone modifications, including histone H3 lysine 4 dimethylation (H3K4me2), a conserved marker for transcriptionally competent chromatin. We find that mutations in the maternal-effect gene emb-4 cause defects in both PIE-1 degradation and germline-specific chromatin remodeling. emb-4 encodes a highly conserved protein with orthologs in fly, mouse, and human and has a subtle role in Notch signaling. The embryonic phenotype of emb-4 is consistent with a defect in the efficient and timely activation of developmental programs, including germline chromatin remodeling. We also find that, as in early somatic blastomeres, the degradation of PIE-1 in Z2/Z3 is facilitated by zinc-finger-interacting protein ZIF-1, and in the absence of either zif-1 or emb-4, PIE-1 is abnormally retained in Z2/Z3.
Collapse
Affiliation(s)
- Paula M Checchi
- Biology Department, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
48
|
Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A. Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 2006; 133:2683-93. [PMID: 16794033 DOI: 10.1242/dev.02446] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell differentiation remains elusive. Using a vasa homolog, CiVH, and other postplasmic components as markers, we found that the postplasm-containing blastomeres, the B7.6 cells, undergo an asymmetric cell division during gastrulation to produce two distinct daughter cells: B8.11 and B8.12. Most of the postplasmic components segregate only into the B8.11 cells, which never coalesce into the gonad. By contrast, the maternal CiVH RNA and protein are specifically distributed into the B8.12 cells, which divide further and are incorporated into the gonad in juveniles. In the B8.12 cells, CiVH production is upregulated from the maternal RNA source, resulting in the formation of perinuclear CiVH granules, which may be the nuage, a hallmark of germ cells in many animal species. We propose that the redistribution of specific maternal molecules into the B8.12 cells is essential for germ-cell specification in ascidians.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Megosh HB, Cox DN, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 2006; 16:1884-94. [PMID: 16949822 DOI: 10.1016/j.cub.2006.08.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/27/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The germ plasm has long been demonstrated to be necessary and sufficient for germline determination, with translational regulation playing a key role in the process. Beyond this, little is known about molecular activities underlying germline determination. RESULTS We report the function of Drosophila PIWI, DICER-1, and dFMRP (Fragile X Mental Retardation Protein) in germline determination. PIWI is a maternal component of the polar granule, a germ-plasm-specific organelle essential for germline specification. Depleting maternal PIWI does not affect OSK or VASA expression or abdominal patterning but leads to failure in pole-plasm maintenance and primordial-germ-cell (PGC) formation, whereas doubling and tripling the maternal piwi dose increases OSK and VASA levels correspondingly and doubles and triples the number of PGCs, respectively. Moreover, PIWI forms a complex with dFMRP and DICER-1, but not with DICER-2, in polar-granule-enriched fractions. Depleting DICER-1, but not DICER-2, also leads to a severe pole-plasm defect and a reduced PGC number. These effects are also seen, albeit to a lesser extent, for dFMRP, another component of the miRISC complex. CONCLUSIONS Because DICER-1 is required for the miRNA pathway and DICER-2 is required for the siRNA pathway yet neither is required for the rasiRNA pathway, our data implicate a crucial role of the PIWI-mediated miRNA pathway in regulating the levels of OSK, VASA, and possibly other genes involved in germline determination in Drosophila.
Collapse
Affiliation(s)
- Heather B Megosh
- Department of Cell Biology and Duke University Medical Center, Durham, North Carolina 27705, USA
| | | | | | | |
Collapse
|
50
|
McGurk CJ, Cummings M, Köberle B, Hartley JA, Oliver RT, Masters JR. Regulation of DNA repair gene expression in human cancer cell lines. J Cell Biochem 2006; 97:1121-36. [PMID: 16315315 DOI: 10.1002/jcb.20711] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although most advanced cancers are incurable, the majority of testicular germ cell tumors can be cured using cisplatin-based combination chemotherapy. The nucleotide excision repair (NER) pathway removes most DNA adducts produced by cisplatin, and the low levels of NER in testis tumor cells may explain why these cancers are curable. Three NER proteins: ERCC1, XPF, and XPA, are present at low levels in testis tumor cell lines, and addition of these proteins to protein extracts of testis tumor cells increases their in vitro DNA repair capacity to normal levels. The aim of this study was to identify the mechanism responsible for the low levels of these DNA repair proteins. The levels of the mRNA transcripts for ERCC1, XPF, and XPA were measured in a panel of 14 different human cancer cell lines, using real-time PCR. Three ERCC1 splice variants were identified and quantitated. Three alternative transcription start points (TSPs) were identified for ERCC1 but none were testis-specific. The significantly lower levels of ERCC1, XPF, and XPA protein in testis tumor cell lines cannot be explained solely by differences in transcriptional efficiency or mRNA stability. For ERCC1, post-transcriptional control by alternative splicing does not account for the testis-specific low levels of protein expression. Pulse-chase experiments showed that the half-life of ERCC1 protein in a testis tumor cell line was not significantly different to that in a prostate cancer cell line. Taken together, these results suggest that constitutive levels of these DNA repair proteins are controlled at the level of translation.
Collapse
Affiliation(s)
- Claire J McGurk
- Prostate Cancer Research Centre, Institute of Urology, UCL, 3rd Floor Research Laboratories, London, W1W 7EJ, United Kingdom
| | | | | | | | | | | |
Collapse
|