1
|
Colón-Santos S, Vázquez-Salazar A, Adams A, Campillo-Balderas JA, Hernández-Morales R, Jácome R, Muñoz-Velasco I, Rodriguez LE, Schaible MJ, Schaible GA, Szeinbaum N, Thweatt JL, Trubl G. Chapter 2: What Is Life? ASTROBIOLOGY 2024; 24:S40-S56. [PMID: 38498820 DOI: 10.1089/ast.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.
Collapse
Affiliation(s)
- Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | | | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - George A Schaible
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
2
|
Harish A. Protein structures unravel the signatures and patterns of deep time evolution. QRB DISCOVERY 2024; 5:e3. [PMID: 38616890 PMCID: PMC11016368 DOI: 10.1017/qrd.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 04/16/2024] Open
Abstract
The formulation and testing of hypotheses using 'big biology data' often lie at the interface of computational biology and structural biology. The Protein Data Bank (PDB), which was established about 50 years ago, catalogs three-dimensional (3D) shapes of organic macromolecules and showcases a structural view of biology. The comparative analysis of the structures of homologs, particularly of proteins, from different species has significantly improved the in-depth analyses of molecular and cell biological questions. In addition, computational tools that were developed to analyze the 'protein universe' are providing the means for efficient resolution of longstanding debates in cell and molecular evolution. In celebrating the golden jubilee of the PDB, much has been written about the transformative impact of PDB on a broad range of fields of scientific inquiry and how structural biology transformed the study of the fundamental processes of life. Yet, the transforming influence of PDB on one field of inquiry of fundamental interest-the reconstruction of the distant biological past-has gone almost unnoticed. Here, I discuss the recent advances to highlight how insights and tools of structural biology are bearing on the data required for the empirical resolution of vigorously debated and apparently contradicting hypotheses in evolutionary biology. Specifically, I show that evolutionary characters defined by protein structure are superior compared to conventional sequence characters for reliable, data-driven resolution of competing hypotheses about the origins of the major clades of life and evolutionary relationship among those clades. Since the better quality data unequivocally support two primary domains of life, it is imperative that the primary classification of life be revised accordingly.
Collapse
|
3
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Dedeo CL, Teschke CM, Alexandrescu AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses 2020; 12:v12101163. [PMID: 33066635 PMCID: PMC7602432 DOI: 10.3390/v12101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: β-tulip, β-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.
Collapse
|
5
|
Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The SUPERFAMILY 2.0 database: a significant proteome update and a new webserver. Nucleic Acids Res 2020; 47:D490-D494. [PMID: 30445555 PMCID: PMC6324026 DOI: 10.1093/nar/gky1130] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023] Open
Abstract
Here, we present a major update to the SUPERFAMILY database and the webserver. We describe the addition of new SUPERFAMILY 2.0 profile HMM library containing a total of 27 623 HMMs. The database now includes Superfamily domain annotations for millions of protein sequences taken from the Universal Protein Recourse Knowledgebase (UniProtKB) and the National Center for Biotechnology Information (NCBI). This addition constitutes about 51 and 45 million distinct protein sequences obtained from UniProtKB and NCBI respectively. Currently, the database contains annotations for 63 244 and 102 151 complete genomes taken from UniProtKB and NCBI respectively. The current sequence collection and genome update is the biggest so far in the history of SUPERFAMILY updates. In order to the deal with the massive wealth of information, here we introduce a new SUPERFAMILY 2.0 webserver (http://supfam.org). Currently, the webserver mainly focuses on the search, retrieval and display of Superfamily annotation for the entire sequence and genome collection in the database.
Collapse
Affiliation(s)
| | | | - Matt E Oates
- Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Ben Smithers
- Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Julian Gough
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
6
|
Kirsip H, Abroi A. Protein Structure-Guided Hidden Markov Models (HMMs) as A Powerful Method in the Detection of Ancestral Endogenous Viral Elements. Viruses 2019; 11:v11040320. [PMID: 30986983 PMCID: PMC6520822 DOI: 10.3390/v11040320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
It has been believed for a long time that the transfer and fixation of genetic material from RNA viruses to eukaryote genomes is very unlikely. However, during the last decade, there have been several cases in which “virus-to-host” gene transfer from various viral families into various eukaryotic phyla have been described. These transfers have been identified by sequence similarity, which may disappear very quickly, especially in the case of RNA viruses. However, compared to sequences, protein structure is known to be more conserved. Applying protein structure-guided protein domain-specific Hidden Markov Models, we detected homologues of the Virgaviridae capsid protein in Schizophora flies. Further data analysis supported “virus-to-host” transfer into Schizophora ancestors as a single transfer event. This transfer was not identifiable by BLAST or by other methods we applied. Our data show that structure-guided Hidden Markov Models should be used to detect ancestral virus-to-host transfers.
Collapse
Affiliation(s)
- Heleri Kirsip
- Department of Bioinformatics, University of Tartu, Tartu, 51010, Riia 23, Estonia.
| | - Aare Abroi
- Institute of Technology, University of Tartu, Tartu, 50411, Nooruse 1, Estonia.
| |
Collapse
|
7
|
Giant viruses as protein-coated amoeban mitochondria? Virus Res 2018; 253:77-86. [DOI: 10.1016/j.virusres.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
|
8
|
Malik SS, Azem-E-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do Viruses Exchange Genes across Superkingdoms of Life? Front Microbiol 2017; 8:2110. [PMID: 29163404 PMCID: PMC5671483 DOI: 10.3389/fmicb.2017.02110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
Collapse
Affiliation(s)
- Shahana S Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Azem-E-Zahra
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Puustusmaa M, Kirsip H, Gaston K, Abroi A. The Enigmatic Origin of Papillomavirus Protein Domains. Viruses 2017; 9:v9090240. [PMID: 28832519 PMCID: PMC5618006 DOI: 10.3390/v9090240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022] Open
Abstract
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Heleri Kirsip
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Kevin Gaston
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Aare Abroi
- Estonian Biocentre, Riia 23b, Tartu 51010, Estonia.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
10
|
Collier JH, Allison L, Lesk AM, Stuckey PJ, Garcia de la Banda M, Konagurthu AS. Statistical inference of protein structural alignments using information and compression. Bioinformatics 2017; 33:1005-1013. [PMID: 28065899 DOI: 10.1093/bioinformatics/btw757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/22/2016] [Indexed: 11/14/2022] Open
Abstract
Motivation Structural molecular biology depends crucially on computational techniques that compare protein three-dimensional structures and generate structural alignments (the assignment of one-to-one correspondences between subsets of amino acids based on atomic coordinates). Despite its importance, the structural alignment problem has not been formulated, much less solved, in a consistent and reliable way. To overcome these difficulties, we present here a statistical framework for the precise inference of structural alignments, built on the Bayesian and information-theoretic principle of Minimum Message Length (MML). The quality of any alignment is measured by its explanatory power-the amount of lossless compression achieved to explain the protein coordinates using that alignment. Results We have implemented this approach in MMLigner , the first program able to infer statistically significant structural alignments. We also demonstrate the reliability of MMLigner 's alignment results when compared with the state of the art. Importantly, MMLigner can also discover different structural alignments of comparable quality, a challenging problem for oligomers and protein complexes. Availability and Implementation Source code, binaries and an interactive web version are available at http://lcb.infotech.monash.edu.au/mmligner . Contact arun.konagurthu@monash.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- James H Collier
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Lloyd Allison
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Peter J Stuckey
- Department of Computing and Information Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Arun S Konagurthu
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
Nasir A, Caetano-Anollés G. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification. Front Microbiol 2017; 8:380. [PMID: 28344575 PMCID: PMC5344890 DOI: 10.3389/fmicb.2017.00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new additions, suggesting it could be a useful supplement to experimental approaches and to aid qualitative assessment of viral diversity in metagenome samples.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
12
|
Artuso M, Roldán J, Scolaro L, Carlucci M. Viruses: As mediators in “ Élan vital ” of the “creative” evolution. INFECTION GENETICS AND EVOLUTION 2016; 46:78-84. [DOI: 10.1016/j.meegid.2016.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
13
|
Harish A, Abroi A, Gough J, Kurland C. Did Viruses Evolve As a Distinct Supergroup from Common Ancestors of Cells? Genome Biol Evol 2016; 8:2474-81. [PMID: 27497315 PMCID: PMC5010908 DOI: 10.1093/gbe/evw175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionary origins of viruses according to marker gene phylogenies, as well as their relationships to the ancestors of host cells remains unclear. In a recent article Nasir and Caetano-Anollés reported that their genome-scale phylogenetic analyses based on genomic composition of protein structural-domains identify an ancient origin of the “viral supergroup” (Nasir et al. 2015. A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv. 1(8):e1500527.). It suggests that viruses and host cells evolved independently from a universal common ancestor. Examination of their data and phylogenetic methods indicates that systematic errors likely affected the results. Reanalysis of the data with additional tests shows that small-genome attraction artifacts distort their phylogenomic analyses, particularly the location of the root of the phylogenetic tree of life that is central to their conclusions. These new results indicate that their suggestion of a distinct ancestry of the viral supergroup is not well supported by the evidence.
Collapse
Affiliation(s)
- Ajith Harish
- Structural and Molecular Biology Group, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Sweden
| | - Aare Abroi
- Estonian Biocentre, Riia 23, Tartu 51010, Estonia
| | - Julian Gough
- Computational Genomics Group, Department of Computer Science, University of Bristol, The Merchant Venturers Building, UK
| | - Charles Kurland
- Microbial Ecology, Department of Biology, Lund University, Sweden
| |
Collapse
|
14
|
Montiel-García DJ, Mannige RV, Reddy VS, Carrillo-Tripp M. Structure based sequence analysis of viral and cellular protein assemblies. J Struct Biol 2016; 196:299-308. [PMID: 27480508 DOI: 10.1016/j.jsb.2016.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
It is well accepted that, in general, protein structural similarity is strongly related to the amino acid sequence identity. To analyze in great detail the correlation, distribution and variation levels of conserved residues in the protein structure, we analyzed all available high-resolution structural data of 5245 cellular complex-forming proteins and 293 spherical virus capsid proteins (VCPs). We categorized and compare them in terms of protein structural regions. In all cases, the buried core residues are the most conserved, followed by the residues at the protein-protein interfaces. The solvent-exposed surface shows greater sequence variations. Our results provide evidence that cellular monomers and VCPs could be two extremes in the quaternary structural space, with cellular dimers and oligomers in between. Moreover, based on statistical analysis, we detected a distinct group of icosahedral virus families whose capsid proteins seem to evolve much slower than the rest of the protein complexes analyzed in this work.
Collapse
Affiliation(s)
- Daniel J Montiel-García
- Biomolecular Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Ranjan V Mannige
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vijay S Reddy
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
15
|
Sankovski E, Karro K, Sepp M, Kurg R, Ustav M, Abroi A. Characterization of the nuclear matrix targeting sequence (NMTS) of the BPV1 E8/E2 protein--the shortest known NMTS. Nucleus 2016. [PMID: 26218798 DOI: 10.1080/19491034.2015.1074359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Technological advantages in sequencing and proteomics have revealed the remarkable diversity of alternative protein isoforms. Typically, the localization and functions of these isoforms are unknown and cannot be predicted. Also the localization signals leading to particular subnuclear compartments have not been identified and thus, predicting alternative functions due to alternative subnuclear localization is limited only to very few subnuclear compartments. Knowledge of the localization and function of alternative protein isoforms allows for a greater understanding of cellular complexity. In this article, we characterize a short and well-defined signal targeting the bovine papillomavirus type 1 E8/E2 protein to the nuclear matrix. The targeting signal comprises the peptide coded by E8 ORF, which is spliced together with part of the E2 ORF to generate the E8/E2 mRNA. Localization to the nuclear matrix correlates well with the transcription repression activities of E8/E2; a single point mutation directs the E8/E2 protein into the nucleoplasm, and transcription repression activity is lost. Our data prove that adding as few as ˜10 amino acids by alternative transcription/alternative splicing drastically alters the function and subnuclear localization of proteins. To our knowledge, E8 is the shortest known nuclear matrix targeting signal.
Collapse
|
16
|
Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bäuerlein FJB, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grünewald K. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell 2016; 163:1692-701. [PMID: 26687357 PMCID: PMC4701712 DOI: 10.1016/j.cell.2015.11.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/11/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022]
Abstract
Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM. Multimodal imaging reveals mechanism of vesicle formation at inner nuclear membrane Nucleo-cytoplasmic cargo vesicle coat in situ comprises two distinct lattices Lattices are formed by hexameric building blocks made of the nuclear egress complex Induction of membrane curvature based solely on heterodimeric interactions
Collapse
Affiliation(s)
- Christoph Hagen
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kyle C Dent
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Tzviya Zeev-Ben-Mordehai
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michael Grange
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jens B Bosse
- Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Cathy Whittle
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - C Alistair Siebert
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Felix J B Bäuerlein
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Juliana Cheleski
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stephan Werner
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany
| | - Stefan Rehbein
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany
| | - Katja Henzler
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany
| | - Justin Demmerle
- Micron Oxford, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Barbara Adler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Ulrich Koszinowski
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Lothar Schermelleh
- Micron Oxford, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin, Germany
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
17
|
A protein domain-based view of the virosphere–host relationship. Biochimie 2015; 119:231-43. [DOI: 10.1016/j.biochi.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022]
|
18
|
Durzyńska J, Goździcka-Józefiak A. Viruses and cells intertwined since the dawn of evolution. Virol J 2015; 12:169. [PMID: 26475454 PMCID: PMC4609113 DOI: 10.1186/s12985-015-0400-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Many attempts have been made to define nature of viruses and to uncover their origin. Our aim within this work was to show that there are different perceptions of viruses and many concepts to explain their emergence: the virus-first concept (also called co-evolution), the escape and the reduction theories. Moreover, a relatively new concept of polyphyletic virus origin called “three RNA cells, three DNA viruses” proposed by Forterre is described herein. In this paper, not only is each thesis supported by a body of evidence but also counter-argued in the light of various findings to give more insightful considerations to the readers. As the origin of viruses and that of living cells are most probably interdependent, we decided to reveal ideas concerning nature of cellular last universal common ancestor (LUCA). Furthermore, we discuss monophyletic ancestry of cellular domains and their relationships at the molecular level of membrane lipids and replication strategies of these three types of cells. In this review, we also present the emergence of DNA viruses requiring an evolutionary transition from RNA to DNA and recently discovered giant DNA viruses possibly involved in eukaryogenesis. In the course of evolution viruses emerged many times. They have always played a key role through horizontal gene transfer in evolutionary events and in formation of the tree of life or netlike routes of evolution providing a great deal of genetic diversity. In our opinion, future findings are crucial to better understand past relations between viruses and cells and the origin of both.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland.
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
19
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
20
|
Nasir A, Sun FJ, Kim KM, Caetano-Anollés G. Untangling the origin of viruses and their impact on cellular evolution. Ann N Y Acad Sci 2015; 1341:61-74. [PMID: 25758413 DOI: 10.1111/nyas.12735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution.
Collapse
Affiliation(s)
- Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Illinois Informatics Institute, University of Illinois, Urbana, Illinois
| | | | | | | |
Collapse
|
21
|
|
22
|
Nasir A, Kim KM, Caetano-Anollés G. Viral evolution: Primordial cellular origins and late adaptation to parasitism. Mob Genet Elements 2014; 2:247-252. [PMID: 23550145 PMCID: PMC3575434 DOI: 10.4161/mge.22797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Crop Science; University of Illinois at Urbana-Champaign; Urbana, IL USA ; Illinois Informatics Institute; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | | | | |
Collapse
|
23
|
Nasir A, Forterre P, Kim KM, Caetano-Anollés G. The distribution and impact of viral lineages in domains of life. Front Microbiol 2014; 5:194. [PMID: 24817866 PMCID: PMC4012193 DOI: 10.3389/fmicb.2014.00194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, Illinois Informatics Institute, University of Illinois, Urbana-Champaign Urbana, IL, USA
| | - Patrick Forterre
- Unité BMGE, Institute Pasteur Paris, France ; Institut de Génétique and Microbiologie, Université Paris-Sud, CNRS UMR8621 Orsay, France
| | - Kyung Mo Kim
- Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, Illinois Informatics Institute, University of Illinois, Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
24
|
Viral proteins originated de novo by overprinting can be identified by codon usage: application to the "gene nursery" of Deltaretroviruses. PLoS Comput Biol 2013; 9:e1003162. [PMID: 23966842 PMCID: PMC3744397 DOI: 10.1371/journal.pcbi.1003162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/13/2013] [Indexed: 12/24/2022] Open
Abstract
A well-known mechanism through which new protein-coding genes originate is by modification of pre-existing genes, e.g. by duplication or horizontal transfer. In contrast, many viruses generate protein-coding genes de novo, via the overprinting of a new reading frame onto an existing (“ancestral”) frame. This mechanism is thought to play an important role in viral pathogenicity, but has been poorly explored, perhaps because identifying the de novo frames is very challenging. Therefore, a new approach to detect them was needed. We assembled a reference set of overlapping genes for which we could reliably determine the ancestral frames, and found that their codon usage was significantly closer to that of the rest of the viral genome than the codon usage of de novo frames. Based on this observation, we designed a method that allowed the identification of de novo frames based on their codon usage with a very good specificity, but intermediate sensitivity. Using our method, we predicted that the Rex gene of deltaretroviruses has originated de novo by overprinting the Tax gene. Intriguingly, several genes in the same genomic region have also originated de novo and encode proteins that regulate the functions of Tax. Such “gene nurseries” may be common in viral genomes. Finally, our results confirm that the genomic GC content is not the only determinant of codon usage in viruses and suggest that a constraint linked to translation must influence codon usage. How does novelty originate in nature? It is commonly thought that new genes are generated mainly by modifications of existing genes (the “tinkering” model). In contrast, we have shown recently that in viruses, numerous genes are generated entirely de novo (“from scratch”). The role of these genes remains underexplored, however, because they are difficult to identify. We have therefore developed a new method to detect genes originated de novo in viral genomes, based on the observation that each viral genome has a unique “signature”, which genes originated de novo do not share. We applied this method to analyze the genes of Human T-Lymphotropic Virus 1 (HTLV1), a relative of the HIV virus and also a major human pathogen that infects about twenty million people worldwide. The life cycle of HTLV1 is finely regulated – it can stay dormant for long periods and can provoke blood cancers (leukemias) after a very long incubation. We discovered that several of the genes of HTLV1 have originated de novo. These novel genes play a key role in regulating the life cycle of HTLV1, and presumably its pathogenicity. Our investigations suggest that such “gene nurseries” may be common in viruses.
Collapse
|
25
|
Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 2013; 3:558-65. [PMID: 23870799 DOI: 10.1016/j.coviro.2013.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/13/2013] [Accepted: 06/22/2013] [Indexed: 01/18/2023]
Abstract
Viral particles are much more abundant than cells and viral genes outnumber cellular ones in the biosphere. Cellular genomes also harbour many integrated viruses whereas cellular genes are rare in viral genomes. The gene flux from virus to cell is thus overwhelming if compared with the opposite event. Novel viral genes continuously arose during replication/recombination of viral genomes in the virocell. These genes can become 'cellular genes' when viral genomes integrate into cellular ones. Together with the arm race between viruses and cells, this explains why viruses have played a major role in shaping cellular gene contents. Several documented cases show that viruses have been involved in the emergence of evolutionary innovations. This gives credit to hypotheses suggesting that viruses have played an important role in the formation of modern cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France; Univ Paris-Sud, CNRS UMR8621, Orsay Cedex 91405, France.
| | | |
Collapse
|
26
|
Bornberg-Bauer E, Albà MM. Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol 2013; 23:459-66. [PMID: 23562500 DOI: 10.1016/j.sbi.2013.02.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 11/29/2022]
Abstract
During protein evolution, novel domain arrangements are continuously formed. Rearrangements are important for the creation of molecular biodiversity and for functional molecular changes which underlie developmental shifts in the bauplan of organisms. Here we review the mechanisms by which new arrangements arise and the potential benefits of rearrangements. We concentrate on how new domains emerge and why they rapidly spread across genomes, gaining higher copy numbers than older, more established domains. This spread is most likely a consequence of their high adaptive potential but is unlikely to make up on its own for the drastic loss of domains, which is observed across different taxa. We show that a significant portion of the recently emerged domains, especially those in multidomain families, are highly disordered and speculate about the significance of these findings for the evolvability of novel genetic material.
Collapse
Affiliation(s)
- Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, School of Biological Sciences, University of Münster, Hüfferstrasse 1, D48149 Münster, Germany.
| | | |
Collapse
|
27
|
Fuerst J. Microorganisms-A Forum for Understanding Microbial Life in All Its Forms. Microorganisms 2013; 1:1-2. [PMID: 27694760 PMCID: PMC5029492 DOI: 10.3390/microorganisms1010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 11/16/2022] Open
Affiliation(s)
- John Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia.
| |
Collapse
|
28
|
Cheng S, Brooks CL. Viral capsid proteins are segregated in structural fold space. PLoS Comput Biol 2013; 9:e1002905. [PMID: 23408879 PMCID: PMC3567143 DOI: 10.1371/journal.pcbi.1002905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 12/16/2012] [Indexed: 02/04/2023] Open
Abstract
Viral capsid proteins assemble into large, symmetrical architectures that are not found in complexes formed by their cellular counterparts. Given the prevalence of the signature jelly-roll topology in viral capsid proteins, we are interested in whether these functionally unique capsid proteins are also structurally unique in terms of folds. To explore this question, we applied a structure-alignment based clustering of all protein chains in VIPERdb filtered at 40% sequence identity to identify distinct capsid folds, and compared the cluster medoids with a non-redundant subset of protein domains in the SCOP database, not including the viral capsid entries. This comparison, using Template Modeling (TM)-score, identified 2078 structural "relatives" of capsid proteins from the non-capsid set, covering altogether 210 folds following the definition in SCOP. The statistical significance of the 210 folds shared by two sets of the same sizes, estimated from 10,000 permutation tests, is less than 0.0001, which is an upper bound on the p-value. We thus conclude that viral capsid proteins are segregated in structural fold space. Our result provides novel insight on how structural folds of capsid proteins, as opposed to their surface chemistry, might be constrained during evolution by requirement of the assembled cage-like architecture. Also importantly, our work highlights a guiding principle for virus-based nanoplatform design in a wide range of biomedical applications and materials science.
Collapse
Affiliation(s)
- Shanshan Cheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles L. Brooks
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
29
|
Nasir A, Kim KM, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 2012; 12:156. [PMID: 22920653 PMCID: PMC3570343 DOI: 10.1186/1471-2148-12-156] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022] Open
Abstract
Background The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a ‘fourth supergroup’ along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere.
Collapse
Affiliation(s)
- Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
30
|
Sabath N, Wagner A, Karlin D. Evolution of viral proteins originated de novo by overprinting. Mol Biol Evol 2012; 29:3767-80. [PMID: 22821011 PMCID: PMC3494269 DOI: 10.1093/molbev/mss179] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to young de novo genes, older de novo genes have a codon usage that is similar to the rest of the genome. They evolve slowly and are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene.
Collapse
Affiliation(s)
- Niv Sabath
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
31
|
|