1
|
Kusakabe R, Tanaka M, Kuratani S. Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Front Cell Dev Biol 2021; 9:760366. [PMID: 34650989 PMCID: PMC8505881 DOI: 10.3389/fcell.2021.760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution. Lampreys, extant jawless vertebrates, lack many of derived traits characteristic of the gnathostomes, such as jaws, paired fins and epaxial/hypaxial distinction of the trunk skeletal musculatures. However, these animals possess the primitive form of the hypobranchial muscle. Of the gnathostomes, the elasmobranchs exhibit developmental mode of hypaxial muscles that is not identical to that of other gnathostomes in that the muscle primordia relocate as coherent cell aggregates. Comparison of expression of developmental genes, including Lbx genes, has delineated the temporal order of differentiation of various skeletal muscles, such as the hypobranchial, posterior pharyngeal and cucullaris (trapezius) muscles. We have proposed that the sequential addition of distal muscles, associated with expression of duplicated Lbx genes, promoted the elaboration of skeletal musculature. These analyses have revealed the framework of an evolutionary pathway that gave rise to the morphological complexity and diversity of vertebrate body patterns.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| |
Collapse
|
2
|
Sagarin KA, Redgrave AC, Mosimann C, Burke AC, Devoto SH. Anterior trunk muscle shows mix of axial and appendicular developmental patterns. Dev Dyn 2019; 248:961-968. [PMID: 31386244 DOI: 10.1002/dvdy.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle in the trunk derives from the somites, paired segments of paraxial mesoderm. Whereas axial musculature develops within the somite, appendicular muscle develops following migration of muscle precursors into lateral plate mesoderm. The development of muscles bridging axial and appendicular systems appears mixed. RESULTS We examine development of three migratory muscle precursor-derived muscles in zebrafish: the sternohyoideus (SH), pectoral fin (PF), and posterior hypaxial (PHM) muscles. We show there is an anterior to posterior gradient to the developmental gene expression and maturation of these three muscles. SH muscle precursors exhibit a long delay between migration and differentiation, PF muscle precursors exhibit a moderate delay in differentiation, and PHM muscle precursors show virtually no delay between migration and differentiation. Using lineage tracing, we show that lateral plate contribution to the PHM muscle is minor, unlike its known extensive contribution to the PF muscle and absence in the ventral extension of axial musculature. CONCLUSIONS We propose that PHM development is intermediate between a migratory muscle mode and an axial muscle mode of development, wherein the PHM differentiates after a very short migration of its precursors and becomes more anterior primarily by elongation of differentiated muscle fibers.
Collapse
Affiliation(s)
| | - Anna C Redgrave
- Department of Biology, Wesleyan University, Middletown, Connecticut.,Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Ann C Burke
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
3
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
4
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
5
|
Nuño de la Rosa L, Müller GB, Metscher BD. The lateral mesodermal divide: an epigenetic model of the origin of paired fins. Evol Dev 2014; 16:38-48. [DOI: 10.1111/ede.12061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
- Konrad Lorenz Institute for Evolution and Cognition Research; Adolf-Lorenz-Gasse 2 3422 Altenberg Austria
| | - Gerd B. Müller
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
- Konrad Lorenz Institute for Evolution and Cognition Research; Adolf-Lorenz-Gasse 2 3422 Altenberg Austria
| | - Brian D. Metscher
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
| |
Collapse
|
6
|
Development and evolution of the muscles of the pelvic fin. PLoS Biol 2011; 9:e1001168. [PMID: 21990962 PMCID: PMC3186808 DOI: 10.1371/journal.pbio.1001168] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod transition onto land. Here, we determine the developmental mechanisms of pelvic fin muscle formation in living fish species at critical points within the vertebrate phylogeny and reveal a stepwise modification from a primitive to a more derived mode of pelvic fin muscle formation. A distinct process generates pelvic fin muscle in bony fishes that incorporates both primitive and derived characteristics of vertebrate appendicular muscle formation. We propose that the adoption of the fully derived mode of hindlimb muscle formation from this bimodal character state is an evolutionary innovation that was critical to the success of the tetrapod transition.
Collapse
|
7
|
Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM, Minchin J, He L, Christ B, Brooks G, Sang H, Evans DJ, Logan M, Huang R, Patel K. Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 2011; 357:108-16. [DOI: 10.1016/j.ydbio.2011.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 01/10/2023]
|
8
|
Rehimi R, Khalida N, Yusuf F, Morosan-Puopolo G, Brand-Saberi B. A novel role of CXCR4 and SDF-1 during migration of cloacal muscle precursors. Dev Dyn 2010; 239:1622-31. [PMID: 20503359 DOI: 10.1002/dvdy.22288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF-1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF-1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF-1 is expressed in the cloacal region, and by experimentally manipulating the SDF-1/CXCR4 signaling, we can show that SDF-1 guides the migration of CXCR4-expressing cloacal muscle precursors.
Collapse
Affiliation(s)
- Rizwan Rehimi
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Cole NJ, Currie PD. Insights from sharks: evolutionary and developmental models of fin development. Dev Dyn 2007; 236:2421-31. [PMID: 17676641 DOI: 10.1002/dvdy.21268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The shark and its embryology have recently returned to the spotlight as a model animal in the quest to determine the origins of paired appendages during vertebrate evolution. As the most basal living gnathostomes, sharks and other extant chondrichthyans are ideal models to elucidate the developmental mechanisms utilised in mesoderm-derived primitive fin morphologies. Chondrichthyans occupy a phylogenetic position and possess morphological structures that can answer major questions on the origin of the body plan of vertebrates. This review will outline the past, present, and future use of shark species as a model system with particular emphasis on the recent studies that have utilised comparative molecular embryology of chondrichthyan species to examine the question of the origin of the paired fins. We will also examine the problems and pitfalls of utilising chondrichthyans and the barriers that remain to their utilisation in the modern era of developmental biology.
Collapse
Affiliation(s)
- Nicholas J Cole
- The Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | |
Collapse
|
10
|
Abstract
Knowledge of muscle development in a vertebrate reflects strengths of the particular model system. For example, the origin of mesoderm is very well characterized in Xenopus laevis, where development of somites is less well understood. The major problem in muscle development, presented by frogs, is the complete replacement of larval muscles by adult muscles at thyroid hormone-dependent metamorphosis. All tail muscles die, all leg muscles form de novo, and muscles in the jaw and trunk show both processes. The nature of adult muscle progenitors remains unclear. Comparison of X. laevis development with divergent amphibian patterns, such as direct developers, which lack the larval tadpole, should highlight important steps in adult muscle formation.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| |
Collapse
|
11
|
Handrigan GR, Wassersug RJ. The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biol Rev Camb Philos Soc 2007; 82:1-25. [PMID: 17313522 DOI: 10.1111/j.1469-185x.2006.00001.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.
Collapse
Affiliation(s)
- Gregory R Handrigan
- Department of Biology, Dalhousie University 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H 4J1.
| | | |
Collapse
|
12
|
Evans DJR, Valasek P, Schmidt C, Patel K. Skeletal muscle translocation in vertebrates. ACTA ACUST UNITED AC 2006; 211 Suppl 1:43-50. [PMID: 17043770 DOI: 10.1007/s00429-006-0121-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/15/2006] [Indexed: 12/27/2022]
Abstract
It is now over 30 years since Bodo Christ first demonstrated that the musculature of the limb originated from the somites and overturned the then prevailing view that limb muscle develops from a local source. Subsequently, using electron microscopy and histological procedures, Bodo Christ identified that cells of the somites undergo an epithelial to mesenchymal transition which enabled them to move from their paraxial point of origin to distal locations. These studies defined this translocation as one of the major mechanisms allowing myogenic cells to translocate around the body. The other means used to translocate muscle involves the movement of cells as a sheet. The deployment of one of these two mechanisms has been postulated to be involved in the formation of all the hypaxial musculature of the vertebrate body. In this paper we describe the formation of muscles both in the head and in the body, which use a translocatory mechanism during their development. We highlight recent data showing that muscle translocation is a far more complex process than first thought but which in itself can be used as a valuable tool to address questions regarding tissue patterning and development.
Collapse
Affiliation(s)
- Darrell J R Evans
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
13
|
Kusakabe R, Kuratani S. Evolution and developmental patterning of the vertebrate skeletal muscles: Perspectives from the lamprey. Dev Dyn 2005; 234:824-34. [PMID: 16252276 DOI: 10.1002/dvdy.20587] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myotome in gnathostome vertebrates, which gives rise to the trunk skeletal muscles, consists of epaxial (dorsal) and hypaxial (ventral) portions, separated by the horizontal myoseptum. The hypaxial portion contains some highly derived musculature that is functionally as well as morphologically well differentiated in all the gnathostome species. In contrast, the trunk muscles of agnathan lampreys lack these distinctions and any semblance of limb muscles. Therefore, the lamprey myotomes probably represent a primitive condition compared with gnathostomes. In this review, we compare the patterns of expression of some muscle-specific genes between the lamprey and gnathostomes. Although the cellular and tissue morphology of lamprey myotomes seems uniform and undifferentiated, some of the muscle-specific genes are expressed in a spatially restricted manner. The lamprey Pax3/7 gene, a cognate of gnathostome Pax3, is expressed only at the lateral edge of the myotomes and in the hypobranchial muscle, which we presume is homologous to the gnathostome hypobranchial muscle. Thus, the emergence of some part of a hypaxial-specific gene regulatory cascade might have evolved before the agnathan/gnathostome divergence, or before the evolutionary separation of epaxial and hypaxial muscles.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | |
Collapse
|
14
|
Valasek P, Evans DJR, Maina F, Grim M, Patel K. A dual fate of the hindlimb muscle mass: cloacal/perineal musculature develops from leg muscle cells. Development 2005; 132:447-58. [PMID: 15653949 DOI: 10.1242/dev.01545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cloaca serves as a common opening to the urinary and digestive systems. In most mammals, the cloaca is present only during embryogenesis, after which it undergoes a series of septation events leading to the formation of the anal canal and parts of the urogenital tract. During embryogenesis it is surrounded by skeletal muscle. The origin and the mechanisms regulating the development of these muscles have never been determined. Here, we show that the cloacal muscles of the chick originate from somites 30-34, which overlap the domain that gives rise to leg muscles (somites 26-33). Using molecular and cell labelling protocols, we have determined the aetiology of cloacal muscles. Surprisingly, we found that chick cloacal myoblasts first migrate into the developing leg bud and then extend out of the ventral muscle mass towards the cloacal tubercle. The development of homologous cloacal/perineal muscles was also examined in the mouse. Concordant with the results in birds, we found that perineal muscles in mammals also develop from the ventral muscle mass of the hindlimb. We provide genetic evidence that the perineal muscles are migratory, like limb muscles, by showing that they are absent in metd/d mutants. Using experimental embryological procedures (in chick) and genetic models (in chick and mouse), we show that the development of the cloacal musculature is dependent on proximal leg field formation. Thus, we have discovered a novel developmental mechanism in vertebrates whereby muscle cells first migrate from axially located somites to the pelvic limb, then extend towards the midline and only then differentiate into the single cloacal/perineal muscles.
Collapse
Affiliation(s)
- Petr Valasek
- Veterinary Basic Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | | | | | | | | |
Collapse
|
15
|
Haines L, Neyt C, Gautier P, Keenan DG, Bryson-Richardson RJ, Hollway GE, Cole NJ, Currie PD. Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish. Development 2004; 131:4857-69. [PMID: 15342468 DOI: 10.1242/dev.01374] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Somites give rise to a number of different embryonic cell types, including the precursors of skeletal muscle populations. The lateral aspect of amniote and fish somites have been shown to give rise specifically to hypaxial muscle, including the appendicular muscle that populates fins and limbs. We have investigated the morphogenetic basis for formation of specific hypaxial muscles within the zebrafish embryo and larvae. Transplantation experiments have revealed a developmentally precocious commitment of cells derived from pectoral fin level somites to forming hypaxial and specifically appendicular muscle. The fate of transplanted somites cannot be over-ridden by local inductive signals, suggesting that somitic tissue may be fixed at an early point in their developmental history to produce appendicular muscle. We further show that this restriction in competence is mirrored at the molecular level, with the exclusive expression of the receptor tyrosine kinase met within somitic regions fated to give rise to appendicular muscle. Loss-of-function experiments reveal that Met and its ligand, hepatocyte growth factor, are required for the correct morphogenesis of the hypaxial muscles in which met is expressed. Furthermore, we demonstrate a requirement for Met signaling in the process of proneuromast deposition from the posterior lateral line primordia.
Collapse
Affiliation(s)
- Lynn Haines
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Relaix F, Rocancourt D, Mansouri A, Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 2004; 18:1088-105. [PMID: 15132998 PMCID: PMC406297 DOI: 10.1101/gad.301004] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pax genes encode evolutionarily conserved transcription factors that play critical roles in development. Pax3 and Pax7 constitute one of the four Pax subfamilies. Despite partially overlapping expression domains, mouse mutations for Pax3 and Pax7 have very different consequences. To investigate the mechanism of these contrasting phenotypes, we replaced Pax3 by Pax7 by using gene targeting in the mouse. Pax7 can substitute for Pax3 function in dorsal neural tube, neural crest cell, and somite development, but not in the formation of muscles involving long-range migration of muscle progenitor cells. In limbs in which Pax3 is replaced by Pax7, the severity of the muscle phenotype increases as the number of Pax7 replacement alleles is reduced, with the forelimb more affected than the hindlimb. We show that this hypomorphic activity of Pax7 is due to defects in delamination, migration, and proliferation of muscle precursor cells with inefficient activation of c-met in the hypaxial domain of the somite. Despite this, overall muscle patterning is retained. We conclude that functions already prefigured by the single Pax3/7 gene present before vertebrate radiation are fulfilled by Pax7 as well as Pax3, whereas the role of Pax3 in appendicular muscle formation has diverged, reflecting the more recent origin of this mode of myogenesis.
Collapse
Affiliation(s)
- Frédéric Relaix
- Centre National de la Recherche Scientifique (CNRS) URA 2578, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
17
|
Galis F, Wagner GP, Jockusch EL. Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals? Evol Dev 2003; 5:208-20. [PMID: 12622738 DOI: 10.1046/j.1525-142x.2003.03028.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity to regenerate limbs is very high in amphibians and practically absent in other tetrapods despite the similarities in developmental pathways and ultimate morphology of tetrapod limbs. We propose that limb regeneration is only possible when the limb develops as a semiautonomous module and is not involved in interactions with transient structures. This hypothesis is based on the following two assumptions: To an important extent, limb development uses the same developmental mechanisms as normal limb development and developmental mechanisms that require interactions with transient structures cannot be recapitulated later. In amniotes limb development is early, shortly after neurulation, and requires inductive interactions with transient structures such as somites. In amphibians limb development is delayed relative to amniotes and has become decoupled from interactions with somites and other transient structures that are no longer present at this stage. The limb develops as a semi-independent module. A comparison of the autonomy and timing of limb development in different vertebrate taxa supports our hypothesis and its assumptions. The data suggest a good correlation between self-organizing and regenerative capacity. Furthermore, they suggest that whatever barriers amphibians overcame in the evolution of metamorphosis, they are the same barriers that need to be overcome to make limb regeneration possible in other taxa.
Collapse
Affiliation(s)
- Frietson Galis
- Institute of Evolutionary and Ecological Sciences, Leiden University, P.O. Box 9516, 2300RA Leiden, The Netherlands.
| | | | | |
Collapse
|
18
|
Abstract
The musculoskeletal system of vertebrates is derived from the embryonic mesoderm. Its structures are categorized as epaxial or hypaxial based on their adult position and innervation. The epaxial/hypaxial terminology is also used to describe regions of the embryonic somites based on fate mapping of somitic derivatives. However, the adult, functional distinctions are not fully consistent with the changing embryonic environments of mesodermal populations during morphogenesis, and the traditional terminology loses accuracy when used to describe certain mutant phenotypes. Here we describe a new terminology naming two mesodermal environments defined by the lineage of the included cells. We discuss how mutant phenotypes may be better explained by consideration of the embryonic context in which genes take their effect and argue that the recognition of these embryonic territories clarifies description and discussion of the morphogenesis and patterning of the musculoskeletal system.
Collapse
Affiliation(s)
- A C Burke
- Wesleyan University, Middletown, CT 06459, USA.
| | | |
Collapse
|