1
|
Hasenauer FC, Barreto HC, Lotton C, Matic I. Genome-wide mapping of spontaneous DNA replication error-hotspots using mismatch repair proteins in rapidly proliferating Escherichia coli. Nucleic Acids Res 2024:gkae1196. [PMID: 39660654 DOI: 10.1093/nar/gkae1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Fidelity of DNA replication is crucial for the accurate transmission of genetic information across generations, yet errors still occur despite multiple control mechanisms. This study investigated the factors influencing spontaneous replication errors across the Escherichia coli genome. We detected errors using the MutS and MutL mismatch repair proteins in rapidly proliferating mutH-deficient cells, where errors can be detected but not corrected. Our findings reveal that replication error hotspots are non-randomly distributed along the chromosome and are enriched in sequences with distinct features: lower thermal stability facilitating DNA strand separation, mononucleotide repeats prone to DNA polymerase slippage and sequences prone to forming secondary structures like cruciforms and G4 structures, which increase likelihood of DNA polymerase stalling. These hotspots showed enrichment for binding sites of nucleoid-associated proteins, RpoB and GyrA, as well as highly expressed genes, and depletion of GATC sequence. Finally, the enrichment of single-stranded DNA stretches in the hotspot regions establishes a nexus between the formation of secondary structures, transcriptional activity and replication stress. In conclusion, this study provides a comprehensive genome-wide map of replication error hotspots, offering a holistic perspective on the intricate interplay between various mechanisms that can compromise the faithful transmission of genetic information.
Collapse
Affiliation(s)
- Flavia C Hasenauer
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Hugo C Barreto
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Chantal Lotton
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Ivan Matic
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| |
Collapse
|
2
|
Chuong JN, Nun NB, Suresh I, Matthews JC, De T, Avecilla G, Abdul-Rahman F, Brandt N, Ram Y, Gresham D. Template switching during DNA replication is a prevalent source of adaptive gene amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.589936. [PMID: 39464144 PMCID: PMC11507740 DOI: 10.1101/2024.05.03.589936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs)-gains and losses of genomic sequences-are an important source of genetic variation underlying rapid adaptation and genome evolution. However, despite their central role in evolution little is known about the factors that contribute to the structure, size, formation rate, and fitness effects of adaptive CNVs. Local genomic sequences are likely to be an important determinant of these properties. Whereas it is known that point mutation rates vary with genomic location and local DNA sequence features, the role of genome architecture in the formation, selection, and the resulting evolutionary dynamics of CNVs is poorly understood. Previously, we have found that the GAP1 gene in Saccharomyces cerevisiae undergoes frequent and repeated amplification and selection under long-term experimental evolution in glutamine-limiting conditions. The GAP1 gene has a unique genomic architecture consisting of two flanking long terminal repeats (LTRs) and a proximate origin of DNA replication (autonomously replicating sequence, ARS), which are likely to promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we performed experimental evolution in glutamine-limited chemostats using engineered strains lacking either the adjacent LTRs, ARS, or all elements. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. We find that although GAP1 CNVs repeatedly form and sweep to high frequency in strains with modified genome architecture, removal of local DNA elements significantly impacts the rate and fitness effect of CNVs and the rate of adaptation. We performed genome sequence analysis to define the molecular mechanisms of CNV formation for 177 CNV lineages. We find that across all four strain backgrounds, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, a distal ARS can mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination mechanisms still mediate gene amplification following de novo insertion of retrotransposon elements at the locus. Our study demonstrates the remarkable plasticity of the genome and reveals that template switching during DNA replication is a frequent source of adaptive CNVs.
Collapse
Affiliation(s)
- Julie N Chuong
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Nadav Ben Nun
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - Ina Suresh
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Julia Cano Matthews
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | - Titir De
- Department of Biology, Center for Genomics and Systems Biology, New York University
| | | | - Farah Abdul-Rahman
- Department of Ecology and Evolutionary Biology, Yale University
- Microbial Sciences Institute, Yale University
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University
- Correspondence:
| |
Collapse
|
3
|
Qin X, Chiang CWK, Gaggiotti OE. KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis. Brief Bioinform 2022; 23:bbac202. [PMID: 35649387 PMCID: PMC9294434 DOI: 10.1093/bib/bbac202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal components (DAPC). However, genetic features produced from both approaches could fail to correctly characterize population structure for complex scenarios involving admixture. In this study, we introduce Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC), a supervised non-linear approach for inferring individual geographic genetic structure that could rectify the limitations of these approaches by preserving the multimodal space of samples. We tested the power of KLFDAPC to infer population structure and to predict individual geographic origin using neural networks. Simulation results showed that KLFDAPC has higher discriminatory power than PCA and DAPC. The application of our method to empirical European and East Asian genome-wide genetic datasets indicated that the first two reduced features of KLFDAPC correctly recapitulated the geography of individuals and significantly improved the accuracy of predicting individual geographic origin when compared to PCA and DAPC. Therefore, KLFDAPC can be useful for geographic ancestry inference, design of genome scans and correction for spatial stratification in GWAS that link genes to adaptation or disease susceptibility.
Collapse
Affiliation(s)
- Xinghu Qin
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine & Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| |
Collapse
|
4
|
Vasilyeva TA, Marakhonov AV, Kutsev SI, Zinchenko RA. Relative Frequencies of PAX6 Mutational Events in a Russian Cohort of Aniridia Patients in Comparison with the World's Population and the Human Genome. Int J Mol Sci 2022; 23:ijms23126690. [PMID: 35743132 PMCID: PMC9223373 DOI: 10.3390/ijms23126690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Genome-wide sequencing metadata allows researchers to infer bias in the relative frequencies of mutational events and to predict putative mutagenic models. In addition, much less data could be useful in the evaluation of the mutational frequency spectrum and the prevalent local mutagenic process. Here we analyzed the PAX6 gene locus for mutational spectra obtained in our own and previous studies and compared them with data on other genes as well as the whole human genome. MLPA and Sanger sequencing were used for mutation searching in a cohort of 199 index patients from Russia with aniridia and aniridia-related phenotypes. The relative frequencies of different categories of PAX6 mutations were consistent with those previously reported by other researchers. The ratio between substitutions, small indels, and chromosome deletions in the 11p13 locus was within the interval previously published for 20 disease associated genomic loci, but corresponded to a higher end due to very high frequencies of small indels and chromosome deletions. The ratio between substitutions, small indels, and chromosome deletions for disease associated genes, including the PAX6 gene as well as the share of PAX6 missense mutations, differed considerably from those typical for the whole genome.
Collapse
Affiliation(s)
- Tatyana A. Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.A.V.); (S.I.K.); (R.A.Z.)
| | - Andrey V. Marakhonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.A.V.); (S.I.K.); (R.A.Z.)
- Correspondence: ; Tel.: +7-499-320-60-90
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.A.V.); (S.I.K.); (R.A.Z.)
| | - Rena A. Zinchenko
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.A.V.); (S.I.K.); (R.A.Z.)
- N.A. Semashko National Research Institute of Public Health, 105064 Moscow, Russia
| |
Collapse
|
5
|
Kidner J, Theodorou P, Engler JO, Taubert M, Husemann M. A brief history and popularity of methods and tools used to estimate micro-evolutionary forces. Ecol Evol 2021; 11:13723-13743. [PMID: 34707813 PMCID: PMC8525119 DOI: 10.1002/ece3.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Population genetics is a field of research that predates the current generations of sequencing technology. Those approaches, that were established before massively parallel sequencing methods, have been adapted to these new marker systems (in some cases involving the development of new methods) that allow genome-wide estimates of the four major micro-evolutionary forces-mutation, gene flow, genetic drift, and selection. Nevertheless, classic population genetic markers are still commonly used and a plethora of analysis methods and programs is available for these and high-throughput sequencing (HTS) data. These methods employ various and diverse theoretical and statistical frameworks, to varying degrees of success, to estimate similar evolutionary parameters making it difficult to get a concise overview across the available approaches. Presently, reviews on this topic generally focus on a particular class of methods to estimate one or two evolutionary parameters. Here, we provide a brief history of methods and a comprehensive list of available programs for estimating micro-evolutionary forces. We furthermore analyzed their usage within the research community based on popularity (citation bias) and discuss the implications of this bias for the software community. We found that a few programs received the majority of citations, with program success being independent of both the parameters estimated and the computing platform. The only deviation from a model of exponential growth in the number of citations was found for the presence of a graphical user interface (GUI). Interestingly, no relationship was found for the impact factor of the journals, when the tools were published, suggesting accessibility might be more important than visibility.
Collapse
Affiliation(s)
- Jonathan Kidner
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Panagiotis Theodorou
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Jan O Engler
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| | - Martin Taubert
- Aquatic Geomicrobiology Institute for Biodiversity Friedrich Schiller University Jena Jena Germany
| | - Martin Husemann
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
- Centrum für Naturkunde University of Hamburg Hamburg Germany
| |
Collapse
|
6
|
Sipos EH, Léty-Stefanska A, Denby Wilkes C, Soutourina J, Malloggi F. Microfluidic platform for monitoring Saccharomyces cerevisiae mutation accumulation. LAB ON A CHIP 2021; 21:2407-2416. [PMID: 33960358 DOI: 10.1039/d1lc00086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mutations in DNA have large-ranging consequences, from evolution to disease. Many mechanisms contribute to mutational processes such as dysfunctions in DNA repair pathways and exogenous or endogenous mutagen exposures. Model organisms and mutation accumulation (MA) experiments are indispensable to study mutagenesis. Classical MA is, however, time consuming and laborious. To fill the need for more efficient approaches to characterize mutational profiles, we have developed an innovative microfluidic-based system that automatizes MA culturing over many generations in budding yeast. This unique experimental tool, coupled with high-throughput sequencing, reduces by one order of magnitude the time required for genome-wide measurements of mutational profiles, while also parallelizing and simplifying the cell culture. To validate our approach, we performed microfluidic MA experiments on two different genetic backgrounds, a wild-type strain and a base-excision DNA repair ung1 mutant characterized by a well-defined mutational profile. We show that the microfluidic device allows for mutation accumulation comparable to the traditional method on plate. Our approach thus paves the way to massively-parallel MA experiments with minimal human intervention that can be used to investigate mutational processes at the origin of human diseases and to identify mutagenic compounds relevant for medical and environmental research.
Collapse
Affiliation(s)
- Eliet H Sipos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | | | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
7
|
The polarity protein PARD3 and cancer. Oncogene 2021; 40:4245-4262. [PMID: 34099863 DOI: 10.1038/s41388-021-01813-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Tissue disorganisation is one of the main hallmarks of cancer. Polarity proteins are responsible for the arrangement of cells within epithelial tissues through the asymmetric organisation of cellular components. Partition defective 3 (PARD3) is a master regulator of the Par polarity complex primarily due to its ability to form large complexes via its self-homologous binding domain. In addition to its role in polarity, PARD3 is a scaffolding protein that binds to intracellular signalling molecules, many of which are frequently deregulated in cancer. The role of PARD3 has been implicated in multiple solid cancers as either a tumour suppressor or promoter. This dual functionality is both physiologically and cell context dependent. In this review, we will discuss PARD3's role in tumourigenesis in both laboratory and clinical settings. We will also review several of the mechanisms underpinning PARD3's function including its association with intracellular signalling pathways and its role in the regulation of asymmetric cell division.
Collapse
|
8
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
9
|
Robert L, Ollion J, Elez M. Real-time visualization of mutations and their fitness effects in single bacteria. Nat Protoc 2019; 14:3126-3143. [PMID: 31554956 DOI: 10.1038/s41596-019-0215-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Mutations are the driving force of evolution and the source of important pathologies. The characterization of the dynamics and effects of mutations on fitness is therefore central to our understanding of evolution and to human health. This protocol describes how to implement two methods that we recently developed: mutation visualization (MV) and microfluidic mutation accumulation (µMA), which allow the occurrence of mutations created by DNA replication errors (MV) and the evolution of cell fitness during MA (µMA) to be followed directly in individual cells of Escherichia coli. MV provides a quantitative characterization of the dynamics of mutation occurrences, and µMA allows precise estimation of the distribution of fitness effects (DFEs) of mutations. Both methods use microfluidics and time-lapse microscopy, and a fluorescent mismatch repair (MMR) MutL protein is used as a marker for nascent mutations. Here, we present a single protocol describing how to implement the MV and µMA methods, including detailed procedures for microfluidic setup installation, data acquisition and data analysis and interpretation. Using this procedure, the microfluidic setup installation can be completed within 1 d, and automated data acquisition takes 2-4 d.
Collapse
Affiliation(s)
- Lydia Robert
- Laboratoire Jean Perrin, UMR 8237, CNRS, Sorbonne Universités, UPMC Université Paris 06, Paris, France. .,Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Jean Ollion
- Laboratoire Jean Perrin, UMR 8237, CNRS, Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Marina Elez
- Laboratoire Jean Perrin, UMR 8237, CNRS, Sorbonne Universités, UPMC Université Paris 06, Paris, France. .,Institute of Systems and Synthetic Biology, UMR 8030, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Genopole, Université d'Evry Val-d'Essonne, Université Paris Saclay, Evry, France.
| |
Collapse
|
10
|
Kok EJ, Glandorf DC, Prins TW, Visser RG. Food and environmental safety assessment of new plant varieties after the European Court decision: Process-triggered or product-based? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Arbel‐Eden A, Simchen G. Elevated Mutagenicity in Meiosis and Its Mechanism. Bioessays 2019; 41:e1800235. [DOI: 10.1002/bies.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Giora Simchen
- Department of GeneticsThe Hebrew University of JerusalemJerusalem 91904 Israel
| |
Collapse
|
12
|
Hua W, Vogan A, Xu J. Genotypic and Phenotypic Analyses of Two “Isogenic” Strains of the Human Fungal Pathogen Cryptococcus neoformans var. neoformans. Mycopathologia 2019; 184:195-212. [DOI: 10.1007/s11046-019-00328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022]
|
13
|
Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 2019; 9:4641. [PMID: 30874586 PMCID: PMC6420634 DOI: 10.1038/s41598-019-40660-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Though clinical trials for medical applications of dimethyl sulfoxide (DMSO) reported toxicity in the 1960s, later, the FDA classified DMSO in the safest solvent category. DMSO became widely used in many biomedical fields and biological effects were overlooked. Meanwhile, biomedical science has evolved towards sensitive high-throughput techniques and new research areas, including epigenomics and microRNAs. Considering its wide use, especially for cryopreservation and in vitro assays, we evaluated biological effect of DMSO using these technological innovations. We exposed 3D cardiac and hepatic microtissues to medium with or without 0.1% DMSO and analyzed the transcriptome, proteome and DNA methylation profiles. In both tissue types, transcriptome analysis detected >2000 differentially expressed genes affecting similar biological processes, thereby indicating consistent cross-organ actions of DMSO. Furthermore, microRNA analysis revealed large-scale deregulations of cardiac microRNAs and smaller, though still massive, effects in hepatic microtissues. Genome-wide methylation patterns also revealed tissue-specificity. While hepatic microtissues demonstrated non-significant changes, findings from cardiac microtissues suggested disruption of DNA methylation mechanisms leading to genome-wide changes. The extreme changes in microRNAs and alterations in the epigenetic landscape indicate that DMSO is not inert. Its use should be reconsidered, especially for cryopreservation of embryos and oocytes, since it may impact embryonic development.
Collapse
Affiliation(s)
- M Verheijen
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - M Lienhard
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Y Schrooders
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - O Clayton
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - S Boerno
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - B Timmermann
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - N Selevsek
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - R Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - S Gotta
- Genedata AG, Basel, Switzerland
| | - J Geraedts
- Genetics and Cell Biology, Maastricht University, Medical Center, Maastricht, Netherlands
| | - R Herwig
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - J Kleinjans
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - F Caiment
- Toxicogenomics, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
14
|
Chisholm PJ, Busch JW, Crowder DW. Effects of life history and ecology on virus evolutionary potential. Virus Res 2019; 265:1-9. [PMID: 30831177 DOI: 10.1016/j.virusres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
The life history traits of viruses pose many consequences for viral population structure. In turn, population structure may influence the evolutionary trajectory of a virus. Here we review factors that affect the evolutionary potential of viruses, including rates of mutation and recombination, bottlenecks, selection pressure, and ecological factors such as the requirement for hosts and vectors. Mutation, while supplying a pool of raw genetic material, also results in the generation of numerous unfit mutants. The infection of multiple host species may expand a virus' ecological niche, although it may come at a cost to genetic diversity. Vector-borne viruses often experience a diminished frequency of positive selection and exhibit little diversity, and resistance against vector-borne viruses may thus be more durable than against non-vectored viruses. Evidence indicates that adaptation to a vector is more evolutionarily difficult than adaptation to a host. Overall, a better understanding of how various factors influence viral dynamics in both plant and animal pathosystems will lead to more effective anti-viral treatments and countermeasures.
Collapse
Affiliation(s)
- Paul J Chisholm
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| |
Collapse
|
15
|
Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2019; 76:40-49. [PMID: 30818168 DOI: 10.1016/j.dnarep.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/21/2022]
Abstract
DNA polymerases influence genome stability through their involvement in DNA replication, response to DNA damage, and DNA repair processes. Saccharomyces cerevisiae possess four non-essential DNA polymerases, Pol λ, Pol η, Pol ζ, and Rev1, which have varying roles in genome stability. In order to assess the contribution of the non-essential DNA polymerases in genome stability, we analyzed the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant in microhomology mediated repair, due to recent studies linking some of these DNA polymerases to this repair pathway. Our results suggest that the length and quality of microhomology influence both the overall efficiency of repair and the involvement of DNA polymerases. Furthermore, the non-essential DNA polymerases demonstrate overlapping and redundant functions when repairing double-strand breaks using short microhomologies containing mismatches. Then, we examined genome-wide mutation accumulation in the pol4Δ rev1Δ rev3Δ rad30Δ quadruple mutant compared to wild type cells. We found a significant decrease in the overall rate of mutation accumulation in the quadruple mutant cells compared to wildtype, but an increase in frameshift mutations and a shift towards transversion base-substitution with a preference for G:C to T:A or C:G. Thus, the non-essential DNA polymerases have an impact on the nature of the mutational spectrum. The sequence and functional homology shared between human and S. cerevisiae non-essential DNA polymerases suggest these DNA polymerases may have a similar role in human cells.
Collapse
|
16
|
Abstract
Summary Metagenomics revolutionized the field of microbial ecology, giving access to Gb-sized datasets of microbial communities under natural conditions. This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as of their microevolution and adaptation to changing environmental conditions. However, phylogenetic methods for studying adaptation and evolutionary dynamics are not able to cope with big data. EDEN is the first software for the rapid detection of protein families and regions under positive selection, as well as their associated biological processes, from meta- and pangenome data. It provides an interactive result visualization for detailed comparative analyses. Availability and implementation EDEN is available as a Docker installation under the GPL 3.0 license, allowing its use on common operating systems, at http://www.github.com/hzi-bifo/eden. Contact alice.mchardy@helmholtz-hzi.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Brunswick, Germany.,Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Hanover-Brunswick, 38124 Brunswick, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany.,DZIF, Partner Site LMU Munich, 80336 Munich, Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Brunswick, Germany.,German Centre for Infection Research (DZIF), Partner Site Hanover-Brunswick, 38124 Brunswick, Germany.,Department of Algorithmic Bioinformatics.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
17
|
Woo AC, Faure L, Dapa T, Matic I. Heterogeneity of spontaneous DNA replication errors in single isogenic Escherichia coli cells. SCIENCE ADVANCES 2018; 4:eaat1608. [PMID: 29938224 PMCID: PMC6010332 DOI: 10.1126/sciadv.aat1608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/14/2018] [Indexed: 06/06/2023]
Abstract
Despite extensive knowledge of the molecular mechanisms that control mutagenesis, it is not known how spontaneous mutations are produced in cells with fully operative mutation-prevention systems. By using a mutation assay that allows visualization of DNA replication errors and stress response transcriptional reporters, we examined populations of isogenic Escherichia coli cells growing under optimal conditions without exogenous stress. We found that spontaneous DNA replication errors in proliferating cells arose more frequently in subpopulations experiencing endogenous stresses, such as problems with proteostasis, genome maintenance, and reactive oxidative species production. The presence of these subpopulations of phenotypic mutators is not expected to affect the average mutation frequency or to reduce the mean population fitness in a stable environment. However, these subpopulations can contribute to overall population adaptability in fluctuating environments by serving as a reservoir of increased genetic variability.
Collapse
Affiliation(s)
- Anthony C. Woo
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Louis Faure
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Tanja Dapa
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ivan Matic
- INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
- Centre National de la Recherche Scientifique, 75016 Paris, France
| |
Collapse
|
18
|
Burkholder AB, Lujan SA, Lavender CA, Grimm SA, Kunkel TA, Fargo DC. Muver, a computational framework for accurately calling accumulated mutations. BMC Genomics 2018; 19:345. [PMID: 29743009 PMCID: PMC5944071 DOI: 10.1186/s12864-018-4753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. RESULTS Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. CONCLUSIONS Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.
Collapse
Affiliation(s)
- Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Scott A Lujan
- Laboratory of Genomic Integrity and Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - Thomas A Kunkel
- Laboratory of Genomic Integrity and Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
19
|
Elez M, Robert L, Matic I. Method for Detecting and Studying Genome-Wide Mutations in Single Living Cells in Real Time. Methods Mol Biol 2018; 1736:29-39. [PMID: 29322456 DOI: 10.1007/978-1-4939-7638-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
DNA sequencing and fluctuation test have been choice methods for studying DNA mutations for decades. Although invaluable tools allowing many important discoveries on mutations, they are both highly influenced by fitness effects of mutations, and therefore suffer several limits. Fluctuation test is for example limited to mutations that produce an identifiable phenotype, which is the minority of all generated mutations. Genome-wide extrapolations using this method are therefore difficult. DNA sequencing detects almost all DNA mutations in population of cells. However, the obtained population mutation spectrum is biased because of the fitness effects of newly generated mutations. For example, mutations that affect fitness strongly and negatively are underrepresented, while those with a strong positive effect are overrepresented. Single-cell genome sequencing can solve this problem. However, sufficient amount of DNA for this approach is obtained by massive whole-genome amplification, which produces many artifacts.We describe the first direct method for monitoring genome-wide mutations in living cells independently of their effect on fitness. This method is based on the following three facts. First, DNA replication errors are the major source of DNA mutations. Second, these errors are the target for an evolutionarily conserved mismatch repair (MMR) system, which repairs the vast majority of replication errors. Third, we recently showed that the fluorescently labeled MMR protein MutL forms fluorescent foci on unrepaired replication errors. If not repaired, the new round of DNA synthesis fixes these errors in the genome permanently, i.e., they become mutations. Therefore, visualizing foci of the fluorescently tagged MutL in individual living cells allows detecting mutations as they appear, before the expression of the phenotype.
Collapse
Affiliation(s)
- Marina Elez
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 91000, Évry, France., Evry, France. .,LJP, CNRS UMR 8237, UPMC, Sorbonne Universités, Paris, France, Paris, France.
| | - Lydia Robert
- LJP, CNRS UMR 8237, UPMC, Sorbonne Universités, Paris, France, Paris, France.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France, Jouy-en-Josas, France
| | - Ivan Matic
- INSERM U1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
20
|
Genome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions. G3-GENES GENOMES GENETICS 2017; 7:3669-3679. [PMID: 28916648 PMCID: PMC5677154 DOI: 10.1534/g3.117.1135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutation and recombination are the major sources of genetic diversity in all organisms. In the baker’s yeast, all mutation rate estimates are in homozygous background. We determined the extent of genetic change through mutation and loss of heterozygosity (LOH) in a heterozygous Saccharomyces cerevisiae genome during successive vegetative and meiotic divisions. We measured genome-wide LOH and base mutation rates during vegetative and meiotic divisions in a hybrid (S288c/YJM789) S. cerevisiae strain. The S288c/YJM789 hybrid showed nearly complete reduction in heterozygosity within 31 generations of meioses and improved spore viability. LOH in the meiotic lines was driven primarily by the mating of spores within the tetrad. The S288c/YJM789 hybrid lines propagated vegetatively for the same duration as the meiotic lines, showed variable LOH (from 2 to 3% and up to 35%). Two of the vegetative lines with extensive LOH showed frequent and large internal LOH tracts that suggest a high frequency of recombination repair. These results suggest significant LOH can occur in the S288c/YJM789 hybrid during vegetative propagation presumably due to return to growth events. The average base substitution rates for the vegetative lines (1.82 × 10−10 per base per division) and the meiotic lines (1.22 × 10−10 per base per division) are the first genome-wide mutation rate estimates for a hybrid yeast. This study therefore provides a novel context for the analysis of mutation rates (especially in the context of detecting LOH during vegetative divisions), compared to previous mutation accumulation studies in yeast that used homozygous backgrounds.
Collapse
|
21
|
Bui DT, Friedrich A, Al-Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics 2017; 205:1459-1471. [PMID: 28193730 PMCID: PMC5378106 DOI: 10.1534/genetics.116.199513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.
Collapse
Affiliation(s)
- Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, 06107 Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
22
|
Abstract
Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) bases, altering repeat length. To directly test the role of base excision in AAG-induced mutagenesis, we conducted mutation accumulation experiments in yeast overexpressing different variants of AAG and detected mutations via high-depth genome resequencing. We also developed a new software tool, hp_caller, to perform accurate genotyping at homopolymeric repeat loci. Overexpression of wild-type AAG elevated indel mutations in homopolymeric sequences distributed throughout the genome. However, catalytically inactive variants (E125Q/E125A) caused equal or greater increases in frameshift mutations. These results disprove the hypothesis that base excision is the key step in mutagenesis by overexpressed wild-type AAG. Instead, our results provide additional support for the previously published model wherein overexpressed AAG interferes with the mismatch repair (MMR) pathway. In addition to the above results, we observed a dramatic mutator phenotype for N169S AAG, which has increased rates of excision of undamaged purines. This mutant caused a 10-fold increase in point mutations at G:C base pairs and a 50-fold increase in frameshifts in A:T homopolymers. These results demonstrate that it is necessary to consider the relative activities and abundance of many DNA replication and repair proteins when considering mutator phenotypes, as they are relevant to the development of cancer and its resistance to treatment.
Collapse
|
23
|
Powell R. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome. THE JOURNAL OF MEDICINE AND PHILOSOPHY 2015; 40:669-95. [PMID: 26475170 DOI: 10.1093/jmp/jhv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument.
Collapse
|
24
|
Dissecting genetic and environmental mutation signatures with model organisms. Trends Genet 2015; 31:465-74. [PMID: 25940384 DOI: 10.1016/j.tig.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.
Collapse
|
25
|
Abstract
Mutational heterogeneity must be taken into account when reconstructing evolutionary histories, calibrating molecular clocks, and predicting links between genes and disease. Selective pressures and various DNA transactions have been invoked to explain the heterogeneous distribution of genetic variation between species, within populations, and in tissue-specific tumors. To examine relationships between such heterogeneity and variations in leading- and lagging-strand replication fidelity and mismatch repair, we accumulated 40,000 spontaneous mutations in eight diploid yeast strains in the absence of selective pressure. We found that replicase error rates vary by fork direction, coding state, nucleosome proximity, and sequence context. Further, error rates and DNA mismatch repair efficiency both vary by mismatch type, responsible polymerase, replication time, and replication origin proximity. Mutation patterns implicate replication infidelity as one driver of variation in somatic and germline evolution, suggest mechanisms of mutual modulation of genome stability and composition, and predict future observations in specific cancers.
Collapse
|
26
|
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Sy Redding
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| | - Eric C. Greene
- Department of Biological Sciences, Department of Chemistry, and Department of
Biochemistry and Molecular
Biophysics and the Howard Hughes Medical Institute, Columbia University, 650 West 168th Street, New York, New York 10032, United
States
| |
Collapse
|
27
|
Abstract
In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes.
Collapse
|
28
|
Evans J, McCormick RF, Morishige D, Olson SN, Weers B, Hilley J, Klein P, Rooney W, Mullet J. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS One 2013; 8:e79192. [PMID: 24265758 PMCID: PMC3827139 DOI: 10.1371/journal.pone.0079192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/24/2013] [Indexed: 11/25/2022] Open
Abstract
Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09) and dw3 (SBI-07) had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination.
Collapse
Affiliation(s)
- Joseph Evans
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ryan F. McCormick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Daryl Morishige
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sara N. Olson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Brock Weers
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Josie Hilley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Patricia Klein
- Department of Horticulture, Texas A&M University, College Station, Texas, United States of America
| | - William Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shor E, Fox CA, Broach JR. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 2013; 9:e1003680. [PMID: 23935537 PMCID: PMC3731204 DOI: 10.1371/journal.pgen.1003680] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022] Open
Abstract
Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. Cellular capability to mutate its DNA plays an important role in evolution and impinges on medical issues, including acquisition of mutator phenotypes by cancer cells and emergence of drug-resistant pathogens. Whether and how the environment affects rates of mutation has been studied predominantly in the context of environmental agents that damage DNA (e.g. UV and γ-rays). However, it has been observed that conditions of chronic non-DNA-damaging stress (e.g. starvation or heat shock) also increase mutagenesis. It has been shown that in bacteria, activation of the general stress response activates a pro-mutagenic pathway and thus promotes mutagenesis during periods of stress. However, in eukaryotes, so far there has been no evidence of a stress response regulating mutagenesis. In this manuscript we demonstrate that in budding yeast, a model eukaryote, the general environmental stress response (ESR) regulates mutagenesis induced by proteotoxic stress (accumulation of unfolded proteins) at several loci. We also identify two pro-mutagenic DNA metabolic pathways that contribute to this mutagenesis and present genetic data showing that the ESR regulates these pathways. Together, these data advance our understanding of how cellular sensing and responding to environmental cues affect cellular capability for mutagenesis.
Collapse
Affiliation(s)
- Erika Shor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James R. Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Amos W. Variation in heterozygosity predicts variation in human substitution rates between populations, individuals and genomic regions. PLoS One 2013; 8:e63048. [PMID: 23646173 PMCID: PMC3639965 DOI: 10.1371/journal.pone.0063048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/28/2013] [Indexed: 01/11/2023] Open
Abstract
The "heterozygote instability" (HI) hypothesis suggests that gene conversion events focused on heterozygous sites during meiosis locally increase the mutation rate, but this hypothesis remains largely untested. As humans left Africa they lost variability, which, if HI operates, should have reduced the mutation rate in non-Africans. Relative substitution rates were quantified in diverse humans using aligned whole genome sequences from the 1,000 genomes project. Substitution rate is consistently greater in Africans than in non-Africans, but only in diploid regions of the genome, consistent with a role for heterozygosity. Analysing the same data partitioned into a series of non-overlapping 2 Mb windows reveals a strong, non-linear correlation between the amount of heterozygosity lost "out of Africa" and the difference in substitution rate between Africans and non-Africans. Putative recent mutations, derived variants that occur only once among the 80 human chromosomes sampled, occur preferentially at the centre of 2 Kb windows that have elevated heterozygosity compared both with the same region in a closely related population and with an immediately adjacent region in the same population. More than half of all substitutions appear attributable to variation in heterozygosity. This observation provides strong support for HI with implications for many branches of evolutionary biology.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, Cambridge University, Cambridge, Cambridgeshire, United Kingdom.
| |
Collapse
|
31
|
Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet 2013; 9:e1003293. [PMID: 23408914 PMCID: PMC3567157 DOI: 10.1371/journal.pgen.1003293] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/17/2012] [Indexed: 12/30/2022] Open
Abstract
Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the individual hosts and large populations. Malaria is one of the six diseases that together are responsible for 90% of all infectious disease deaths throughout the world. The five species of Plasmodium that cause human malaria take over 655,000 lives each year. Parasites evade the immune response through antigenic variation and develop resistance to anti-malarial drugs through genetic changes in either the drug target or genes conferring resistance. We used whole-genome sequencing and microarray techniques to study evolution in P. falciparum parasites propagated in vitro for up to 180 generations. We determined the mutation rate and found that the core genome of a single clone is stable, while the subtelomeric regions are prone to acquire structural variants. These changes occur mainly in multigene families involved in immune evasion. Our findings indicate that the parasite specifically increases the sequence variability in multigene families through mitotic recombination. This high plasticity of the parasite genome suggests that multiple haplotypes will be present in a natural infection initiated by a single parasite.
Collapse
|
32
|
Lu JT, Wang Y, Gibbs RA, Yu F. Characterizing linkage disequilibrium and evaluating imputation power of human genomic insertion-deletion polymorphisms. Genome Biol 2012; 13:R15. [PMID: 22377349 PMCID: PMC3334570 DOI: 10.1186/gb-2012-13-2-r15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/14/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023] Open
Abstract
Background Indels are an important cause of human variation and central to the study of human disease. The 1000 Genomes Project Low-Coverage Pilot identified over 1.3 million indels shorter than 50 bp, of which over 890 were identified as potentially disruptive variants. Yet, despite their ubiquity, the local genomic characteristics of indels remain unexplored. Results Herein we describe population- and minor allele frequency-based differences in linkage disequilibrium and imputation characteristics for indels included in the 1000 Genomes Project Low-Coverage Pilot for the CEU, YRI and CHB+JPT populations. Common indels were well tagged by nearby SNPs in all studied populations, and were also tagged at a similar rate to common SNPs. Both neutral and functionally deleterious common indels were imputed with greater than 95% concordance from HapMap Phase 3 and OMNI SNP sites. Further, 38 to 56% of low frequency indels were tagged by low frequency SNPs. We were able to impute heterozygous low frequency indels with over 50% concordance. Lastly, our analysis also revealed evidence of ascertainment bias. This bias prevents us from extending the applicability of our results to highly polymorphic indels that could not be identified in the Low-Coverage Pilot. Conclusions Although further scope exists to improve the imputation of low frequency indels, our study demonstrates that there are already ample opportunities to retrospectively impute indels for prior genome-wide association studies and to incorporate indel imputation into future case/control studies.
Collapse
Affiliation(s)
- James T Lu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
33
|
Gruber JD, Vogel K, Kalay G, Wittkopp PJ. Contrasting properties of gene-specific regulatory, coding, and copy number mutations in Saccharomyces cerevisiae: frequency, effects, and dominance. PLoS Genet 2012; 8:e1002497. [PMID: 22346762 PMCID: PMC3276545 DOI: 10.1371/journal.pgen.1002497] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/08/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic variation within and between species can be shaped by population-level processes and mutation; however, the relative impact of “survival of the fittest” and “arrival of the fittest” on phenotypic evolution remains unclear. Assessing the influence of mutation on evolution requires understanding the relative rates of different types of mutations and their genetic properties, yet little is known about the functional consequences of new mutations. Here, we examine the spectrum of mutations affecting a focal gene in Saccharomyces cerevisiae by characterizing 231 novel haploid genotypes with altered activity of a fluorescent reporter gene. 7% of these genotypes had a nonsynonymous mutation in the coding sequence for the fluorescent protein and were classified as “coding” mutants; 2% had a change in the S. cerevisiae TDH3 promoter sequence controlling expression of the fluorescent protein and were classified as “cis-regulatory” mutants; 10% contained two copies of the reporter gene and were classified as “copy number” mutants; and the remaining 81% showed altered fluorescence without a change in the reporter gene itself and were classified as “trans-acting” mutants. As a group, coding mutants had the strongest effect on reporter gene activity and always decreased it. By contrast, 50%–95% of the mutants in each of the other three classes increased gene activity, with mutants affecting copy number and cis-regulatory sequences having larger median effects on gene activity than trans-acting mutants. When made heterozygous in diploid cells, coding, cis-regulatory, and copy number mutant genotypes all had significant effects on gene activity, whereas 88% of the trans-acting mutants appeared to be recessive. These differences in the frequency, effects, and dominance among functional classes of mutations might help explain why some types of mutations are found to be segregating within or fixed between species more often than others. Genetic dissection of phenotypic differences within and between species has shown that mutations affecting either the expression or function of a gene product can contribute to phenotypic evolution; mutations that alter gene copy number have also been shown to be an important source of phenotypic variation. Predicting when and why one type of mutation is more likely to underlie a phenotypic change than another remains a pressing challenge for evolution biology. Understanding the relative frequency and properties of different types of mutations will help resolve this issue. To this end, we isolated 231 mutants with altered activity of a focal gene. Mutants were classified into one of four functional classes (i.e., coding, cis-regulatory, trans-acting, or copy number) based on the location and nature of mutation(s), or lack thereof, within the focal gene. Mutant effects on focal gene activity were assessed in both haploid and diploid cells. These data identified differences in the frequency, effects, and dominance (relative to the wild-type allele) among functional classes of mutants that help explain patterns of genetic variation within and between species.
Collapse
Affiliation(s)
- Jonathan D. Gruber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kara Vogel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gizem Kalay
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ma X, Rogacheva MV, Nishant KT, Zanders S, Bustamante CD, Alani E. Mutation hot spots in yeast caused by long-range clustering of homopolymeric sequences. Cell Rep 2012; 1:36-42. [PMID: 22832106 DOI: 10.1016/j.celrep.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/29/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Evolutionary theory assumes that mutations occur randomly in the genome; however, studies performed in a variety of organisms indicate the existence of context-dependent mutation biases. Sources of mutagenesis variation across large genomic contexts (e.g., hundreds of bases) have not been identified. Here, we use high-coverage whole-genome sequencing of a conditional mismatch repair mutant line of diploid yeast to identify mutations that accumulated after 160 generations of growth. The vast majority of the mutations accumulated as insertion/deletions (in/dels) in homopolymeric [poly(dA:dT)] and repetitive DNA tracts. Surprisingly, the likelihood of an in/del mutation in a given poly(dA:dT) tract is increased by the presence of nearby poly(dA:dT) tracts in up to a 1,000 bp region centered on the given tract. Our work suggests that specific mutation hot spots can contribute disproportionately to the genetic variation that is introduced into populations and provides long-range genomic sequence context that contributes to mutagenesis.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
35
|
Buschiazzo E, Ritland C, Bohlmann J, Ritland K. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol 2012; 12:8. [PMID: 22264329 PMCID: PMC3328258 DOI: 10.1186/1471-2148-12-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. RESULTS Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10(-9) synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. CONCLUSIONS Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.
Collapse
Affiliation(s)
- Emmanuel Buschiazzo
- Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
36
|
Drillon G, Fischer G. Comparative study on synteny between yeasts and vertebrates. C R Biol 2011; 334:629-38. [PMID: 21819944 DOI: 10.1016/j.crvi.2011.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
We studied synteny conservation between 18 yeast species and 13 vertebrate species in order to provide a comparative analysis of the chromosomal plasticity in these 2 phyla. By computing the regions of conserved synteny between all pairwise combinations of species within each group, we show that in vertebrates, the number of conserved synteny blocks exponentially increases along with the divergence between orthologous protein and that concomitantly; the number of genes per block exponentially decreases. The same trends are found in yeasts but only when the mean protein divergence between orthologs remains below 36%. When the average protein divergence exceeds this threshold, the total number of recognizable synteny blocks gradually decreases due to the repeated accumulation of rearrangements. We also show that rearrangement rates are on average 3-fold higher in vertebrates than in yeasts, and are estimated to be of 2 rearrangements/Myr. However, the genome sizes being on average 200 times larger in vertebrates than in yeasts, the normalized rates of chromosome rearrangements (per Mb) are about 50-fold higher in yeast than in vertebrate genomes.
Collapse
Affiliation(s)
- Guénola Drillon
- CNRS UMR7238, Laboratoire de Génomique des Microorganismes, Université Pierre-et-Marie-Curie, Institut des Cordeliers, 15 rue de l'École-de-Médecine, 75006 Paris, France
| | | |
Collapse
|
37
|
McDonald MJ, Wang WC, Huang HD, Leu JY. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol 2011; 9:e1000622. [PMID: 21697975 PMCID: PMC3114760 DOI: 10.1371/journal.pbio.1000622] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/22/2011] [Indexed: 12/24/2022] Open
Abstract
The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.
Collapse
|
38
|
Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG, Xu H, Zhang L, Walsh J, Resnick MA, Mieczkowski PA, Gordenin DA. Damage-induced localized hypermutability. Cell Cycle 2011; 10:1073-85. [PMID: 21406975 DOI: 10.4161/cc.10.7.15319] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.
Collapse
Affiliation(s)
- Lauranell H Burch
- National Institute of Environmental Health Sciences, Research Triangle Park, NC USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 2011; 4:225-48. [PMID: 25567970 PMCID: PMC3352558 DOI: 10.1111/j.1752-4571.2010.00175.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022] Open
Abstract
Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from 'promiscuous' activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments.
Collapse
Affiliation(s)
| | - Colin Scott
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | - Rinku Pandey
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | | | | | | - Jian-Wei Liu
- CSIRO Ecosystem Sciences Canberra, ACT, Australia
| | | |
Collapse
|
40
|
Magee AM, Aspinall S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 2010; 20:1700-10. [PMID: 20978141 DOI: 10.1101/gr.111955.110] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.
Collapse
Affiliation(s)
- Alan M Magee
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cotton S, Wedekind C. Male mutation bias and possible long-term effects of human activities. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2010; 24:1190-1197. [PMID: 20507353 DOI: 10.1111/j.1523-1739.2010.01524.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.
Collapse
Affiliation(s)
- Samuel Cotton
- Research Department of Genetics, Evolution & Environment, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom.
| | | |
Collapse
|
42
|
Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 2010; 6:e1001109. [PMID: 20838597 PMCID: PMC2936533 DOI: 10.1371/journal.pgen.1001109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.
Collapse
Affiliation(s)
- K. T. Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Wu Wei
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Juan Lucas Argueso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | - Xin Ma
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Jan O. Korbel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Lars M. Steinmetz
- European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (LMS); (EA)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (LMS); (EA)
| |
Collapse
|
43
|
Power KA, Fitzgerald KT, Gallagher WM. Examination of cell–host–biomaterial interactions via high-throughput technologies: A re-appraisal. Biomaterials 2010; 31:6667-74. [DOI: 10.1016/j.biomaterials.2010.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|
44
|
Yang H, Zhong Y, Peng C, Chen JQ, Tian D. Important role of indels in somatic mutations of human cancer genes. BMC MEDICAL GENETICS 2010; 11:128. [PMID: 20807447 PMCID: PMC2940769 DOI: 10.1186/1471-2350-11-128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/01/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cancer is clonal proliferation that arises owing to mutations in a subset of genes that confer growth advantage. More and more cancer related genes are found to have accumulated somatic mutations. However, little has been reported about mutational patterns of insertions/deletions (indels) in these genes. RESULTS We analyzed indels' abundance and distribution, the relative ratio between indels and somatic base substitutions and the association between those two forms of mutations in a large number of somatic mutations in the Catalogue of Somatic Mutations in Cancer database. We found a strong correlation between indels and base substitutions in cancer-related genes and showed that they tend to concentrate at the same locus in the coding sequences within the same samples. More importantly, a much higher proportion of indels were observed in somatic mutations, as compared to meiotic ones. Furthermore, our analysis demonstrated a great diversity of indels at some loci of cancer-related genes. Particularly in the genes with abundant mutations, the proportion of 3n indels in oncogenes is 7.9 times higher than that in tumor suppressor genes. CONCLUSIONS There are three distinct patterns of indel distribution in somatic mutations: high proportion, great abundance and non-random distribution. Because of the great influence of indels on gene function (e.g., the effect of frameshift mutation), these patterns indicate that indels are frequently under positive selection and can often be the 'driver mutations' in oncogenesis. Such driver forces can better explain why much less frameshift mutations are in oncogenes while much more in tumor suppressor genes, because of their different function in oncogenesis. These findings contribute to our understanding of mutational patterns and the relationship between indels and cancer.
Collapse
Affiliation(s)
- Haiwang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| | - Yan Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| | - Cheng Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
45
|
Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach. Genetics 2010; 186:493-503. [PMID: 20660644 DOI: 10.1534/genetics.110.120105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication errors that escape polymerase proofreading and mismatch repair (MMR) can lead to base substitution and frameshift mutations. Such mutations can disrupt gene function, reduce fitness, and promote diseases such as cancer and are also the raw material of molecular evolution. To analyze with limited bias genomic features associated with DNA polymerase errors, we performed a genome-wide analysis of mutations that accumulate in MMR-deficient diploid lines of Saccharomyces cerevisiae. These lines were derived from a common ancestor and were grown for 160 generations, with bottlenecks reducing the population to one cell every 20 generations. We sequenced to between 8- and 20-fold coverage one wild-type and three mutator lines using Illumina Solexa 36-bp reads. Using an experimentally aware Bayesian genotype caller developed to pool experimental data across sequencing runs for all strains, we detected 28 heterozygous single-nucleotide polymorphisms (SNPs) and 48 single-nt insertion/deletions (indels) from the data set. This method was evaluated on simulated data sets and found to have a very low false-positive rate (∼6 × 10(-5)) and a false-negative rate of 0.08 within the unique mapping regions of the genome that contained at least sevenfold coverage. The heterozygous mutations identified by the Bayesian genotype caller were confirmed by Sanger sequencing. All of the mutations were unique to a given line, except for a single-nt deletion mutation which occurred independently in two lines. All 48 indels, composed of 46 deletions and two insertions, occurred in homopolymer (HP) tracts [i.e., 47 poly(A) or (T) tracts, 1 poly(G) or (C) tract] between 5 and 13 bp long. Our findings are of interest because HP tracts are present at high levels in the yeast genome (>77,400 for 5- to 20-nt HP tracts), and frameshift mutations in these regions are likely to disrupt gene function. In addition, they demonstrate that the mutation pattern seen previously in mismatch repair defective strains using a limited number of reporters holds true for the entire genome.
Collapse
|