1
|
González-Vidal A, Mercado-Sáenz S, Burgos-Molina AM, Alamilla-Presuel JC, Alcaraz M, Sendra-Portero F, Ruiz-Gómez MJ. Molecular Mechanisms of Resistance to Ionizing Radiation in S. cerevisiae and Its Relationship with Aging, Oxidative Stress, and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1690. [PMID: 37759994 PMCID: PMC10525530 DOI: 10.3390/antiox12091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The repair of the damage produced to the genome and proteome by the action of ionizing radiation, oxidizing agents, and during aging is important to maintain cellular homeostasis. Many of the metabolic pathways influence multiple processes. In this way, this work aims to study the relationship between resistance/response to ionizing radiation, cellular aging, and the response mechanisms to oxidative stress, free radicals, reactive oxygen species (ROS), and antioxidant activity in the yeast S. cerevisiae. Systems biology allows us to use tools that reveal the molecular mechanisms common to different cellular response phenomena. The results found indicate that homologous recombination, non-homologous end joining, and base excision repair pathways are the most important common processes necessary to maintain cellular homeostasis. The metabolic routes of longevity regulation are those that jointly contribute to the three phenomena studied. This study proposes eleven common biomarkers for response/resistance to ionizing radiation and aging (EXO1, MEC1, MRE11, RAD27, RAD50, RAD51, RAD52, RAD55, RAD9, SGS1, YKU70) and two biomarkers for response/resistance to radiation and oxidative stress, free radicals, ROS, and antioxidant activity (NTG1, OGG1). In addition, it is important to highlight that the HSP104 protein could be a good biomarker common to the three phenomena studied.
Collapse
Affiliation(s)
- Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| | - Silvia Mercado-Sáenz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Físico Deportiva, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio M. Burgos-Molina
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan C. Alamilla-Presuel
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
| | - Miguel Alcaraz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain;
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| | - Miguel J. Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| |
Collapse
|
2
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
3
|
Hirth G, Svensson CM, Böttcher K, Ullrich S, Figge MT, Jungnickel B. Regulation of the Germinal Center Reaction and Somatic Hypermutation Dynamics by Homologous Recombination. THE JOURNAL OF IMMUNOLOGY 2019; 203:1493-1501. [DOI: 10.4049/jimmunol.1900483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
4
|
SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proc Natl Acad Sci U S A 2018; 115:12793-12798. [PMID: 30487218 DOI: 10.1073/pnas.1716349115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1 -/- /PIAS4 -/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1 -/- /PIAS4 -/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNA K164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1 -/- /PIAS4 -/- cells. This epistatic relationship between the PCNA K164R/K164R and the PIAS1 -/- /PIAS4 -/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1 -/- /PIAS4 -/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.
Collapse
|
5
|
Saha LK, Kim S, Kang H, Akter S, Choi K, Sakuma T, Yamamoto T, Sasanuma H, Hirota K, Nakamura J, Honma M, Takeda S, Dertinger S. Differential micronucleus frequency in isogenic human cells deficient in DNA repair pathways is a valuable indicator for evaluating genotoxic agents and their genotoxic mechanisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:529-538. [PMID: 29761828 DOI: 10.1002/em.22201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The micronucleus (MN) test has become an attractive tool both for evaluating the genotoxicity of test chemicals because of its ability to detect clastogenic and aneugenic events and for its convenience. As the MN assay has been mostly performed using only DNA repair-proficient mammalian cells, we believed that the comparison of the MN frequency between DNA repair-proficient and -deficient human cells may be an excellent indicator for detecting the genotoxic potential of test chemicals and for understanding their mode of action. To address this issue, the following five genes encoding DNA-damage-response (DDR) factors were disrupted in the TK6 B cell line, a human cell line widely used for the MN test: FANCD2, DNA polymerase ζ (REV3), XRCC1, RAD54, and/or LIG4. Using these isogenic TK6 cell lines, the MN test was conducted for four widely-used DNA-damaging agents: methyl methanesulfonate (MMS), hydrogen peroxide (H2 O2 ), γ-rays, and mitomycin C (MMC). The frequency of micronuclei in the double strand break repair-deficient RAD54-/- /LIG4-/- cells after exposure to γ-rays, H2 O2 , MMS and MMC was 6.2-7.5 times higher than that of parental wild-type TK6 cells. The percentages of cells exhibiting micronuclei in the base excision repair- and single strand break repair-deficient XRCC1-/- cells after exposure to H2 O2 , MMC and MMS were all ∼5 times higher than those of wild-type cells. In summary, a supplementary MN assay using the combination of RAD54-/- /LIG4-/- , XRCC1-/- and wild-type TK6 cells is a promising method for detecting the genotoxic potential of test chemicals and their mode of action. Environ. Mol. Mutagen., 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sujin Kim
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Habyeong Kang
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Salma Akter
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kyungho Choi
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Nakamura
- Department of Laboratory Animal Science, School of Veterinary Science, Osaka Prefecture University, Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | | |
Collapse
|
6
|
Nakazato A, Kajita K, Ooka M, Akagawa R, Abe T, Takeda S, Branzei D, Hirota K. SPARTAN promotes genetic diversification of the immunoglobulin-variable gene locus in avian DT40 cells. DNA Repair (Amst) 2018; 68:50-57. [PMID: 29935364 DOI: 10.1016/j.dnarep.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022]
Abstract
Prolonged replication arrest on damaged templates is a cause of fork collapse, potentially resulting in genome instability. Arrested replication is rescued by translesion DNA synthesis (TLS) and homologous recombination (HR)-mediated template switching. SPARTAN, a ubiquitin-PCNA-interacting regulator, regulates TLS via mechanisms incompletely understood. Here we show that SPARTAN promotes diversification of the chicken DT40 immunoglobulin-variable λ gene by facilitating TLS-mediated hypermutation and template switch-mediated gene-conversion, both induced by replication blocks at abasic sites. SPARTAN-/- and SPARTAN-/-/Polη-/-/Polζ-/- cells showed defective and similar decrease in hypermutation rates, as well as alterations in the mutation spectra, with decreased dG-to-dC transversions and increased dG-to-dA transitions. Strikingly, SPARTAN-/- cells also showed reduced template switch-mediated gene-conversion at the immunoglobulin locus, while being proficient in HR-mediated double strand break repair, and sister chromatid recombination. Notably, SPARTAN's ubiquitin-binding zinc-finger 4 domain, but not the PCNA interacting peptide domain or its DNA-binding domain, was specifically required for the promotion of immunoglobulin gene-conversion, while all these three domains were shown to contribute similarly to TLS. In all, our results suggest that SPARTAN mediates TLS in concert with the Polη-Polζ pathway and that it facilitates HR-mediated template switching at a subset of stalled replication forks, potentially by interacting with unknown ubiquitinated proteins.
Collapse
Affiliation(s)
- Arisa Nakazato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kinumi Kajita
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Dana Branzei
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Liu Y, Wu X, Hu X, Chen Z, Liu H, Takeda S, Qing Y. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage. Toxicol In Vitro 2017; 42:130-138. [PMID: 28431926 DOI: 10.1016/j.tiv.2017.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1-/-, base excision repair (BER) deficient cell lines of Polβ-/-, homologous recombination (HR) mutants of Brca1-/- and Brca2-/- and translesion DNA synthesis (TLS) mutants of Rev3-/- and Rad18-/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaoqing Hu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyuan Chen
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Jiang L, Wu X, He F, Liu Y, Hu X, Takeda S, Qing Y. Genetic Evidence for Genotoxic Effect of Entecavir, an Anti-Hepatitis B Virus Nucleotide Analog. PLoS One 2016; 11:e0147440. [PMID: 26800464 PMCID: PMC4723259 DOI: 10.1371/journal.pone.0147440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
Nucleoside analogues (NAs) have been the most frequently used treatment option for chronic hepatitis B patients. However, they may have genotoxic potentials due to their interference with nucleic acid metabolism. Entecavir, a deoxyguanosine analog, is one of the most widely used oral antiviral NAs against hepatitis B virus. It has reported that entecavir gave positive responses in both genotoxicity and carcinogenicity assays. However the genotoxic mechanism of entecavir remains elusive. To evaluate the genotoxic mechanisms, we analyzed the effect of entecavir on a panel of chicken DT40 B-lymphocyte isogenic mutant cell line deficient in DNA repair and damage tolerance pathways. Our results showed that Parp1-/- mutant cells defective in single-strand break (SSB) repair were the most sensitive to entecavir. Brca1-/-, Ubc13-/- and translesion-DNA-synthesis deficient cells including Rad18-/- and Rev3-/- were hypersensitive to entecavir. XPA-/- mutant deficient in nucleotide excision repair was also slightly sensitive to entecavir. γ-H2AX foci forming assay confirmed the existence of DNA damage by entecavir in Parp1-/-, Rad18-/- and Brca1-/- mutants. Karyotype assay further showed entecavir-induced chromosomal aberrations, especially the chromosome gaps in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- cells when compared with wild-type cells. These genetic comprehensive studies clearly identified the genotoxic potentials of entecavir and suggested that SSB and postreplication repair pathways may suppress entecavir-induced genotoxicity.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaohua Wu
- Regenerative Medicine Research Center, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fang He
- Center of Infectious Diseases, Division of Molecular Biology of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Liu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoqing Hu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | - Yong Qing
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Ishino Y, Narumi I. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 2015; 25:103-12. [PMID: 26056771 DOI: 10.1016/j.mib.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The genome of a living cell is continuously under attack by exogenous and endogenous genotoxins. Especially, life at high temperature inflicts additional stress on genomic DNA, and very high rates of potentially mutagenic DNA lesions, including deamination, depurination, and oxidation, are expected. However, the spontaneous mutation rates in hyperthermophiles are similar to that in Escherichia coli, and it is interesting to determine how the hyperthermophiles preserve their genomes under such grueling environmental conditions. In addition, organisms with extremely radioresistant phenotypes are targets for investigating special DNA repair mechanisms in extreme environments. Multiple DNA repair mechanisms have evolved in all organisms to ensure genomic stability, by preventing impediments that result in genome destabilizing lesions.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
10
|
Yamada M, Masai H, Bartek J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 2014; 13:1859-66. [PMID: 24841992 DOI: 10.4161/cc.29251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cdc7 (cell division cycle 7) kinase together with its activation subunit ASK (also known as Dbf4) play pivotal roles in DNA replication and contribute also to other aspects of DNA metabolism such as DNA repair and recombination. While the biological significance of Cdc7 is widely appreciated, the molecular mechanisms through which Cdc7 kinase regulates these various DNA transactions remain largely obscure, including the role of Cdc7-ASK/Dbf4 under replication stress, a condition associated with diverse (patho)physiological scenarios. In this review, we first highlight the recent findings on a novel pathway that regulates the stability of the human Cdc7-ASK/Dbf4 complex under replication stress, its interplay with ATR-Chk1 signaling, and significance in the RAD18-dependent DNA damage bypass pathway. We also consider Cdc7 function in a broader context, considering both physiological conditions and pathologies associated with enhanced replication stress, particularly oncogenic transformation and tumorigenesis. Furthermore, we integrate the emerging evidence and propose a concept of Cdc7-ASK/Dbf4 contributing to genome integrity maintenance, through interplay with RAD18 that can serve as a molecular switch to dictate DNA repair pathway choice. Finally, we discuss the possibility of targeting Cdc7, particularly in the context of the Cdc7/RAD18-dependent translesion synthesis, as a potential innovative strategy for treatment of cancer.
Collapse
Affiliation(s)
- Masayuki Yamada
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic
| | - Hisao Masai
- Genome Dynamics Project; Department of Genome Medicine; Tokyo Metropolitan Institute of Medical Science; Tokyo, Japan
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine; Faculty of Medicine and Dentistry; Palacky University; Olomouc, Czech Republic; Danish Cancer Society Research Center; Copenhagen, Denmark
| |
Collapse
|
11
|
HU XIAOJUAN, WU XIAOHUA, HUANG YUNFEI, TONG QINGYI, TAKEDA SHUNICHI, QING YONG. Berberine induces double-strand DNA breaks in Rev3 deficient cells. Mol Med Rep 2014; 9:1883-8. [DOI: 10.3892/mmr.2014.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/07/2014] [Indexed: 11/06/2022] Open
|
12
|
Juhasz S, Balogh D, Hajdu I, Burkovics P, Villamil MA, Zhuang Z, Haracska L. Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res 2012; 40:10795-808. [PMID: 22987070 PMCID: PMC3510514 DOI: 10.1093/nar/gks850] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork
collapse, increased mutagenesis and genomic instability. Replication through DNA lesions
depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA),
which enable translesion synthesis (TLS) and template switching, respectively. A proper
replication fork rescue is ensured by the dynamic ubiquitylation and deubiquitylation of
PCNA; however, as yet, little is known about its regulation. Here, we show that human
Spartan/C1orf124 protein provides a higher cellular level of ubiquitylated-PCNA by which
it regulates the choice of DNA damage tolerance pathways. We find that Spartan is
recruited to sites of replication stress, a process that depends on its PCNA- and
ubiquitin-interacting domains and the RAD18 PCNA ubiquitin ligase. Preferential
association of Spartan with ubiquitin-modified PCNA protects against PCNA deubiquitylation
by ubiquitin-specific protease 1 and facilitates the access of a TLS polymerase to the
replication fork. In concert, depletion of Spartan leads to increased sensitivity to DNA
damaging agents and causes elevated levels of sister chromatid exchanges. We propose that
Spartan promotes genomic stability by regulating the choice of rescue of stalled
replication fork, whose mechanism includes its interaction with ubiquitin-conjugated PCNA
and protection against PCNA deubiquitylation.
Collapse
Affiliation(s)
- Szilvia Juhasz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhong J, Liao J, Liu X, Wang P, Liu J, Hou W, Zhu B, Yao L, Wang J, Li J, Stark JM, Xie Y, Xu X. Protein phosphatase PP6 is required for homology-directed repair of DNA double-strand breaks. Cell Cycle 2011; 10:1411-9. [PMID: 21451261 DOI: 10.4161/cc.10.9.15479] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most lethal lesions associated with genome stability which, when destabilized, predisposes organs to cancers. DSBs are primarily fixed either with little fidelity by non-homologous end joining (NHEJ) repair or with high fidelity by homology-directed repair (HDR). The phosphorylated form of H2AX on serine 139 (γ-H2AX) is a marker of DSBs. In this study, we explored if the protein phosphatase PP6 is involved in DSB repair by depletion of its expression in human cancer cell lines, and determined PP6 expression in human breast cancer tissues by immunohistochemistry staining. We found that bacterially-produced PP6c (the catalytic subunit of PP6)-containing heterotrimeric combinations exhibit phosphatase activity against γ-H2AX in the in vitro phosphatase assays. Depletion of PP6c or PP6R2 led to persistent high levels of γ-H2AX after DNA damage and a defective HDR. Chromatin immunoprecipitation assays demonstrated that PP6c was recruited to the region adjacent to the DSB sites. Expression of PP6c, PP6R2, and PP6R3 in human breast tumors was significantly lower than those in benign breast diseases. Taken together, our results suggest that γ-H2AX is a physiological substrate of PP6, and PP6 is required for HDR and its expression may harbor a protective role during the development of breast cancer.
Collapse
Affiliation(s)
- Jianing Zhong
- Laboratory of Cancer Biology, College of Life Sciences, Capital Normal University, Bejing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hirota K, Sonoda E, Kawamoto T, Motegi A, Masutani C, Hanaoka F, Szüts D, Iwai S, Sale JE, Lehmann A, Takeda S. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLoS Genet 2010; 6. [PMID: 20949111 PMCID: PMC2951353 DOI: 10.1371/journal.pgen.1001151] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/08/2010] [Indexed: 12/18/2022] Open
Abstract
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells. DNA replication is a fragile biochemical reaction, as the replicative DNA polymerases are readily stalled by DNA lesions. The resulting replication blockage is released by translesion DNA synthesis (TLS), which employs specialized TLS polymerases to bypass DNA lesions. There are at least seven TLS polymerases known in vertebrates. However, how they cooperate in vivo remains one of central questions in the field. We analyzed this functional interaction by genetically disrupting two of major TLS polymerases, Polη and Polζ, in the unique genetic model organism, chicken DT40 cells. Currently, it is widely believed that Polη plays a very specific role in cellular tolerance to ultraviolet light–induced DNA damage. Polζ, on the other hand, plays a key role in cellular tolerance to a very wide range of DNA–damaging agents, as POLζ−/− cells are hypersensitivity to a number of DNA damaging agents. Our phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells. The genetic interaction shown here reveals a previously unappreciated role of human Polη in cellular response to a wide variety of DNA lesions and two-step collaborative action of Polymerase η and ζ.
Collapse
Affiliation(s)
- Kouji Hirota
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuo Kawamoto
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Motegi
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chikahide Masutani
- Solution-Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumio Hanaoka
- Solution-Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Dávid Szüts
- St. George's, University of London, London, United Kingdom
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
15
|
Capp JP, Boudsocq F, Bergoglio V, Trouche D, Cazaux C, Blanco L, Hoffmann JS, Canitrot Y. The R438W polymorphism of human DNA polymerase lambda triggers cellular sensitivity to camptothecin by compromising the homologous recombination repair pathway. Carcinogenesis 2010; 31:1742-7. [DOI: 10.1093/carcin/bgq166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Chailleux C, Tyteca S, Papin C, Boudsocq F, Puget N, Courilleau C, Grigoriev M, Canitrot Y, Trouche D. Physical interaction between the histone acetyl transferase Tip60 and the DNA double-strand breaks sensor MRN complex. Biochem J 2010; 426:365-71. [PMID: 20070254 DOI: 10.1042/bj20091329] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chromatin modifications and chromatin-modifying enzymes are believed to play a major role in the process of DNA repair. The histone acetyl transferase Tip60 is physically recruited to DNA DSBs (double-strand breaks) where it mediates histone acetylation. In the present study, we show, using a reporter system in mammalian cells, that Tip60 expression is required for homology-driven repair, strongly suggesting that Tip60 participates in DNA DSB repair through homologous recombination. Moreover, Tip60 depletion inhibits the formation of Rad50 foci following ionizing radiation, indicating that Tip60 expression is necessary for the recruitment of the DNA damage sensor MRN (Mre11-Rad50-Nbs1) complex to DNA DSBs. Moreover, we found that endogenous Tip60 physically interacts with endogenous MRN proteins in a complex which is distinct from the classical Tip60 complex. Taken together, our results describe a physical link between a DNA damage sensor and a histone-modifying enzyme, and provide important new insights into the role and mechanism of action of Tip60 in the process of DNA DSB repair.
Collapse
Affiliation(s)
- Catherine Chailleux
- LBCMCP, CNRS and University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asagoshi K, Tano K, Chastain PD, Adachi N, Sonoda E, Kikuchi K, Koyama H, Nagata K, Kaufman DG, Takeda S, Wilson SH, Watanabe M, Swenberg JA, Nakamura J. FEN1 functions in long patch base excision repair under conditions of oxidative stress in vertebrate cells. Mol Cancer Res 2010; 8:204-15. [PMID: 20145043 DOI: 10.1158/1541-7786.mcr-09-0253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From in vitro studies, flap endonuclease 1 (FEN1) has been proposed to play a role in the long patch (LP) base excision repair (BER) subpathway. Yet the role of FEN1 in BER in the context of the living vertebrate cell has not been thoroughly explored. In the present study, we cloned a DT40 chicken cell line with a deletion in the FEN1 gene and found that these FEN1-deficient cells exhibited hypersensitivity to H(2)O(2). This oxidant produces genotoxic lesions that are repaired by BER, suggesting that the cells have a deficiency in BER affecting survival. In experiments with extracts from the isogenic FEN1 null and wild-type cell lines, the LP-BER activity of FEN1 null cells was deficient, whereas repair by the single-nucleotide BER subpathway was normal. Other consequences of the FEN1 deficiency were also evaluated. These results illustrate that FEN1 plays a role in LP-BER in higher eukaryotes, presumably by processing the flap-containing intermediates of BER.
Collapse
Affiliation(s)
- Kenjiro Asagoshi
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res 2009; 37:3531-44. [PMID: 19357093 PMCID: PMC2699502 DOI: 10.1093/nar/gkp214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction-modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.
Collapse
Affiliation(s)
- Ken Ishikawa
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
19
|
Brondello JM, Pillaire MJ, Rodriguez C, Gourraud PA, Selves J, Cazaux C, Piette J. Novel evidences for a tumor suppressor role of Rev3, the catalytic subunit of Pol zeta. Oncogene 2008; 27:6093-101. [PMID: 18622427 DOI: 10.1038/onc.2008.212] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell cycle checkpoints and DNA repair act in concert to ensure DNA integrity during perturbation of normal replication or in response to genotoxic agents. Deficiencies in these protective mechanisms can lead to cellular transformation and ultimately tumorigenesis. Here we focused on Rev3, the catalytic subunit of the low-fidelity DNA repair polymerase zeta. Rev3 is believed to play a role in double-strand break (DSB)-induced DNA repair by homologous recombination. In line with this hypothesis, we show the accumulation of chromatin-bound Rev3 protein in late S-G2 of untreated cells and in response to clastogenic DNA damage as well as an gamma-H2AX accumulation in Rev3-depleted cells. Moreover, serine 995 of Rev3 is in vitro phosphorylated by the DSB-inducible checkpoint kinase, Chk2. Our data also disclose a significant reduction of rev3 gene expression in 74 colon carcinomas when compared to the normal adjacent tissues. This reduced expression is independent of the carcinoma stages, suggesting that the downregulation of rev3 might have occurred early during tumorigenesis.
Collapse
Affiliation(s)
- J-M Brondello
- Centre Régional de Cancérologie de Montpellier (INSERM-Université de Montpellier I Unité 868) Identité et Plasticité Tumorale, CRCM Val d'Aurelle-Lamarque, Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Liao S, Matsumoto Y, Yan H. Biochemical reconstitution of abasic DNA lesion replication in Xenopus extracts. Nucleic Acids Res 2007; 35:5422-9. [PMID: 17702761 PMCID: PMC2018634 DOI: 10.1093/nar/gkm552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/07/2007] [Accepted: 07/08/2007] [Indexed: 11/15/2022] Open
Abstract
Cellular DNA is under constant attack from numerous exogenous and endogenous agents. The resulting DNA lesions, if not repaired timely, could stall DNA replication, leading to genome instability. To better understand the mechanism of DNA lesion replication at the biochemical level, we have attempted to reconstitute this process in Xenopus egg extracts, the only eukaryotic in vitro system that relies solely on cellular proteins for DNA replication. By using a plasmid DNA that carries a site-specific apurinic/apyrimidinic (AP) lesion as template, we have found that DNA replication is stalled one nucleotide before the lesion. The stalling is temporary and the lesion is eventually replicated by both an error-prone mechanism and an error-free mechanism. This is the first biochemical system that recapitulates efficiently and faithfully all major aspects of DNA lesion replication. It has provided the first direct evidence for the existence of an error-free lesion replication mechanism and also demonstrated that the error-prone mechanism is a major contributor to lesion replication.
Collapse
Affiliation(s)
| | | | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
21
|
Wood A, Garg P, Burgers PMJ. A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 2007; 282:20256-63. [PMID: 17517887 DOI: 10.1074/jbc.m702366200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During normal DNA replication, the proliferating cell nuclear antigen (PCNA) enhances the processivity of DNA polymerases at the replication fork. When DNA damage is encountered, PCNA is monoubiquitinated on Lys-164 by the Rad6-Rad18 complex as the initiating step of translesion synthesis. DNA damage bypass by the translesion synthesis polymerase Rev1 is enhanced by the presence of ubiquitinated PCNA. Here we have carried out a mutational analysis of Rev1, and we have identified the functional domain in the C terminus of Rev1 that mediates interactions with PCNA. We show that a unique motif within this domain binds the ubiquitin moiety of ubiquitinated PCNA. Point mutations within this ubiquitin-binding motif of Rev1 (L821A,P822A,I825A) abolish its functional interaction with ubiquitinated PCNA in vitro and strongly attenuate damage-induced mutagenesis in vivo. Taken together, these studies suggest a specific mechanism by which the interaction between Rev1 and ubiquitinated PCNA is stabilized during the DNA damage response.
Collapse
Affiliation(s)
- Adam Wood
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
22
|
Kohzaki M, Hatanaka A, Sonoda E, Yamazoe M, Kikuchi K, Vu Trung N, Szüts D, Sale JE, Shinagawa H, Watanabe M, Takeda S. Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse. Mol Cell Biol 2007; 27:2812-20. [PMID: 17283053 PMCID: PMC1899948 DOI: 10.1128/mcb.02043-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fbh1 (F-box DNA helicase 1) orthologues are conserved from Schizosaccharomyces pombe to chickens and humans. Here, we report the disruption of the FBH1 gene in DT40 cells. Although the yeast fbh1 mutant shows an increase in sensitivity to DNA damaging agents, FBH1(-)(/)(-) DT40 clones show no prominent sensitivity, suggesting that the loss of FBH1 might be compensated by other genes. However, FBH1(-)(/)(-) cells exhibit increases in both sister chromatid exchange and the formation of radial structures between homologous chromosomes without showing a defect in homologous recombination. This phenotype is reminiscent of BLM(-)(/)(-) cells and suggests that Fbh1 may be involved in preventing extensive strand exchange during homologous recombination. In addition, disruption of RAD54, a major homologous recombination factor in FBH1(-)(/)(-) cells, results in a marked increase in chromosome-type breaks (breaks on both sister chromatids at the same place) following replication fork arrest. Further, FBH1BLM cells showed additive increases in both sister chromatid exchange and the formation of radial chromosomes. These data suggest that Fbh1 acts in parallel with Bloom helicase to control recombination-mediated double-strand-break repair at replication blocks and to reduce the frequency of crossover.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saberi A, Hochegger H, Szuts D, Lan L, Yasui A, Sale JE, Taniguchi Y, Murakawa Y, Zeng W, Yokomori K, Helleday T, Teraoka H, Arakawa H, Buerstedde JM, Takeda S. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol Cell Biol 2007; 27:2562-71. [PMID: 17242200 PMCID: PMC1899888 DOI: 10.1128/mcb.01243-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Saccharomyces cerevisiae RAD18 gene is essential for postreplication repair but is not required for homologous recombination (HR), which is the major double-strand break (DSB) repair pathway in yeast. Accordingly, yeast rad18 mutants are tolerant of camptothecin (CPT), a topoisomerase I inhibitor, which induces DSBs by blocking replication. Surprisingly, mammalian cells and chicken DT40 cells deficient in Rad18 display reduced HR-dependent repair and are hypersensitive to CPT. Deletion of nonhomologous end joining (NHEJ), a major DSB repair pathway in vertebrates, in rad18-deficient DT40 cells completely restored HR-mediated DSB repair, suggesting that vertebrate Rad18 regulates the balance between NHEJ and HR. We previously reported that loss of NHEJ normalized the CPT sensitivity of cells deficient in poly(ADP-ribose) polymerase 1 (PARP1). Concomitant deletion of Rad18 and PARP1 synergistically increased CPT sensitivity, and additional inactivation of NHEJ normalized this hypersensitivity, indicating their parallel actions. In conclusion, higher-eukaryotic cells separately employ PARP1 and Rad18 to suppress the toxic effects of NHEJ during the HR reaction at stalled replication forks.
Collapse
Affiliation(s)
- Alihossein Saberi
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sonoda E, Zhao GY, Kohzaki M, Dhar PK, Kikuchi K, Redon C, Pilch DR, Bonner WM, Nakano A, Watanabe M, Nakayama T, Takeda S, Takami Y. Collaborative roles of gammaH2AX and the Rad51 paralog Xrcc3 in homologous recombinational repair. DNA Repair (Amst) 2006; 6:280-92. [PMID: 17123873 DOI: 10.1016/j.dnarep.2006.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/29/2006] [Accepted: 10/19/2006] [Indexed: 01/05/2023]
Abstract
One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity. H2AX(-/S139A) cells exhibited defective homologous recombinational repair (HR) as manifested by delayed Rad51 focus formation following ionizing radiation (IR) and hypersensitivity to the topoisomerase I inhibitor, camptothecin (CPT), which causes DSBs at replication blockage. Deletion of the Rad51 paralog gene, XRCC3, also delays Rad51 focus formation. To test the interaction of Xrcc3 and gammaH2AX, we disrupted XRCC3 in H2AX(-/S139A) cells. XRCC3(-/-)/H2AX(-/S139A) mutants were not viable, although this synthetic lethality was reversed by inserting a transgene that conditionally expresses wild-type H2AX. Upon repression of the wild-type H2AX transgene, XRCC3(-/-)/H2AX(-/S139A) cells failed to form Rad51 foci and exhibited markedly increased levels of chromosomal aberrations after CPT treatment. These results indicate that H2AX and XRCC3 act in separate arms of a branched pathway to facilitate Rad51 assembly.
Collapse
Affiliation(s)
- Eiichiro Sonoda
- CREST Laboratory, Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yoshimura M, Kohzaki M, Nakamura J, Asagoshi K, Sonoda E, Hou E, Prasad R, Wilson SH, Tano K, Yasui A, Lan L, Seki M, Wood RD, Arakawa H, Buerstedde JM, Hochegger H, Okada T, Hiraoka M, Takeda S. Vertebrate POLQ and POLbeta cooperate in base excision repair of oxidative DNA damage. Mol Cell 2006; 24:115-25. [PMID: 17018297 PMCID: PMC1868411 DOI: 10.1016/j.molcel.2006.07.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/02/2006] [Accepted: 07/28/2006] [Indexed: 01/01/2023]
Abstract
Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H(2)O(2), but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLbeta. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLbeta, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLbeta share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER.
Collapse
Affiliation(s)
- Michio Yoshimura
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507
| | - Masaoki Kohzaki
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Research Reactor Institute, Kyoto University, 2 Asashironishi, Kumatoricho, Sennan-gun, Osaka 590-0494, Japan
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kenjiro Asagoshi
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Eiichiro Sonoda
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
| | - Esther Hou
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Samuel H. Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Keizo Tano
- Research Reactor Institute, Kyoto University, 2 Asashironishi, Kumatoricho, Sennan-gun, Osaka 590-0494, Japan
| | - Akira Yasui
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | - Li Lan
- Department of Molecular Genetics, Institute of Development, Aging, and Cancer, Tohoku University, Seiryomachi 4-1, Sendai 980-8575, Japan
| | - Mineaki Seki
- University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Research Pavilion Suite 2.6, Pittsburgh, Pennsylvania 15213
| | - Richard D. Wood
- University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Research Pavilion Suite 2.6, Pittsburgh, Pennsylvania 15213
| | - Hiroshi Arakawa
- Institute of Molecular Radiobiology, GSF, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Munich, Germany
| | - Jean-Marie Buerstedde
- Institute of Molecular Radiobiology, GSF, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Munich, Germany
| | - Helfrid Hochegger
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
| | - Takashi Okada
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507
| | - Shunichi Takeda
- Department of Radiation Genetics, CREST, Japan Science and Technology Laboratory, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501
- *Correspondence:
| |
Collapse
|
26
|
Kanagaraj R, Saydam N, Garcia PL, Zheng L, Janscak P. Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res 2006; 34:5217-31. [PMID: 17003056 PMCID: PMC1635296 DOI: 10.1093/nar/gkl677] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of the human RECQ5beta helicase in the maintenance of genomic stability remains elusive. Here we show that RECQ5beta promotes strand exchange between arms of synthetic forked DNA structures resembling a stalled replication fork in a reaction dependent on ATP hydrolysis. BLM and WRN can also promote strand exchange on these structures. However, in the presence of human replication protein A (hRPA), the action of these RecQ-type helicases is strongly biased towards unwinding of the parental duplex, an effect not seen with RECQ5beta. A domain within the non-conserved portion of RECQ5beta is identified as being important for its ability to unwind the lagging-strand arm and to promote strand exchange on hRPA-coated forked structures. We also show that RECQ5beta associates with DNA replication factories in S phase nuclei and persists at the sites of stalled replication forks after exposure of cells to UV irradiation. Moreover, RECQ5beta is found to physically interact with the polymerase processivity factor proliferating cell nuclear antigen in vitro and in vivo. Collectively, these findings suggest that RECQ5beta may promote regression of stalled replication forks to facilitate the bypass of replication-blocking lesions by template-switching. Loss of such activity could explain the elevated level of mitotic crossovers observed in RECQ5beta-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | - Pavel Janscak
- To whom correspondence should be addressed. Tel: +41 44 635 3470; Fax: +41 44 635 3484;
| |
Collapse
|
27
|
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 2006; 5:1021-9. [PMID: 16807135 DOI: 10.1016/j.dnarep.2006.05.022] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of DNA double strand breaks (DSBs) plays a critical role in the maintenance of the genome. DSB arise frequently as a consequence of replication fork stalling and also due to the attack of exogenous agents. Repair of broken DNA is essential for survival. Two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to deal with these lesions, and are conserved from yeast to vertebrates. Despite the conservation of these pathways, their relative contribution to DSB repair varies greatly between these two species. HR plays a dominant role in any DSB repair in yeast, whereas NHEJ significantly contributes to DSB repair in vertebrates. This active NHEJ requires a regulatory mechanism to choose HR or NHEJ in vertebrate cells. In this review, we illustrate how HR and NHEJ are differentially regulated depending on the phase of cell cycle and on the nature of the DSB.
Collapse
Affiliation(s)
- Eiichiro Sonoda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe Yoshida, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Capp JP, Boudsocq F, Bertrand P, Laroche-Clary A, Pourquier P, Lopez BS, Cazaux C, Hoffmann JS, Canitrot Y. The DNA polymerase lambda is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells. Nucleic Acids Res 2006; 34:2998-3007. [PMID: 16738138 PMCID: PMC1474058 DOI: 10.1093/nar/gkl380] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.
Collapse
Affiliation(s)
| | | | - Pascale Bertrand
- Département de Radiobiologie et Radiopathologie60-68 avenue Général Leclerc, UMR 217 CNRS-CEA, 92265 Fontenay aux Roses cedex, France
| | | | - Philippe Pourquier
- Institut BergoniéINSERM E437, 229 cours de l'Argonne, 33076 Bordeaux, France
| | - Bernard S. Lopez
- Département de Radiobiologie et Radiopathologie60-68 avenue Général Leclerc, UMR 217 CNRS-CEA, 92265 Fontenay aux Roses cedex, France
| | | | - Jean-Sébastien Hoffmann
- Correspondence may also be addressed to Jean-Sébastien Hoffmann. Tel: +33 5 61 17 59 75; Fax: +33 5 61 17 59 94;
| | - Yvan Canitrot
- To whom correspondence should be addressed: Tel: +33 5 61 17 5861; Fax: +33 5 61 17 5994;
| |
Collapse
|
29
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
30
|
Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M, Orelli BJ, Bishop DK, Hirano S, Ohzeki M, Ishiai M, Yamamoto K, Takata M, Arakawa H, Buerstedde JM, Yamazoe M, Kawamoto T, Araki K, Takahashi JA, Hashimoto N, Takeda S, Sonoda E. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res 2006; 65:11704-11. [PMID: 16357182 DOI: 10.1158/0008-5472.can-05-1214] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.
Collapse
|
31
|
Andreassen PR, Ho GPH, D'Andrea AD. DNA damage responses and their many interactions with the replication fork. Carcinogenesis 2006; 27:883-92. [PMID: 16490739 DOI: 10.1093/carcin/bgi319] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cellular response to DNA damage is composed of cell cycle checkpoint and DNA repair mechanisms that serve to ensure proper replication of the genome prior to cell division. The function of the DNA damage response during DNA replication in S-phase is critical to this process. Recent evidence has suggested a number of interrelationships of DNA replication and cellular DNA damage responses. These include S-phase checkpoints which suppress replication initiation or elongation in response to DNA damage. Also, many components of the DNA damage response are required either for the stabilization of, or for restarting, stalled replication forks. Further, translesion synthesis permits DNA replication to proceed in the presence of DNA damage and can be coordinated with subsequent repair by homologous recombination (HR). Finally, cohesion of sister chromatids is established coincident with DNA replication and is required for subsequent DNA repair by homologous recombination. Here we review these processes, all of which occur at, or are related to, the advancing replication fork. We speculate that these multiple interdependencies of DNA replication and DNA damage responses integrate the many steps necessary to ensure accurate duplication of the genome.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
32
|
Wu X, Takenaka K, Sonoda E, Hochegger H, Kawanishi S, Kawamoto T, Takeda S, Yamazoe M. Critical roles for polymerase zeta in cellular tolerance to nitric oxide-induced DNA damage. Cancer Res 2006; 66:748-54. [PMID: 16424005 DOI: 10.1158/0008-5472.can-05-2884] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO), a signal transmitter involved in inflammation and regulation of smooth muscle and neurons, seems to cause mutagenesis, but its mechanisms have remained elusive. To gain an insight into NO-induced genotoxicity, we analyzed the effect of NO on a panel of chicken DT40 clones deficient in DNA repair pathways, including base and nucleotide excision repair, double-strand break repair, and translesion DNA synthesis (TLS). Our results show that cells deficient in Rev1 and Rev3, a subunit essential for DNA polymerase zeta (Polzeta), are hypersensitive to killing by two chemical NO donors, spermine NONOate and S-nitroso-N-acetyl-penicillamine. Mitotic chromosomal analysis indicates that the hypersensitivity is caused by a significant increase in the level of induced chromosomal breaks. The data reveal the critical role of TLS polymerases in cellular tolerance to NO-induced DNA damage and suggest the contribution of these error-prone polymerases to accumulation of single base substitutions.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Two new studies provide in vivo ( [this issue of Molecular Cell]) and in vitro ( [this issue of Molecular Cell]) evidence that poleta functions to extend 3' strands exchanged during homologous recombination and raise the issue of how TLS polymerases are selected onto different substrates.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, P.O. Box B, Maryland 21702, USA
| | | |
Collapse
|
34
|
Kawamoto T, Araki K, Sonoda E, Yamashita YM, Harada K, Kikuchi K, Masutani C, Hanaoka F, Nozaki K, Hashimoto N, Takeda S. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 2006; 20:793-9. [PMID: 16337602 DOI: 10.1016/j.molcel.2005.10.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 09/30/2005] [Accepted: 10/12/2005] [Indexed: 01/26/2023]
Abstract
Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles.
Collapse
Affiliation(s)
- Takuo Kawamoto
- CREST, Japan Science and Technology Agency, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
When cells that are actively replicating DNA encounter sites of base damage or strand breaks, replication might stall or arrest. In this situation, cells rely on DNA-damage-tolerance mechanisms to bypass the damage effectively. One of these mechanisms, known as translesion DNA synthesis, is supported by specialized DNA polymerases that are able to catalyse nucleotide incorporation opposite lesions that cannot be negotiated by high-fidelity replicative polymerases. A second category of tolerance mechanism involves alternative replication strategies that obviate the need to replicate directly across sites of template-strand damage.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
36
|
Sarkar N, Lemaire S, Wu-Scharf D, Issakidis-Bourguet E, Cerutti H. Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage. EUKARYOTIC CELL 2005; 4:262-73. [PMID: 15701788 PMCID: PMC549321 DOI: 10.1128/ec.4.2.262-273.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a consequence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal deletion that includes the gene encoding cytosolic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleomycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile sites. In addition, a Trxh1-beta-glucuronidase fusion protein translocated to the nucleus in response to treatment with MMS. However, somewhat surprisingly, Trxh1 failed to correct the Ble-1 hypersensitivity to H2O2. Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1 in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas isoform (Trxh2) does not compensate for the lack of Trxh1.
Collapse
Affiliation(s)
- Nandita Sarkar
- School of Biological Sciences and Plant Science Initiative, University Of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | |
Collapse
|
37
|
Kikuchi K, Taniguchi Y, Hatanaka A, Sonoda E, Hochegger H, Adachi N, Matsuzaki Y, Koyama H, van Gent DC, Jasin M, Takeda S. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol Cell Biol 2005; 25:6948-55. [PMID: 16055708 PMCID: PMC1190240 DOI: 10.1128/mcb.25.16.6948-6955.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) requires nuclease activities at multiple steps, but the contribution of individual nucleases to the processing of double-strand DNA ends at different stages of HR has not been clearly defined. We used chicken DT40 cells to investigate the role of flap endonuclease 1 (Fen-1) in HR. FEN-1-deficient cells exhibited a significant decrease in the efficiency of immunoglobulin gene conversion while being proficient in recombination between sister chromatids, suggesting that Fen-1 may play a role in HR between sequences of considerable divergence. To clarify whether sequence divergence at DNA ends is truly the reason for the observed HR defect in FEN-1(-/-) cells we inserted a unique I-SceI restriction site in the genome and tested various donor and recipient HR substrates. We found that the efficiency of HR-mediated DNA repair was indeed greatly diminished when divergent sequences were present at the DNA break site. We conclude that Fen-1 eliminates heterologous sequences at DNA damage site and facilitates DNA repair by HR.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Okada T, Sonoda E, Yoshimura M, Kawano Y, Saya H, Kohzaki M, Takeda S. Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol 2005; 25:6103-11. [PMID: 15988022 PMCID: PMC1168817 DOI: 10.1128/mcb.25.14.6103-6111.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In yeast, Rev1, Rev3, and Rev7 are involved in translesion synthesis over various kinds of DNA damage and spontaneous and UV-induced mutagenesis. Here, we disrupted Rev1, Rev3, and Rev7 in the chicken B-lymphocyte line DT40. REV1-/- REV3-/- REV7-/- cells showed spontaneous cell death, chromosomal instability/fragility, and hypersensitivity to various genotoxic treatments as observed in each of the single mutants. Surprisingly, the triple-knockout cells showed a suppressed level of sister chromatid exchanges (SCEs), which may reflect postreplication repair events mediated by homologous recombination, while each single mutant showed an elevated SCE level. Furthermore, REV1-/- cells as well as triple mutants showed a decreased level of immunoglobulin gene conversion, suggesting participation of Rev1 in a recombination-based pathway. The present study gives us a new insight into cooperative function of three Rev molecules and the Polzeta (Rev3-Rev7)-independent role of Rev1 in vertebrate cells.
Collapse
Affiliation(s)
- Takashi Okada
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreassen PR, Cantor SB. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 2005; 8:255-65. [PMID: 16153896 DOI: 10.1016/j.ccr.2005.08.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 12/13/2022]
Abstract
We showed in this study that cells deficient of the BRCA1-associated BACH1 helicase, also known as BRIP1, failed to elicit homologous recombination (HR) after DNA double-stranded breaks (DSBs). BACH1-deficient cells were also sensitive to mitomycin C (MMC) and underwent MMC-induced chromosome instability. Moreover, we identified a homozygous nonsense mutation in BACH1 in a FA-J patient-derived cell line and could not detect BACH1 protein in this cell line. Expression of wild-type BACH1 in this cell line reduced the accumulation of cells at G2/M phases following exposure to DNA crosslinkers, a characteristic of Fanconi anemia (FA) cells. These results support the conclusion that BACH1 is FANCJ.
Collapse
Affiliation(s)
- Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Friedberg EC, Lehmann AR, Fuchs RPP. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 2005; 18:499-505. [PMID: 15916957 DOI: 10.1016/j.molcel.2005.03.032] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 11/30/2022]
Abstract
The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
41
|
Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 2005; 109:415-79. [PMID: 15905640 DOI: 10.1159/000084205] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cocchi L, Scarcelli V, Puliti A, Barale R, Sbrana I. Endogenous sex hormones affect the mutagen-induced chromosome damage by altering a caffeine-sensitive checkpoint. Mutat Res 2005; 570:281-8. [PMID: 15708586 DOI: 10.1016/j.mrfmmm.2004.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Revised: 12/08/2004] [Accepted: 12/17/2004] [Indexed: 05/01/2023]
Abstract
In the present study we analysed the effect of endogenous sex hormones on the SCE frequencies induced in vitro by mitomycin C (MMC), a bifunctional alkylating agent producing high chromosome damage and mitotic arrest. The analysis has been performed on lymphocytes obtained at three different phases of menstrual cycle, from women with regular cycle and hormones dosage. At all phases we further analysed the effect of a post-treatment with caffeine, an agent that it is known to overrride the DNA damage checkpoints. After MMC, the cultures obtained at ovulation and luteal phases have SCE frequencies statistically higher than the cultures obtained at the progestogenic phase, showing increases of 15 and 25%, respectively. After caffeine, the MMC treated cultures which were set up at the progestogenic phase show a high potentiation of SCE frequencies (28%) whereas the treated cultures set up at ovulatory and luteal phases show little or no potentiation. These findings demonstrate that the endogenous hormones greatly modulate the SCE frequencies induced by the mutagen; they also indicate that hormones action competes with the caffeine effect. Caffeine acts by abrogating the mitotic arrest produced by DNA damage and induced cells with a higher chromosome damage into a premature mitosis. Our findings suggest that endogenous hormones could overcome the checkpoint controls activated in cells after mutagenic exposure. This action may be an epigenetic mechanism relevant in hormone carcinogenesis.
Collapse
Affiliation(s)
- Leonardo Cocchi
- Department of Human and Environmental Sciences, University of Pisa, Vian San Guiseppe 22, Pisa 56126, Italy
| | | | | | | | | |
Collapse
|
43
|
Volodin AA, Voloshin ON, Camerini-Otero RD. Homologous recombination and RecA protein: towards a new generation of tools for genome manipulations. Trends Biotechnol 2005; 23:97-102. [DOI: 10.1016/j.tibtech.2004.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Abstract
A powerful mechanism of vertebrate innate immunity has been discovered in the past year, in which APOBEC proteins inhibit retroviruses by deaminating cytosine residues in nascent retroviral cDNA. To thwart this cellular defence, HIV encodes Vif, a small protein that mediates APOBEC degradation. Therefore, the balance between APOBECs and Vif might be a crucial determinant of the outcome of retroviral infection. Vertebrates have up to 11 different APOBEC proteins, with primates having the most. APOBEC proteins include AID, a probable DNA mutator that is responsible for immunoglobulin-gene diversification, and APOBEC1, an RNA editor with antiretroviral activities. This APOBEC abundance might help to tip the balance in favour of cellular defences.
Collapse
Affiliation(s)
- Reuben S Harris
- University of Minnesota, Biochemistry, Molecular Biology and Biophysics Department, 321 Church Street South East, 6-155 Jackson Hall, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
45
|
Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. J Biol Chem 2004; 279:53175-85. [PMID: 15485882 DOI: 10.1074/jbc.m409243200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.
Collapse
Affiliation(s)
- Kayoko Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, CR UK Department of Oncology and the Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 2XZ, UK.
| |
Collapse
|