1
|
Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals (Basel) 2023; 13:ani13040556. [PMID: 36830343 PMCID: PMC9951749 DOI: 10.3390/ani13040556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.
Collapse
|
2
|
Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes (Basel) 2021; 12:genes12111819. [PMID: 34828425 PMCID: PMC8618825 DOI: 10.3390/genes12111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Origination of new genes are of inherent interest of evolutionary geneticists for decades, but few studies have addressed the general pattern in a fish lineage. Using our recent released whole genome data of flatfishes, which evolved one of the most specialized body plans in vertebrates, we identified 1541 (6.9% of the starry flounder genes) flatfish-lineage-specific genes. The origination pattern of these flatfish new genes is largely similar to those observed in other vertebrates, as shown by the proportion of DNA-mediated duplication (1317; 85.5%), RNA-mediated duplication (retrogenes; 96; 6.2%), and de novo-origination (128; 8.3%). The emergence rate of species-specific genes is 32.1 per Mya and the whole average level rate for the flatfish-lineage-specific genes is 20.9 per Mya. A large proportion (31.4%) of these new genes have been subjected to selection, in contrast to the 4.0% in primates, while the old genes remain quite similar (66.4% vs. 65.0%). In addition, most of these new genes (70.8%) are found to be expressed, indicating their functionality. This study not only presents one example of systematic new gene identification in a teleost taxon based on comprehensive phylogenomic data, but also shows that new genes may play roles in body planning.
Collapse
|
3
|
Dolby GA, Morales M, Webster TH, DeNardo DF, Wilson MA, Kusumi K. Discovery of a New TLR Gene and Gene Expansion Event through Improved Desert Tortoise Genome Assembly with Chromosome-Scale Scaffolds. Genome Biol Evol 2020; 12:3917-3925. [PMID: 32011707 PMCID: PMC7058155 DOI: 10.1093/gbe/evaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a complex family of innate immune genes that are well characterized in mammals and birds but less well understood in nonavian sauropsids (reptiles). The advent of highly contiguous draft genomes of nonmodel organisms enables study of such gene families through analysis of synteny and sequence identity. Here, we analyze TLR genes from the genomes of 22 tetrapod species. Findings reveal a TLR8 gene expansion in crocodilians and turtles (TLR8B), and a second duplication (TLR8C) specifically within turtles, followed by pseudogenization of that gene in the nonfreshwater species (desert tortoise and green sea turtle). Additionally, the Mojave desert tortoise (Gopherus agassizii) has a stop codon in TLR8B (TLR8-1) that is polymorphic among conspecifics. Revised orthology further reveals a new TLR homolog, TLR21-like, which is exclusive to lizards, snakes, turtles, and crocodilians. These analyses were made possible by a new draft genome assembly of the desert tortoise (gopAga2.0), which used chromatin-based assembly to yield draft chromosomal scaffolds (L50 = 26 scaffolds, N50 = 28.36 Mb, longest scaffold = 107 Mb) and an enhanced de novo genome annotation with 25,469 genes. Our three-step approach to orthology curation and comparative analysis of TLR genes shows what new insights are possible using genome assemblies with chromosome-scale scaffolds that permit integration of synteny conservation data.
Collapse
Affiliation(s)
- Greer A Dolby
- School of Life Sciences, Arizona State University
- Center for Mechanisms of Evolution, Arizona State University
| | | | - Timothy H Webster
- School of Life Sciences, Arizona State University
- Department of Anthropology, University of Utah
| | | | - Melissa A Wilson
- School of Life Sciences, Arizona State University
- Center for Evolution and Medicine, Arizona State University
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University
| |
Collapse
|
4
|
Lee YCG, Ventura IM, Rice GR, Chen DY, Colmenares SU, Long M. Rapid Evolution of Gained Essential Developmental Functions of a Young Gene via Interactions with Other Essential Genes. Mol Biol Evol 2020; 36:2212-2226. [PMID: 31187122 DOI: 10.1093/molbev/msz137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New genes are of recent origin and only present in a subset of species in a phylogeny. Accumulated evidence suggests that new genes, like old genes that are conserved across species, can also take on important functions and be essential for the survival and reproductive success of organisms. Although there are detailed analyses of the mechanisms underlying new genes' gaining fertility functions, how new genes rapidly become essential for viability remains unclear. We focused on a young retro-duplicated gene (CG7804, which we named Cocoon) in Drosophila that originated between 4 and 10 Ma. We found that, unlike its evolutionarily conserved parental gene, Cocoon has evolved under positive selection and accumulated many amino acid differences at functional sites from the parental gene. Despite its young age, Cocoon is essential for the survival of Drosophila melanogaster at multiple developmental stages, including the critical embryonic stage, and its expression is essential in different tissues from those of its parental gene. Functional genomic analyses found that Cocoon acquired unique DNA-binding sites and has a contrasting effect on gene expression to that of its parental gene. Importantly, Cocoon binding predominantly locates at genes that have other essential functions and/or have multiple gene-gene interactions, suggesting that Cocoon acquired novel essential function to survival through forming interactions that have large impacts on the gene interaction network. Our study is an important step toward deciphering the evolutionary trajectory by which new genes functionally diverge from parental genes and become essential.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Gavin R Rice
- Department of Evolution and Ecology, University of California, Davis, Davis, CA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
5
|
Vizán-Rico HI, Mayer C, Petersen M, McKenna DD, Zhou X, Gómez-Zurita J. Patterns and Constraints in the Evolution of Sperm Individualization Genes in Insects, with an Emphasis on Beetles. Genes (Basel) 2019; 10:E776. [PMID: 31590243 PMCID: PMC6826512 DOI: 10.3390/genes10100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Gene expression profiles can change dramatically between sexes and sex bias may contribute specific macroevolutionary dynamics for sex-biased genes. However, these dynamics are poorly understood at large evolutionary scales due to the paucity of studies that have assessed orthology and functional homology for sex-biased genes and the pleiotropic effects possibly constraining their evolutionary potential. Here, we explore the correlation of sex-biased expression with macroevolutionary processes that are associated with sex-biased genes, including duplications and accelerated evolutionary rates. Specifically, we examined these traits in a group of 44 genes that orchestrate sperm individualization during spermatogenesis, with both unbiased and sex-biased expression. We studied these genes in the broad evolutionary framework of the Insecta, with a particular focus on beetles (order Coleoptera). We studied data mined from 119 insect genomes, including 6 beetle models, and from 19 additional beetle transcriptomes. For the subset of physically and/or genetically interacting proteins, we also analyzed how their network structure may condition the mode of gene evolution. The collection of genes was highly heterogeneous in duplication status, evolutionary rates, and rate stability, but there was statistical evidence for sex bias correlated with faster evolutionary rates, consistent with theoretical predictions. Faster rates were also correlated with clocklike (insect amino acids) and non-clocklike (beetle nucleotides) substitution patterns in these genes. Statistical associations (higher rates for central nodes) or lack thereof (centrality of duplicated genes) were in contrast to some current evolutionary hypotheses, highlighting the need for more research on these topics.
Collapse
Affiliation(s)
- Helena I. Vizán-Rico
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain;
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; (C.M.); (M.P.)
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; (C.M.); (M.P.)
| | - Duane D. McKenna
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jesús Gómez-Zurita
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain;
| |
Collapse
|
6
|
Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:467-488. [PMID: 30810961 DOI: 10.1007/s11427-018-9458-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Complex regions in eukaryotic genomes are typically characterized by duplications of chromosomal stretches that often include one or more genes repeated in a tandem array or in relatively close proximity. Nevertheless, the repetitive nature of these regions, together with the often high sequence identity among repeats, have made complex regions particularly recalcitrant to proper molecular characterization, often being misassembled or completely absent in genome assemblies. This limitation has prevented accurate functional and evolutionary analyses of these regions. This is becoming increasingly relevant as evidence continues to support a central role for complex genomic regions in explaining human disease, developmental innovations, and ecological adaptations across phyla. With the advent of long-read sequencing technologies and suitable assemblers, the development of algorithms that can accommodate sample heterozygosity, and the adoption of a pangenomic-like view of these regions, accurate reconstructions of complex regions are now within reach. These reconstructions will finally allow for accurate functional and evolutionary studies of complex genomic regions, underlying the generation of genotype-phenotype maps of unprecedented resolution.
Collapse
|
7
|
Zou Z, Qin H, Brenner AE, Raghavan R, Millar JA, Gu Q, Xie Z, Kreth J, Merritt J. LytTR Regulatory Systems: A potential new class of prokaryotic sensory system. PLoS Genet 2018; 14:e1007709. [PMID: 30296267 PMCID: PMC6193735 DOI: 10.1371/journal.pgen.1007709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/18/2018] [Accepted: 09/23/2018] [Indexed: 01/28/2023] Open
Abstract
The most commonly studied prokaryotic sensory signal transduction systems include the one-component systems, phosphosignaling systems, extracytoplasmic function (ECF) sigma factor systems, and the various types of second messenger systems. Recently, we described the regulatory role of two separate sensory systems in Streptococcus mutans that jointly control bacteriocin gene expression, natural competence development, as well as a cell death pathway, yet they do not function via any of the currently recognized signal transduction paradigms. These systems, which we refer to as LytTR Regulatory Systems (LRS), minimally consist of two proteins, a transcription regulator from the LytTR Family and a transmembrane protein inhibitor of this transcription regulator. Here, we provide evidence suggesting that LRS are a unique uncharacterized class of prokaryotic sensory system. LRS exist in a basal inactive state. However, when LRS membrane inhibitor proteins are inactivated, an autoregulatory positive feedback loop is triggered due to LRS regulator protein interactions with direct repeat sequences located just upstream of the -35 sequences of LRS operon promoters. Uncharacterized LRS operons are widely encoded by a vast array of Gram positive and Gram negative bacteria as well as some archaea. These operons also contain unique direct repeat sequences immediately upstream of their operon promoters indicating that positive feedback autoregulation is a globally conserved feature of LRS. Despite the surprisingly widespread occurrence of LRS operons, the only characterized examples are those of S. mutans. Therefore, the current study provides a useful roadmap to investigate LRS function in the numerous other LRS-encoding organisms.
Collapse
Affiliation(s)
- Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Amanda E. Brenner
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Rahul Raghavan
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Jess A. Millar
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Qiang Gu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
8
|
Johnson BR. Taxonomically Restricted Genes Are Fundamental to Biology and Evolution. Front Genet 2018; 9:407. [PMID: 30294344 PMCID: PMC6158316 DOI: 10.3389/fgene.2018.00407] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Genes limited to particular clades, taxonomically restricted genes (TRGs), are common in all sequenced genomes. TRGs have recently become associated with the evolution of novelty, as numerous studies across the tree of life have now linked expression of TRGs with novel phenotypes. However, TRGs that underlie ancient lineage specific traits have been largely omitted from discussions of the general importance of TRGs. Here it is argued that when all TRGs are considered, it is apparent that TRGs are fundamental to biology and evolution and likely play many complementary roles to the better understood toolkit genes. Genes underlying photosynthesis and skeletons, for example, are examples of commonplace fundamental TRGs. Essentially, although basic cell biology has a highly conserved genetic basis across the tree of life, most major clades also have lineage specific traits central to their biology and these traits are often based on TRGs. In short, toolkit genes underlie what is conserved across organisms, while TRGs define in many cases what is unique. An appreciation of the importance of TRGs will improve our understanding of evolution by triggering the study of neglected topics in which TRGs are of paramount importance.
Collapse
Affiliation(s)
- Brian R Johnson
- Department of Entomology and Nematology, Center for Population Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Adaptive evolution by spontaneous domain fusion and protein relocalization. Nat Ecol Evol 2017; 1:1562-1568. [PMID: 29185504 DOI: 10.1038/s41559-017-0283-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
Knowledge of adaptive processes encompasses understanding the emergence of new genes. Computational analyses of genomes suggest that new genes can arise by domain swapping; however, empirical evidence has been lacking. Here we describe a set of nine independent deletion mutations that arose during selection experiments with the bacterium Pseudomonas fluorescens in which the membrane-spanning domain of a fatty acid desaturase became translationally fused to a cytosolic di-guanylate cyclase, generating an adaptive 'wrinkly spreader' phenotype. Detailed genetic analysis of one gene fusion shows that the mutant phenotype is caused by relocalization of the di-guanylate cyclase domain to the cell membrane. The relative ease by which this new gene arose, along with its functional and regulatory effects, provides a glimpse of mutational events and their consequences that are likely to have a role in the evolution of new genes.
Collapse
|
10
|
Vizán-Rico HI, Gómez-Zurita J. Testis-specific RNA-Seq of Calligrapha (Chrysomelidae) as a transcriptomic resource for male-biased gene inquiry in Coleoptera. Mol Ecol Resour 2016; 17:533-545. [PMID: 27288908 DOI: 10.1111/1755-0998.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
We report the architecture of testis transcriptomes of four closely related species of Calligrapha (Chrysomelidae) beetles, which diverged during the last 3 million years. Five cDNA libraries were sequenced using Illumina HiSeq technology, retrieving 102 884-176 514 assembled contigs, of which ~33-45% of these longer than 499 nt were functionally annotated. Annotation and sequence similarity comparisons of these libraries revealed high homogeneity in gene composition and the presence of several functional candidates related to reproduction or reproductive processes (0.72-1.08% of annotated sequences). Stringent sequence similarity analyses of these transcriptomes against empirically demonstrated male-biased genes in Drosophila melanogaster and Tribolium castaneum allowed the identification of 77 homologues in Calligrapha, possible candidates of male-biased expression. Some of these genes - including CG9313, Tektin-A or tomboy40 - were confirmed as orthologs of these male-biased genes using phylogenetic inference and available model insect data, increasing our confidence that they represent functional homologues too. Our transcriptomes are a valuable transcriptomic resource for the analysis of male-biased genes in Calligrapha, which has the added interest of including several female-only species. But it simultaneously represents a landmark for similar studies in Coleoptera, broadening the taxonomic diversity currently represented by the model species T. castaneum, and incipient genomic data in other herbivorous lineages, including weevils, longhorn beetles and leaf beetles.
Collapse
Affiliation(s)
- Helena I Vizán-Rico
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Spain
| | - Jesús Gómez-Zurita
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Spain
| |
Collapse
|
11
|
McLysaght A, Guerzoni D. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140332. [PMID: 26323763 PMCID: PMC4571571 DOI: 10.1098/rstb.2014.0332] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The origin of novel protein-coding genes de novo was once considered so improbable as to be impossible. In less than a decade, and especially in the last five years, this view has been overturned by extensive evidence from diverse eukaryotic lineages. There is now evidence that this mechanism has contributed a significant number of genes to genomes of organisms as diverse as Saccharomyces, Drosophila, Plasmodium, Arabidopisis and human. From simple beginnings, these genes have in some instances acquired complex structure, regulated expression and important functional roles. New genes are often thought of as dispensable late additions; however, some recent de novo genes in human can play a role in disease. Rather than an extremely rare occurrence, it is now evident that there is a relatively constant trickle of proto-genes released into the testing ground of natural selection. It is currently unknown whether de novo genes arise primarily through an ‘RNA-first’ or ‘ORF-first’ pathway. Either way, evolutionary tinkering with this pool of genetic potential may have been a significant player in the origins of lineage-specific traits and adaptations.
Collapse
Affiliation(s)
- Aoife McLysaght
- Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Daniele Guerzoni
- Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
12
|
Oppenheim SJ, Baker RH, Simon S, DeSalle R. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects. INSECT MOLECULAR BIOLOGY 2015; 24:139-54. [PMID: 25524309 PMCID: PMC4383654 DOI: 10.1111/imb.12154] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile.
Collapse
Affiliation(s)
- Sara J Oppenheim
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Richard H Baker
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Sabrina Simon
- Biosystematics Group, Wageningen UniversityWageningen, The Netherlands
| | - Rob DeSalle
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
- Correspondence: Dr. Robert DeSalle, Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA. Tel.: 212-769-5670; e-mail:
| |
Collapse
|
13
|
Casane D, Laurenti P. Syllogomanie moléculaire : l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014; 30:1177-83. [DOI: 10.1051/medsci/20143012022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Jasper WC, Linksvayer TA, Atallah J, Friedman D, Chiu JC, Johnson BR. Large-scale coding sequence change underlies the evolution of postdevelopmental novelty in honey bees. Mol Biol Evol 2014; 32:334-46. [PMID: 25351750 DOI: 10.1093/molbev/msu292] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whether coding or regulatory sequence change is more important to the evolution of phenotypic novelty is one of biology's major unresolved questions. The field of evo-devo has shown that in early development changes to regulatory regions are the dominant mode of genetic change, but whether this extends to the evolution of novel phenotypes in the adult organism is unclear. Here, we conduct ten RNA-Seq experiments across both novel and conserved tissues in the honey bee to determine to what extent postdevelopmental novelty is based on changes to the coding regions of genes. We make several discoveries. First, we show that with respect to novel physiological functions in the adult animal, positively selected tissue-specific genes of high expression underlie novelty by conferring specialized cellular functions. Such genes are often, but not always taxonomically restricted genes (TRGs). We further show that positively selected genes, whether TRGs or conserved genes, are the least connected genes within gene expression networks. Overall, this work suggests that the evo-devo paradigm is limited, and that the evolution of novelty, postdevelopment, follows additional rules. Specifically, evo-devo stresses that high network connectedness (repeated use of the same gene in many contexts) constrains coding sequence change as it would lead to negative pleiotropic effects. Here, we show that in the adult animal, the converse is true: Genes with low network connectedness (TRGs and tissue-specific conserved genes) underlie novel phenotypes by rapidly changing coding sequence to perform new-specialized functions.
Collapse
Affiliation(s)
| | | | - Joel Atallah
- Department of Evolution and Ecology, University of California-Davis
| | - Daniel Friedman
- Department of Evolution and Ecology, University of California-Davis
| | - Joanna C Chiu
- Department of Entomology, University of California-Davis
| | | |
Collapse
|
15
|
Zhang C, Wang J, Marowsky NC, Long M, Wing RA, Fan C. High occurrence of functional new chimeric genes in survey of rice chromosome 3 short arm genome sequences. Genome Biol Evol 2013; 5:1038-48. [PMID: 23651622 PMCID: PMC3673630 DOI: 10.1093/gbe/evt071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa's Chr3s. Among the 28 new genes, two recently duplicated segments contained eight genes. Fourteen of the 28 new genes consist of chimeric gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing, and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice's broad diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation.
Collapse
Affiliation(s)
- Chengjun Zhang
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | |
Collapse
|
16
|
Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 2013; 93:697-710. [PMID: 24094746 PMCID: PMC3791253 DOI: 10.1016/j.ajhg.2013.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.
Collapse
Affiliation(s)
- Caitlin Rippey
- Departments of Medicine and of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol 2013; 5:439-55. [PMID: 23348040 PMCID: PMC3590893 DOI: 10.1093/gbe/evt009] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Orphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred. Orphans are an enigmatic portion of the genome because their origin and function are mostly unknown and they typically make up 10% to 30% of all genes in a genome. Several case studies demonstrated that orphans can contribute to lineage-specific adaptation. Here, we study orphan genes by comparing 30 arthropod genomes, focusing in particular on seven recently sequenced ant genomes. This setup allows analyzing a major metazoan taxon and a comparison between social Hymenoptera (ants and bees) and nonsocial Diptera (flies and mosquitoes). First, we find that recently split lineages undergo accelerated genomic reorganization, including the rapid gain of many orphan genes. Second, between the two insect orders Hymenoptera and Diptera, orphan genes are more abundant and emerge more rapidly in Hymenoptera, in particular, in leaf-cutter ants. With respect to intragenomic localization, we find that ant orphan genes show little clustering, which suggests that orphan genes in ants are scattered uniformly over the genome and between nonorphan genes. Finally, our results indicate that the genetic mechanisms creating orphan genes—such as gene duplication, frame-shift fixation, creation of overlapping genes, horizontal gene transfer, and exaptation of transposable elements—act at different rates in insects, primates, and plants. In Formicidae, the majority of orphan genes has their origin in intergenic regions, pointing to a high rate of de novo gene formation or generalized gene loss, and support a recently proposed dynamic model of frequent gene birth and death.
Collapse
Affiliation(s)
- Lothar Wissler
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
18
|
Divergent evolutionary and expression patterns between lineage specific new duplicate genes and their parental paralogs in Arabidopsis thaliana. PLoS One 2013; 8:e72362. [PMID: 24009676 PMCID: PMC3756979 DOI: 10.1371/journal.pone.0072362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 12/14/2022] Open
Abstract
Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution and adaption of A. thaliana. We accomplished this using syntenic relationship among four closely related species, A. thaliana, A. lyrata, Capsella rubella and Brassica rapa. We identified 100 NDGs, showing clear origination patterns, whose parental genes are located in syntenic regions and/or have clear orthologs in at least one of three outgroup species. All 100 NDGs were transcribed and under functional constraints, while 24% of the NDGs have differential expression patterns compared to their parental genes. We explored the underlying evolutionary forces of these paralogous pairs through conducting neutrality tests with sequence divergence and polymorphism data. Evolution of about 15% of NDGs appeared to be driven by natural selection. Moreover, we found that 3 NDGs not only altered their expression patterns when compared with parental genes, but also evolved under positive selection. We investigated the underlying mechanisms driving the differential expression of NDGs and their parents, and found a number of NDGs had different cis-elements and methylation patterns from their parental genes. Overall, we demonstrated that NDGs acquired divergent cis-elements and methylation patterns and may experience sub-functionalization or neo-functionalization influencing the evolution and adaption of A. thaliana.
Collapse
|
19
|
Weiss KM. Little orphan's nanny: where do genes come from and who takes care of them? Evol Anthropol 2013; 22:4-8. [PMID: 23436644 DOI: 10.1002/evan.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kenneth M Weiss
- Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Sherwood CC, Duka T. Now that we've got the map, where are we going? Moving from gene candidate lists to function in studies of brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:167-9. [PMID: 23095366 DOI: 10.1159/000342300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, D.C., USA.
| | | |
Collapse
|
21
|
Zhang YE, Landback P, Vibranovski M, Long M. New genes expressed in human brains: implications for annotating evolving genomes. Bioessays 2012; 34:982-91. [PMID: 23001763 DOI: 10.1002/bies.201200008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.R. China
| | | | | | | |
Collapse
|