1
|
Bortoletto E, Rosani U, Sakaguchi A, Yoon J, Nagasawa K, Venier P. Insights into ADAR gene complement, expression patterns, and RNA editing landscape in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109743. [PMID: 38964433 DOI: 10.1016/j.fsi.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Akari Sakaguchi
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Jeongwoong Yoon
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
2
|
Bortoletto E, Rosani U. Bioinformatics for Inosine: Tools and Approaches to Trace This Elusive RNA Modification. Genes (Basel) 2024; 15:996. [PMID: 39202357 PMCID: PMC11353476 DOI: 10.3390/genes15080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR orthologs has been traced throughout the evolution of metazoans, the existence and extension of RNA editing have been characterized in a more limited number of animals so far. Undoubtedly, ADAR-mediated RNA editing plays a vital role in physiology, organismal development and disease, making the understanding of the evolutionary conservation of this phenomenon pivotal to a deep characterization of relevant biological processes. However, the lack of direct high-throughput methods to reveal RNA modifications at single nucleotide resolution limited an extended investigation of RNA editing. Nowadays, these methods have been developed, and appropriate bioinformatic pipelines are required to fully exploit this data, which can complement existing approaches to detect ADAR editing. Here, we review the current literature on the "bioinformatics for inosine" subject and we discuss future research avenues in the field.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
3
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
4
|
Niescierowicz K, Pryszcz L, Navarrete C, Tralle E, Sulej A, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C. Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish. Nat Commun 2022; 13:5520. [PMID: 36127363 PMCID: PMC9489775 DOI: 10.1038/s41467-022-33260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3'-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.
Collapse
Affiliation(s)
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Cristina Navarrete
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugeniusz Tralle
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Elżbieta Kasprzyk
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrianna Pakuła
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland. .,Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Moldovan MA, Chervontseva ZS, Nogina DS, Gelfand MS. A hierarchy in clusters of cephalopod mRNA editing sites. Sci Rep 2022; 12:3447. [PMID: 35236910 PMCID: PMC8891338 DOI: 10.1038/s41598-022-07460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.
Collapse
Affiliation(s)
- Mikhail A Moldovan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| | - Zoe S Chervontseva
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| | - Daria S Nogina
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.,A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| |
Collapse
|
6
|
Sharma S, Wang J, Alqassim E, Portwood S, Cortes Gomez E, Maguire O, Basse PH, Wang ES, Segal BH, Baysal BE. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 2019; 20:37. [PMID: 30791937 PMCID: PMC6383285 DOI: 10.1186/s13059-019-1651-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Background Protein recoding by RNA editing is required for normal health and evolutionary adaptation. However, de novo induction of RNA editing in response to environmental factors is an uncommon phenomenon. While APOBEC3A edits many mRNAs in monocytes and macrophages in response to hypoxia and interferons, the physiological significance of such editing is unclear. Results Here, we show that the related cytidine deaminase, APOBEC3G, induces site-specific C-to-U RNA editing in natural killer cells, lymphoma cell lines, and, to a lesser extent, CD8-positive T cells upon cellular crowding and hypoxia. In contrast to expectations from its anti-HIV-1 function, the highest expression of APOBEC3G is shown to be in cytotoxic lymphocytes. RNA-seq analysis of natural killer cells subjected to cellular crowding and hypoxia reveals widespread C-to-U mRNA editing that is enriched for genes involved in mRNA translation and ribosome function. APOBEC3G promotes Warburg-like metabolic remodeling in HuT78 T cells under similar conditions. Hypoxia-induced RNA editing by APOBEC3G can be mimicked by the inhibition of mitochondrial respiration and occurs independently of HIF-1α. Conclusions APOBEC3G is an endogenous RNA editing enzyme in primary natural killer cells and lymphoma cell lines. This RNA editing is induced by cellular crowding and mitochondrial respiratory inhibition to promote adaptation to hypoxic stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shraddha Sharma
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Present Address: Translate Bio, Lexington, MA, 02421, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Emad Alqassim
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Orla Maguire
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Per H Basse
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Bora E Baysal
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
7
|
Duan Y, Dou S, Zhang H, Wu C, Wu M, Lu J. Linkage of A-to-I RNA Editing in Metazoans and the Impact on Genome Evolution. Mol Biol Evol 2018; 35:132-148. [PMID: 29048557 PMCID: PMC5850729 DOI: 10.1093/molbev/msx274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adenosine-to-inosine (A-to-I) RNA editomes have been systematically characterized in various metazoan species, and many editing sites were found in clusters. However, it remains unclear whether the clustered editing sites tend to be linked in the same RNA molecules or not. By adopting a method originally designed to detect linkage disequilibrium of DNA mutations, we examined the editomes of ten metazoan species and detected extensive linkage of editing in Drosophila and cephalopods. The prevalent linkages of editing in these two clades, many of which are conserved between closely related species and might be associated with the adaptive proteomic recoding, are maintained by natural selection at the cost of genome evolution. Nevertheless, in worms and humans, we only detected modest proportions of linked editing events, the majority of which were not conserved. Furthermore, the linkage of editing in coding regions of worms and humans might be overall deleterious, which drives the evolution of DNA sites to escape promiscuous editing. Altogether, our results suggest that the linkage landscape of A-to-I editing has evolved during metazoan evolution. This present study also suggests that linkage of editing should be considered in elucidating the functional consequences of RNA editing.
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingming Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification that affects the information encoded from DNA to RNA to protein. RNA editing can generate a multitude of transcript isoforms and can potentially be used to optimize protein function in response to varying conditions. In light of this and the fact that millions of editing sites have been identified in many different species, it is interesting to examine the extent to which these sites have evolved to be functionally important. In this review, we discuss results pertaining to the evolution of RNA editing, specifically in humans, cephalopods, and Drosophila. We focus on how comparative genomics approaches have aided in the identification of sites that are likely to be advantageous. The use of RNA editing as a mechanism to adapt to varying environmental conditions will also be reviewed.
Collapse
Affiliation(s)
- Arielle L. Yablonovitch
- Stanford University, Department of Genetics, Stanford, California, United States of America
- Stanford University, Biophysics Program, Stanford, California, United States of America
| | - Patricia Deng
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Dionna Jacobson
- Stanford University, Department of Genetics, Stanford, California, United States of America
| | - Jin Billy Li
- Stanford University, Department of Genetics, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol 2017; 18:166. [PMID: 28874170 PMCID: PMC5585977 DOI: 10.1186/s13059-017-1301-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. Results We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1E861A/E861AIfih1-/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1E861A/E861AIfih1-/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1-/- and Adar1E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1+/+ and Ifih1-/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. Conclusions These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1301-4) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Gallego A, Hartasánchez DA, Brasó-Vives M, Garcia-Ramallo E, Lopez-Valenzuela M, Baena N, Guitart M, Fernández-Bellon H, Kondova I, Bontrop R, Kawahara Y, Espinosa-Parrilla Y. RNA editing independently occurs at three mir-376a-1 sites and may compromise the stability of the microRNA hairpin. Gene 2017; 628:109-116. [PMID: 28710037 DOI: 10.1016/j.gene.2017.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023]
Abstract
RNA editing is being recognized as an important post-transcriptional mechanism that may have crucial roles in introducing genetic variation and phenotypic diversity. Despite microRNA editing recurrence, defining its biological relevance is still under extended debate. To better understand microRNA editing function and regulation we performed an exhaustive characterization of the A-to-I site-specific patterns in mir-376a-1, a mammalian microRNA which RNA editing is involved in the regulation of development and in disease. Thorough an integrative approach based on high-throughput small RNA sequencing, Sanger sequencing and computer simulations we explored mir-376a-1 editing in samples from various individuals and primate species including human placenta and macaque, gorilla, chimpanzee and human brain cortex. We observed that mir-376a-1 editing is a common phenomenon in the mature and primary microRNA molecules and it is more frequently detected in brain than in placenta. Primary mir-376a-1 is edited at three positions, -1, +4 and +44. Editing frequency estimations and in silico simulations indicated that editing was not equally recurrent along the three mir-376a-1 sites, nevertheless no epistatic interactions among them were observed. Particularly, the +4 site, located in the seed region of the mature miR-376a-5p, reached the highest editing frequency in all samples. Secondary structure predictions revealed that the +4 position was the one that conferred the highest stability to the mir-376a-1 hairpin. We suggest that molecular stability might partially explain the editing recurrence observed in certain microRNAs and that editing events conferring new functional regulatory roles in particular tissues and species could have been conserved along evolution, as it might be the case of mir-376a-1 in primate brain cortex.
Collapse
Affiliation(s)
- Alicia Gallego
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain
| | - Diego A Hartasánchez
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain
| | - Marina Brasó-Vives
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain
| | - Eva Garcia-Ramallo
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain
| | - Maria Lopez-Valenzuela
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain
| | - Neus Baena
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Corporació Sanitària Parc Taulí-Institut Universitari, Barcelona 08208, Spain
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Corporació Sanitària Parc Taulí-Institut Universitari, Barcelona 08208, Spain
| | | | - Ivanela Kondova
- Biomedical Primate Research Centre, Rijswijk 2288, Netherlands
| | - Ronald Bontrop
- Biomedical Primate Research Centre, Rijswijk 2288, Netherlands
| | - Yukio Kawahara
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yolanda Espinosa-Parrilla
- Institute of Evolutionary Biology (IBE) (Universitat Pompeu Fabra-CSIC), Barcelona 08003, Spain; School of Medicine, University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
11
|
Abstract
All true metazoans modify their RNAs by converting specific adenosine residues to inosine. Because inosine binds to cytosine, it is a biological mimic for guanosine. This subtle change, termed RNA editing, can have diverse effects on various RNA-mediated cellular pathways, including RNA interference, innate immunity, retrotransposon defense and messenger RNA recoding. Because RNA editing can be regulated, it is an ideal tool for increasing genetic diversity, adaptation and environmental acclimation. This review will cover the following themes related to RNA editing: (1) how it is used to modify different cellular RNAs, (2) how frequently it is used by different organisms to recode mRNA, (3) how specific recoding events regulate protein function, (4) how it is used in adaptation and (5) emerging evidence that it can be used for acclimation. Organismal biologists with an interest in adaptation and acclimation, but with little knowledge of RNA editing, are the intended audience.
Collapse
Affiliation(s)
- Joshua J C Rosenthal
- Universidad de Puerto Rico, Recinto de Ciencias Medicas, Instituto de Neurobiologia, 201 Blvd. del Valle, San Juan, PR 00901, USA
| |
Collapse
|
12
|
RNA Editing: A Contributor to Neuronal Dynamics in the Mammalian Brain. Trends Genet 2016; 32:165-175. [PMID: 26803450 DOI: 10.1016/j.tig.2015.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Post-transcriptional RNA modification by adenosine to inosine (A-to-I) editing expands the functional output of many important neuronally expressed genes. The mechanism provides flexibility in the proteome by expanding the variety of isoforms, and is a requisite for neuronal function. Indeed, targets for editing include key mediators of synaptic transmission with an overall significant effect on neuronal signaling. In addition, editing influences splice-site choice and miRNA targeting capacity, and thereby regulates neuronal gene expression. Editing efficiency at most of these sites increases during neuronal differentiation and brain maturation in a spatiotemporal manner. This editing-induced dynamics in the transcriptome is essential for normal brain development, and we are only beginning to understand its role in neuronal function. In this review we discuss the impact of RNA editing in the brain, with special emphasis on the physiological consequences for neuronal development and plasticity.
Collapse
|
13
|
Liddicoat BJ, Chalk AM, Walkley CR. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:157-72. [PMID: 26692549 DOI: 10.1002/wrna.1322] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain. In contrast, the biology and substrates responsible for the Adar1(-/-) phenotype have remained more elusive. Several recent studies have identified that a feature of absence or reductions of ADAR1 activity, conserved across human and mouse models, is a profound activation of interferon-stimulated gene signatures and innate immune responses. Further analysis of this observation has lead to the conclusion that editing by ADAR1 is required to prevent activation of the cytosolic innate immune system, primarily focused on the dsRNA sensor MDA5 and leading to downstream signaling via MAVS. The delineation of this mechanism places ADAR1 at the interface between the cells ability to differentiate self- from non-self dsRNA. Based on MDA5 dsRNA recognition requisites, the mechanism indicates that the type of dsRNA must fulfil a particular structural characteristic, rather than a sequence-specific requirement. While additional studies are required to molecularly verify the genetic model, the observations to date collectively identify A-to-I editing by ADAR1 as a key modifier of the cellular response to endogenous dsRNA.
Collapse
Affiliation(s)
- Brian J Liddicoat
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
14
|
Daniel C, Behm M, Öhman M. The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 2015; 72:4063-76. [PMID: 26223268 PMCID: PMC11113721 DOI: 10.1007/s00018-015-1990-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/18/2023]
Abstract
The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
15
|
Tajaddod M, Jantsch MF, Licht K. The dynamic epitranscriptome: A to I editing modulates genetic information. Chromosoma 2015; 125:51-63. [PMID: 26148686 PMCID: PMC4761006 DOI: 10.1007/s00412-015-0526-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 02/03/2023]
Abstract
Adenosine to inosine editing (A to I editing) is a cotranscriptional process that contributes to transcriptome complexity by deamination of adenosines to inosines. Initially, the impact of A to I editing has been described for coding targets in the nervous system. Here, A to I editing leads to recoding and changes of single amino acids since inosine is normally interpreted as guanosine by cellular machines. However, more recently, new roles for A to I editing have emerged: Editing was shown to influence splicing and is found massively in Alu elements. Moreover, A to I editing is required to modulate innate immunity. We summarize the multiple ways in which A to I editing generates transcriptome variability and highlight recent findings in the field.
Collapse
Affiliation(s)
- Mansoureh Tajaddod
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria
| | - Michael F Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria. .,Department of Cell Biology, Center of Cell Biology and Anatomy, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Konstantin Licht
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria.
| |
Collapse
|