1
|
Zhang W, Yu L, Xu C, Tang T, Cao J, Chen L, Pang X, Ren W. PLEK2 activates the PI3K/AKT signaling pathway to drive lung adenocarcinoma progression by upregulating SPC25. Cell Biol Int 2024; 48:1285-1300. [PMID: 38894536 DOI: 10.1002/cbin.12197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, characterized by poor prognosis and frequently diagnosed at advanced. While previous studies have demonstrated pleckstrin-2 (PLEK2) as aberrantly expressed and implicated in tumorigenesis across various tumor types, including LUAD, the molecular mechanisms underlying PLEK2-mediated LUAD progression remain incompletely understood. In this study, we obtained data from The Cancer Genome Atlas (TCGA) database to assess PLEK2 expression in LUAD, a finding further confirmed through analysis of human tissue specimens. PLEK2-silenced LUAD cellular models were subsequently constructed to examine the functional role of PLEK2 both in vitro and in vivo. Our results showed elevated PLEK2 expression in LUAD, correlating with poor patients' prognosis. PLEK2 knockdown led to a significant suppression of LUAD cell proliferation and migration, accompanied by enhanced apoptosis. Moreover, tumor growth in mice injected with PLEK2-silencing LUAD cells was impaired. Gene expression profiling and Co-IP assays suggested direct interaction between PLEK2 and SPC25, with downregulation of SPC25 similarly impairing cell proliferation and migration. Additionally, we revealed phosphoinositide 3-kinase (PI3K)/AKT signaling activation as requisite for PLEK2-induced malignant phenotypes in LUAD. Collectively, our findings underscore PLEK2's oncogenic potential in LUAD, suggesting its utility as a prognostic indicator and therapeutic target for LUAD management.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Lei Yu
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Cong Xu
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Tian Tang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jianguang Cao
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Lei Chen
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Xinya Pang
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Weihao Ren
- Department of Thoracic Surgery, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
2
|
Zhou H, Xu M, Hu P, Li Y, Ren C, Li M, Pan Y, Wang S, Liu X. Identifying hub genes and common biological pathways between COVID-19 and benign prostatic hyperplasia by machine learning algorithms. Front Immunol 2023; 14:1172724. [PMID: 37426635 PMCID: PMC10328422 DOI: 10.3389/fimmu.2023.1172724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background COVID-19, a serious respiratory disease that has the potential to affect numerous organs, is a serious threat to the health of people around the world. The objective of this article is to investigate the potential biological targets and mechanisms by which SARS-CoV-2 affects benign prostatic hyperplasia (BPH) and related symptoms. Methods We downloaded the COVID-19 datasets (GSE157103 and GSE166253) and the BPH datasets (GSE7307 and GSE132714) from the Gene Expression Omnibus (GEO) database. In GSE157103 and GSE7307, differentially expressed genes (DEGs) were found using the "Limma" package, and the intersection was utilized to obtain common DEGs. Further analyses followed, including those using Protein-Protein Interaction (PPI), Gene Ontology (GO) function enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Potential hub genes were screened using three machine learning methods, and they were later verified using GSE132714 and GSE166253. The CIBERSORT analysis and the identification of transcription factors, miRNAs, and drugs as candidates were among the subsequent analyses. Results We identified 97 common DEGs from GSE157103 and GSE7307. According to the GO and KEGG analyses, the primary gene enrichment pathways were immune-related pathways. Machine learning methods were used to identify five hub genes (BIRC5, DNAJC4, DTL, LILRB2, and NDC80). They had good diagnostic properties in the training sets and were validated in the validation sets. According to CIBERSORT analysis, hub genes were closely related to CD4 memory activated of T cells, T cells regulatory and NK cells activated. The top 10 drug candidates (lucanthone, phytoestrogens, etoposide, dasatinib, piroxicam, pyrvinium, rapamycin, niclosamide, genistein, and testosterone) will also be evaluated by the P value, which is expected to be helpful for the treatment of COVID-19-infected patients with BPH. Conclusion Our findings reveal common signaling pathways, possible biological targets, and promising small molecule drugs for BPH and COVID-19. This is crucial to understand the potential common pathogenic and susceptibility pathways between them.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Hu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuezheng Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Congzhe Ren
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Muwei Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Murase Y, Yamagishi M, Okada N, Toya M, Yajima J, Hamada T, Sato M. Fission yeast Dis1 is an unconventional TOG/XMAP215 that induces microtubule catastrophe to drive chromosome pulling. Commun Biol 2022; 5:1298. [PMID: 36435910 PMCID: PMC9701203 DOI: 10.1038/s42003-022-04271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The shortening of microtubules attached to kinetochores is the driving force of chromosome movement during cell division. Specific kinesins are believed to shorten microtubules but are dispensable for viability in yeast, implying the existence of additional factors responsible for microtubule shortening. Here, we demonstrate that Dis1, a TOG/XMAP215 ortholog in fission yeast, promotes microtubule shortening to carry chromosomes. Although TOG/XMAP215 orthologs are generally accepted as microtubule polymerases, Dis1 promoted microtubule catastrophe in vitro and in vivo. Notably, microtubule catastrophe was promoted when the tip was attached to kinetochores, as they steadily anchored Dis1 at the kinetochore-microtubule interface. Engineered Dis1 oligomers artificially tethered at a chromosome arm region induced the shortening of microtubules in contact, frequently pulling the chromosome arm towards spindle poles. This effect was not brought by oligomerised Alp14. Thus, unlike Alp14 and other TOG/XMAP215 orthologs, Dis1 plays an unconventional role in promoting microtubule catastrophe, thereby driving chromosome movement.
Collapse
Affiliation(s)
- Yuichi Murase
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Masahiko Yamagishi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Naoyuki Okada
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5808.50000 0001 1503 7226Instituto de Biologia Molecular e Celular, Instituto de Investigacao e Inovacao em Saude (i3S), Universidade do Porto, 208 Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Mika Toya
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
| | - Junichiro Yajima
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XKomaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Takahiro Hamada
- grid.444568.f0000 0001 0672 2184Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005 Japan
| | - Masamitsu Sato
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| |
Collapse
|
4
|
Zhang Q, Zeng Z, Xie W, Zeng Z. Highly Expressed SPC25 Promotes the Stemness, Proliferation and EMT of Oral Squamous Cell Carcinoma Cells via Modulating the TGF-β Signaling Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Qiufang Zhang
- Department of Stomatology, Ganzhou People’s Hospital
| | - Zijun Zeng
- Anesthesia Surgery Center, the First Affiliated Hospital of Gannan Medical University
| | - Wen Xie
- Health Management Center, the First Affiliated Hospital of Gannan Medical University
| | - Zhimei Zeng
- Department of Stomatology, the First Affiliated Hospital of Gannan Medical University
| |
Collapse
|
5
|
Chen S, Wang X, Zheng S, Li H, Qin S, Liu J, Jia W, Shao M, Tan Y, Liang H, Song W, Lu S, Liu C, Yang X. Increased SPC24 in prostatic diseases and diagnostic value of SPC24 and its interacting partners in prostate cancer. Exp Ther Med 2021; 22:923. [PMID: 34306192 PMCID: PMC8281004 DOI: 10.3892/etm.2021.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
SPC24 is a crucial component of the mitotic checkpoint machinery in tumorigenesis. High levels of SPC24 have been found in various cancers, including breast cancer, lung cancer, liver cancer, osteosarcoma and thyroid cancer. However, to the best of our knowledge, the impact of SPC24 on prostate cancer (PCa) and other prostate diseases remains unclear. In the present study expression of global SPC24 messenger RNA (mRNA) was assessed in a subset of patients with PCa included in The Cancer Genome Atlas (TCGA) database. Increased levels of SPC24 expression were found in PCa patients >60 years old compared to patients <60 and increased SPC24 expression was also associated with higher levels of prostate specific antigen (P<0.05) and lymph node metastasis (P<0.05). Higher levels of SPC24 expression were associated with negative outcomes in PCa patients (P<0.05). Furthermore, in Chinese patients with prostatitis, benign prostatic hypertrophy (BPH) and PCa, SPC24 was expressed at significantly higher levels than that in adjacent/normal tissues, as assessed by reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. High expression of SPC24 was associated with high Gleason stages (IV and V; P<0.05). Further analysis, based on Gene Ontology and pathway functional enrichment analysis, suggested that nuclear division cycle 80 (NDC80), an SPC24 protein interaction partner, and mitotic spindle checkpoint serine/threonine-protein kinase BUB1 (BUB1), a core subunit of the spindle assembly checkpoint, may be associated with SPC24 in PCa development. Finally, using binary logistic regression, algorithms combining the receiver operating characteristic between SPC24 and BUB1 or NDC80 indicated that a combination of these markers may provide better PCa diagnosis ability than other PCa diagnosis markers. Taken together, these findings suggest that SPC24 may be a promising prostate disease biomarker.
Collapse
Affiliation(s)
- Suixia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hongwen Li
- Department of Anatomy, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Shouxu Qin
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Mengnan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Hui Liang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Weiru Song
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaoming Lu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250200, P.R. China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
6
|
Jacobs NR, Norton PA. Role of chromosome 1q copy number variation in hepatocellular carcinoma. World J Hepatol 2021; 13:662-672. [PMID: 34239701 PMCID: PMC8239492 DOI: 10.4254/wjh.v13.i6.662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosome 1q often has been observed to be amplified in hepatocellular carcinoma. This review summarizes literature reports of multiple genes that have been proposed as possible 1q amplification drivers. These largely fall within 1q21-1q23. In addition, publicly available copy number alteration data from The Cancer Genome Atlas project were used to identify additional candidate genes involved in carcinogenesis. The most frequent location for gene amplification was 1q22, consistent with the results of the literature search. The genes TPM3 and NUF2 were found to be candidates whose amplification and/or mRNA up-regulation was most highly associated with poorer hepatocellular carcinoma outcomes.
Collapse
Affiliation(s)
- Nathan R Jacobs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
7
|
Scheiter A, Keil F, Lüke F, Grosse J, Verloh N, Opitz S, Schlosser S, Kandulski A, Pukrop T, Dietmaier W, Evert M, Calvisi DF, Utpatel K. Identification and In-Depth Analysis of the Novel FGFR2-NDC80 Fusion in a Cholangiocarcinoma Patient: Implication for Therapy. ACTA ACUST UNITED AC 2021; 28:1161-1169. [PMID: 33800328 PMCID: PMC8025813 DOI: 10.3390/curroncol28020112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) fusions have emerged as a new therapeutic target for cholangiocarcinoma in clinical practice following the United States Food and Drug Administration (FDA) approval of Pemigatinib in May 2020. FGFR2 fusions can result in a ligand-independent constitutive activation of FGFR2 signaling with a downstream activation of multiple pathways, including the mitogen-activated protein (MAPK) cascade. Until today, only a limited number of fusion partners have been reported, of which the most prevalent is BicC Family RNA Binding Protein (BICC1), representing one-third of all detected FGFR2 fusions. Nonetheless, in the majority of cases rare or yet unreported fusion partners are discovered in next-generation sequencing panels, which confronts clinicians with a challenging decision: Should a therapy be based on these variants or should the course of treatment follow the (limited) standard regime? Here, we present the case of a metastasized intrahepatic cholangiocarcinoma harboring a novel FGFR2-NDC80 fusion, which was discussed in our molecular tumor board. The protein NDC80 kinetochore complex component (NDC80) is an integral part of the outer kinetochore, which is involved in microtubule binding and spindle assembly. For additional therapeutic guidance, an immunohistochemical analysis of the predicted fusion and downstream effector proteins was performed and compared to cholangiocarcinoma samples of a tissue microarray. The FGFR2-NDC80 fusion resulted in strong activation of the FGFR2 signaling pathway. These supporting results led to a treatment recommendation of Pemigatinib. Unfortunately, the patient passed away before the commencement of therapy.
Collapse
Affiliation(s)
- Alexander Scheiter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
- Correspondence: ; Tel.: +49-941-944-6707
| | - Felix Keil
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany; (F.L.); (T.P.)
- Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM-R, 93053 Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Sabine Opitz
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (A.K.)
| | - Arne Kandulski
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (A.K.)
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany; (F.L.); (T.P.)
| | - Wolfgang Dietmaier
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (F.K.); (W.D.); (M.E.); (D.F.C.); (K.U.)
| |
Collapse
|
8
|
Turk S, Turk C, Temirci ES, Malkan UY, Ucar G, Ozguven SV. Assessing the genetic impact of Enterococcus faecalis infection on gastric cell line MKN74. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Abstract
Purpose
Enterococcus faecalis (E. faecalis) is an important commensal microbiota member of the human gastrointestinal tract. It has been shown in many studies that infection rates with E. faecalis in gastric cancer significantly increase. It has been scientifically proven that some infections develop during the progression of cancer, but it is still unclear whether this infection factor is beneficial (reduction in metastasis) or harmful (increase in proliferation, invasion, stem cell-like phenotype) of the host. These opposed data can significantly contribute to the understanding of cancer progress when analyzed in detail.
Methods
The gene expression data were retrieved from Array Express (E-MEXP-3496). Variance, t test and linear regression analysis, hierarchical clustering, network, and pathway analysis were performed.
Results
In this study, we identified altered genes involved in E. faecalis infection in the gastric cell line MKN74 and the relevant pathways to understand whether the infection slows down cancer progression. Twelve genes corresponding 15 probe sets were downregulated following the live infection of gastric cancer cells with E. faecalis. We identified a network between these genes and pathways they belong to. Pathway analysis showed that these genes are mostly associated with cancer cell proliferation.
Conclusion
NDC80, NCAPG, CENPA, KIF23, BUB1B, BUB1, CASC5, KIF2C, CENPF, SPC25, SMC4, and KIF20A genes were found to be associated with gastric cancer pathogenesis. Almost all of these genes are effective in the proliferation of cancer cells, especially during the infection process. Therefore, it is hypothesized that downregulation of these genes may affect gastric cancer pathogenesis by reducing cell proliferation. And, it is predicted that E. faecalis infection may be an important factor for gastric cancer.
Collapse
|
9
|
Zhang B, Zhou Q, Xie Q, Lin X, Miao W, Wei Z, Zheng T, Pang Z, Liu H, Chen X. SPC25 overexpression promotes tumor proliferation and is prognostic of poor survival in hepatocellular carcinoma. Aging (Albany NY) 2020; 13:2803-2821. [PMID: 33408271 PMCID: PMC7880370 DOI: 10.18632/aging.202329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022]
Abstract
Background: The nuclear division cycle 80 (NDC80) complex assures proper chromosome segregation during the cell cycle progression. SPC25 is a crucial component of NDC80, and its role in hepatocellular carcinoma (HCC) has been explored recently. This study characterized the differential expression of SPC25 in HCC patients of different races and HBV infection status. Methods: Expression patterns of SPC25 were evaluated in TCGA and Chinese HCC patients. Kaplan-Meier analysis was applied to examine the predictive value of SPC25. In vitro and in vivo functional assays were conducted to explore the role of SPC25 in HCC. Bioinformatics methods were applied to investigate the regulatory mechanisms of SPC25. Findings: The mRNA levels of SPC25 were up-regulated in HCC. SPC25 has a significantly higher transcriptional level in Asian patients than Caucasian patients. SPC25 promoted HCC cell proliferation in vitro and tumor growth in vivo by accelerating the cell cycle. We identified transcription factors, miRNAs, and immune cells that may interact with SPC25. Interpretation: The findings suggest that increased expression of SPC25 is associated with poor prognosis of HCC and enhances the proliferative capacity of HCC cells. SPC25 could serve as a valuable prognostic marker and a novel treatment target for HCC.
Collapse
Affiliation(s)
- Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Qing Zhou
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaohui Lin
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Wenqiang Miao
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Zhaoguang Wei
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Tingting Zheng
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Zuoliang Pang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Haosheng Liu
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| | - Xi Chen
- Department of Core Facility, People's Hospital of Shenzhen Baoan District, The Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen 518101, Guangdong, China
| |
Collapse
|
10
|
Ustinov NB, Korshunova AV, Gudimchuk NB. Protein Complex NDC80: Properties, Functions, and Possible Role in Pathophysiology of Cell Division. BIOCHEMISTRY (MOSCOW) 2020; 85:448-462. [PMID: 32569552 DOI: 10.1134/s0006297920040057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitotic division maintains genetic identity of any multicellular organism throughout an entire lifetime. Each time a parent cell divides, chromosomes are equally distributed between the daughter cells due to the action of mitotic spindle. Mitotic spindle is formed by the microtubules that represent dynamic polymers of tubulin protein. Spindle microtubules are attached end-on to kinetochores - large multi-protein complexes on chromosomes. This review focuses on the four-subunit NDC80 complex, one of the most important kinetochore elements that plays a major role in the attachment of assembling/disassembling microtubule ends to the chromosomes. Here, we summarize published data on the structure, properties, and regulation of the NDC80 complex and discuss possible relationship between changes in the expression of genes coding for the NDC80 complex components, mitotic disorders, and oncogenesis with special emphasis on the diagnostic and therapeutic potential of NDC80.
Collapse
Affiliation(s)
- N B Ustinov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A V Korshunova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - N B Gudimchuk
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| |
Collapse
|
11
|
Chen F, Zhang K, Huang Y, Luo F, Hu K, Cai Q. SPC25 may promote proliferation and metastasis of hepatocellular carcinoma via p53. FEBS Open Bio 2020; 10:1261-1275. [PMID: 32351050 PMCID: PMC7327911 DOI: 10.1002/2211-5463.12872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with poor prognosis and high mortality. To identify key genes associated with HCC and the underlying mechanisms, we performed weighted correlation network analysis (WGCNA) of potential key genes of HCC. We identified 17 key genes closely related to HCC by yellow module combined with PPI analysis. Verification of the role of these genes revealed that SPC25 knockdown results in a significant decrease in proliferation and metastasis of HCC cells and increased protein levels of components of the p53 pathway in vitro. In summary, we identified that SPC25 is a potential tumor‐promoting factor in HCC and may act via the p53 pathway.
Collapse
Affiliation(s)
- Fengjuan Chen
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China.,Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun yat-sen University, Guangzhou, China
| | - Yilin Huang
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Luo
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingxian Cai
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
12
|
Sun ZY, Wang W, Gao H, Chen QF. Potential therapeutic targets of the nuclear division cycle 80 (NDC80) complexes genes in lung adenocarcinoma. J Cancer 2020; 11:2921-2934. [PMID: 32226507 PMCID: PMC7086257 DOI: 10.7150/jca.41834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Lung cancer is the most common cancer worldwide, both in terms of the incidence and mortality. NDC80 complex comprising of NDC80, NUF2, SPC24, and SPC25 is a heterotetrameric protein complex located in the outer layer of the kinetochore and plays a critical role in mitosis. This study focuses on the effects of NDC80 complex genes on clinical features and prognosis in lung adenocarcinoma (LUAD). Materials and methods: Expression of NDC80 complex in LUAD and related clinical information was extracted from the TCGA website. NDC80 complex gene functional analysis and correlation analysis was conducted by using DAVID, BiNGO, Gene MANIA, STRING and GSEA. Survival probability was predicted by nomogram. Statistical analysis was used to predict NDC80 complex gene expression on clinical features and prognosis in patients with LUAD. Results: Expression of NDC80, NUF2, SPC24 and SPC25 was significantly elevated in LUAD tumors compared with normal tissues (P < 0.05). These genes showed diagnostic values for LUAD (P < 0.001 for each; area under the curve (AUC), 0.958, 0.968, 0.951, and 0.932 respectively); combinatorial analysis of these genes was more advantageous than single analysis alone (P < 0.001; AUC > 0.900 for each). Expression of both NDC80 and SPC25 correlated with the prognosis of LUAD (P < 0.001; AUC > 0.600 for each). Higher expression of NDC80, NUF2, SPC24 and SPC25 was associated with low overall survival (OS) in univariate analysis. Higher expression of NDC80 and SPC25 was associated with low OS in multivariate analysis. High expression of NDC80 combined with high expression of SPC25 was predictive of poor OS in LUAD in joint analysis. Conclusion: NDC80 complex gene might be an early indicator of diagnosis and prognosis of LUAD. The combined detection of NDC80, NUF2, SPC24 and SPC25 may become a new research direction in LUAD diagnosis and a new target for tumor targeted gene therapy.
Collapse
Affiliation(s)
- Zhong-Yi Sun
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Han Gao
- Institute of respiratory disease, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Quan-Fang Chen
- Institute of respiratory disease, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
13
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
14
|
Poola I, Yue Q, Gillespie JW, Sullivan PS, Aguilar-Jakthong J, Rao J, Shaaban AM, Sauter ER, Ricci AJ. Breast Hyperplasias, Risk Signature, and Breast Cancer. Cancer Prev Res (Phila) 2019; 12:471-480. [PMID: 31239263 DOI: 10.1158/1940-6207.capr-19-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
Abstract
We address the dilemma faced by oncologists in administering preventative measures to "at risk" patients diagnosed with atypical and nonatypical hyperplasias due to lack of any molecular means of risk stratification and identifying high-risk subjects. Our study purpose is to investigate a four marker risk signature, MMP-1, CEACAM6, HYAL1, and HEC1, using 440 hyperplastic tissues for identifying high-risk subjects who will benefit from preventative therapies. We assayed the markers by IHC and combined their expression levels to obtain a composite value from 0-10, which we called a "Cancer Risk Score." We demonstrate that the four marker-based risk scores predict subsequent cancer development with an accuracy of 91% and 86% for atypical and nonatypical subjects, respectively. We have established a correlation between risk scores and cancer rates by stratifying the samples into low risk (score ≤ 0.5); intermediate risk (score ≤ 5.4), and high risk (score >5.4) groups using Kaplan-Meier survival analysis. We have evaluated cancer rates at 5, 10, and 15 years. Our results show that the average cancer rates in the first 5 years among low- and intermediate-risk groups were 2% and 15%, respectively. Among high-risk group, the average cancer rates at 5 years were 73% and 34% for atypical and nonatypical subjects, respectively. The molecular risk stratification described here assesses a patient's tumor biology-based risk level as low, intermediate, or high and for making informed treatment decisions. The outcomes of our study in conjunction with the available prophylactic measures could prevent approximately 20%-25% of sporadic breast cancers.
Collapse
Affiliation(s)
| | - Qingqi Yue
- Silbiotech, Inc., Gaithersburg, Maryland
| | | | - Peggy S Sullivan
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Josephine Aguilar-Jakthong
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - JianYu Rao
- Pathology Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | | | - Edward R Sauter
- Department of Surgery, Hartford Hospital, Hartford, Connecticut
| | - Andrew J Ricci
- Department of Pathology, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
15
|
Scarborough EA, Davis TN, Asbury CL. Tight bending of the Ndc80 complex provides intrinsic regulation of its binding to microtubules. eLife 2019; 8:44489. [PMID: 31045495 PMCID: PMC6516834 DOI: 10.7554/elife.44489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of the outer kinetochore complex Ndc80 is essential to ensure correct kinetochore-microtubule attachments during mitosis. Here, we present a novel mechanism of regulation that is intrinsic to its structure; tight bending of the Ndc80 complex inhibits its microtubule binding. Using single molecule Förster resonance energy transfer (FRET), we show that the Saccharomyces cerevisiae Ndc80 complex can fluctuate between straight and bent forms, and that binding of the complex to microtubules selects for straightened forms. The loop region of the complex enables its bent conformation, as deletion of the loop promotes straightening. In addition, the kinetochore complex MIND enhances microtubule binding by opposing the tightly bent, auto-inhibited conformation of the Ndc80 complex. We suggest that prior to its assembly at the kinetochore, the Ndc80 complex interchanges between bent (auto-inhibited) and open conformations. Once assembled, its association with MIND stabilizes the Ndc80 complex in a straightened form for higher affinity microtubule binding.
Collapse
Affiliation(s)
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
16
|
Chen X, Li W, Xiao L, Liu L. Nuclear division cycle 80 complex is associated with malignancy and predicts poor survival of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1233-1247. [PMID: 31933938 PMCID: PMC6947052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
The NDC80 (nuclear division cycle 80) complex takes part in chromosome segregation by forming an outer kinetochore and providing a platform for the interaction between chromosomes and microtubules, thus impacting the progression of mitosis and the cell cycle. The clinical significance of its components, NDC80, nuf2, spc24, and spc25, were widely explored in various malignancies respectively, yet seldom were they studied from the perspective of a complex. This paper explores the clinical importance of the NDC80 kinetochore complex components in terms of their expression level, prognostic value, and therapeutic potential in HCC (hepatocellular carcinoma) patients. With the data from several paired HCC samples from Nanfang Hospital, HCC patients from the TCGA database and other cases from GSE89377, we analyzed the expression levels of the NDC80 complex components, NDC80/nuf2/spc24/spc25, along with the survival data as well as other clinical features using statistical methods and GSEA. The study found that a high expression of NDC80 complex predicts poor survival, and these components have the potential to be used as therapeutic targets.
Collapse
Affiliation(s)
- Xiaowei Chen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Lushan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
17
|
Zhou J, Pei Y, Chen G, Cao C, Liu J, Ding C, Wang D, Sun L, Xu P, Niu G. SPC24 Regulates breast cancer progression by PI3K/AKT signaling. Gene 2018; 675:272-277. [PMID: 30180968 DOI: 10.1016/j.gene.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer is a heterogeneous disease, presenting as several diverse clinical and histologic varieties and it is now the most frequently diagnosed cancer and is the sixth leading cause of cancer-related death in Chinese women. SPC24 is an important component of the mitotic checkpoint machinery and its carcinogenic roles have been shown in several cancers, including anaplastic thyroid cancer, hepatocellular carcinoma, and osteosarcoma. However, the role of SPC24 in breast cancer is still unclear. Here, we show SPC24 is highly expressed in breast cancer compared with the normal tissues. In addition, we observe that SPC24 knockdown can lead to attenuated cell growth, increased cell apoptosis and cell cycle progression. Consistent with the breast cancer cell results, the in vivo growth of the SPC24-knocking down cells was significantly inhibited. Interestingly, molecular analysis indicates that SPC24 regulates PI3K/AKT kinase pathway, indicating the important of SPC24 for clinical treatment. In aggregate, our results provide an oncogenic functionality of SPC24 in breast cancer progression.
Collapse
Affiliation(s)
- Juan Zhou
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China; Department of Medical Oncology, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Yunfeng Pei
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Chunping Cao
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Jia Liu
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Chen Ding
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Duping Wang
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Li Sun
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China
| | - Peng Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Guoping Niu
- The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, People's Republic of China; Department of Medical Oncology, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China.
| |
Collapse
|
18
|
Yan X, Huang L, Liu L, Qin H, Song Z. Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med 2018; 7:420-432. [PMID: 29341479 PMCID: PMC5806104 DOI: 10.1002/cam4.1284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignancy worldwide and increasing studies have attributed its malignant progression to abnormal molecular changes in cancer cells. Nuclear division cycle 80 (NDC80) is a newly discovered oncoprotein that regulates cell proliferation and cycle in numerous malignancies. However, its clinical significance and biological role in CRC remain unclear. Therefore, in this study, we firstly analyze its expression in a retrospective cohort enrolling 224 CRC patients and find its overexpression is significantly correlated with advanced tumor stage and poor prognosis in CRC patients. In addition, our result reveals it is an independent adverse prognostic factor affecting CRC-specific and disease-free survival. The subgroup analysis indicates NDC80 expression can stratify the clinical outcome in stage II and III patients, but fails in stage I and IV patients. In cellular assays, we find knockdown of NDC80 dramatically inhibits the proliferative ability, apoptosis resistance, cell cycle progression, and clone formation of CRC cells in vitro. Using xenograft model, we further prove knockdown of NDC80 also inhibits the tumorigenic ability of CRC cells in vivo. Finally, the microarray analysis is utilized to preliminarily clarify the oncogenic molecular mechanisms regulated by NDC80 and the results suggest it may promote CRC progression partly by downregulating tumor suppressors such as dual specificity phosphatase 5 and Forkhead box O1. Taken together, our study provides novel evidences to support that NDC80 is not only a promising clinical biomarker but also a potential therapeutical target for CRC precise medicine.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| | - Linsheng Huang
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Liguo Liu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalNo. 600, Yi‐shan RoadShanghai200233China
| | - Huanlong Qin
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Zhenshun Song
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| |
Collapse
|
19
|
Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Li Z, Kong C. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer 2017; 17:861. [PMID: 29246203 PMCID: PMC5732388 DOI: 10.1186/s12885-017-3884-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The significance of PLK1 (polo-like kinase 1) has become increasingly essential as both a biomarker and a target for cancer treatment. Here, we aimed to determine the downstream genes of PLK1 and their effects on the carcinogenesis and progression of bladder cancer. METHODS Specific siRNA was utilized to silence the target gene expression. The cell proliferation, invasion and migration of bladder cancer cells by MTT assay, BrdU assay and transwell assay. The differential expression genes were identified using Affymetrix HTA2.0 Array. The KEGG, GO and STRING analysis were used to analyze the signaling pathway and protein-protein interaction. Spearman analysis was used to analyze the correlation between protein and protein, between protein and clincopathologic characteristics. RESULTS PLK1 siRNA hindered the proliferation, invasion and migration of bladder cancer cells, as determined by the MTT, BrdU and transwell assays. A total of 561 differentially expressed genes were identified using an Affymetrix HTA2.0 Array in PLK1 knockdown T24 cells. According to KEGG, GO and STRING analysis, five key genes (BUB1B, CCNB1, CDC25A, FBXO5, NDC80) were determined to be involved in cell proliferation, invasion and migration. PLK1 knockdown decreased BUB1B, CCNB1, CDC25A and NDC80 expressions but increased FBXO5 expression. BUB1B, CCNB1, CDC25A and NDC80 were positively correlated with cell proliferation, invasion, migration and PLK1 expression in tissues, but FBXO5 was negatively correlated with each of those factors. The results showed that the five genes expressions were significantly correlation with the PLK1 expression in normal bladder tissues and bladder cancer tissues. Four of them (BUB1B, CCNB1, CDC25A, NDC80) were obviously positive correlations with pT stage and metastasis. But FBXO5 was negative correlated with pT stage and metastasis. Furthermore, significant correlations were found between CCNB1 or CDC25A or NDC80 and histological grade; between BUB1B or NDC80 and recurrence. CONCLUSION Five downstream genes of PLK1 were associated with the regulation of cell proliferation, invasion and migration in bladder cancer. Furthermore, these genes may play important roles in bladder cancer and become important biomarkers and targets for cancer treatment.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi, Shenyang, Liaoning 110022 China
| | - Zhipeng Gao
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Shiguang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Jianbin Bi
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 155 North Nanjing Street, Heping, Shenyang, Liaoning 110001 China
- Institute of Urology, China Medical University, Shenyang, 110001 China
| |
Collapse
|
20
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Ju LL, Chen L, Li JH, Wang YF, Lu RJ, Bian ZL, Shao JG. Effect of NDC80 in human hepatocellular carcinoma. World J Gastroenterol 2017; 23:3675-3683. [PMID: 28611520 PMCID: PMC5449424 DOI: 10.3748/wjg.v23.i20.3675] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/23/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of nuclear division cycle (NDC)80 in human hepatocellular carcinogenesis.
METHODS NDC80 gene expression was analyzed by real-time reverse transcription polymerase chain reaction in 47 paired hepatocellular carcinoma (HCC) and adjacent tissues. The HCC cell line SMMC-7721 was transfected with lentivirus to silence endogenous NDC80 gene expression, which was confirmed by real-time polymerase chain reaction and western blotting. The effects of NDC80 silencing on SMMC-7721 cell proliferation were evaluated by Cellomics ArrayScan VTI imaging. Cell cycle analysis and apoptosis were detected with flow cytometry. Colony formation was assessed by fluorescence microscopy.
RESULTS NDC80 expression levels in HCC tissues were significantly higher than those in the adjacent tissues. Functional studies demonstrated that NDC80 silencing significantly reduced SMMC-7721 cell proliferation and colony formation. Knockdown of NDC80 resulted in increased apoptosis and cell cycle arrest at S-phase. NDC80 contributed to HCC progression by reducing apoptosis and overcoming cell cycle arrest.
CONCLUSION Elevated expression of NDC80 may play a role in promoting the development of HCC.
Collapse
|
22
|
Matsuo Y, Maurer SP, Surrey T, Toda T. Purification and characterisation of the fission yeast Ndc80 complex. Protein Expr Purif 2017; 135:61-69. [PMID: 28502666 PMCID: PMC5489075 DOI: 10.1016/j.pep.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/02/2022]
Abstract
The Ndc80 complex is a conserved outer kinetochore protein complex consisting of Ndc80 (Hec1), Nuf2, Spc24 and Spc25. This complex comprises a major, if not the sole, platform with which the plus ends of the spindle microtubules directly interact. In fission yeast, several studies indicate that multiple microtubule-associated proteins including the Dis1/chTOG microtubule polymerase and the Mal3/EB1 microtubule plus-end tracking protein directly or indirectly bind Ndc80, thereby ensuring stable kinetochore-microtubule attachment. However, the purification of the Ndc80 complex from this yeast has not been achieved, which hampers the in-depth investigation as to how the outer kinetochore attaches to the plus end of the spindle microtubule. Here we report the two-step purification of the fission yeast Ndc80 holo complex from bacteria. First, we purified separately two sub-complexes consisting of Ndc80-Nuf2 and Spc24-Spc25. Then, these two sub-complexes were mixed and applied to size-exclusion chromatography. The reconstituted Ndc80 holo complex is composed of four subunits with equal stoichiometry. The complex possesses microtubule-binding activity, and Total Internal Reflection Fluorescence (TIRF)-microscopy assays show that the complex binds the microtubule lattice. Interestingly, unlike the human complex, the fission yeast complex does not track depolymerising microtubule ends. Further analysis shows that under physiological ionic conditions, the Ndc80 holo complex does not detectably bind Dis1, but instead it interacts with Mal3/EB1, by which the Ndc80 complex tracks the growing microtubule plus end. This result substantiates the notion that the Ndc80 complex plays a crucial role in establishment of the dynamic kinetochore-microtubule interface by cooperating with chTOG and EB1. The Ndc80 complex is a conserved outer kinetochore complex. The fission yeast Ndc80 complex is purified from bacteria through a two-step purification scheme. The Ndc80 complex possesses microtubule-binding activity similar to those from other species. TIRF-microscopy assays show that the complex binds the microtubule lattice. The Ndc80 complex tracks the microtubule plus end when mixed with Mal3/EB1.
Collapse
Affiliation(s)
- Yuzy Matsuo
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sebastian P Maurer
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Thomas Surrey
- Synthetic and Systems Biochemistry of the Microtubule Cytoskeleton Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Takashi Toda
- Cell Regulation Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
23
|
Chmielewska AE, Tang NH, Toda T. The hairpin region of Ndc80 is important for the kinetochore recruitment of Mph1/MPS1 in fission yeast. Cell Cycle 2016; 15:740-7. [PMID: 26900649 PMCID: PMC4845937 DOI: 10.1080/15384101.2016.1148842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The establishment of proper kinetochore-microtubule attachments facilitates faithful chromosome segregation. Incorrect attachments activate the spindle assembly checkpoint (SAC), which blocks anaphase onset via recruitment of a cohort of SAC components (Mph1/MPS1, Mad1, Mad2, Mad3/BubR1, Bub1 and Bub3) to kinetochores. KNL1, a component of the outer kinetochore KMN network (KNL1/Mis12 complex/Ndc80 complex), acts as a platform for Bub1 and Bub3 localization upon its phosphorylation by Mph1/MPS1. The Ndc80 protein, a major microtubule-binding site, is critical for MPS1 localization to the kinetochores in mammalian cells. Here we characterized the newly isolated mutant ndc80-AK01 in fission yeast, which contains a single point mutation within the hairpin region. This hairpin connects the preceding calponin-homology domain with the coiled-coil region. ndc80-AK01 was hypersensitive to microtubule depolymerizing reagents with no apparent growth defects without drugs. Subsequent analyses indicated that ndc80-AK01 is defective in SAC signaling, as mutant cells proceeded into lethal cell division in the absence of microtubules. Under mitotic arrest conditions, all SAC components (Ark1/Aurora B, Mph1, Bub1, Bub3, Mad3, Mad2 and Mad1) did not localize to the kinetochore. Further genetic analyses indicated that the Ndc80 hairpin region might act as a platform for the kinetochore recruitment of Mph1, which is one of the most upstream SAC components in the hierarchy. Intriguingly, artificial tethering of Mph1 to the kinetochore fully restored checkpoint signaling in ndc80-AK01 cells, further substantiating the notion that Ndc80 is a kinetochore platform for Mph1. The hairpin region of Ndc80, therefore, plays a critical role in kinetochore recruitment of Mph1.
Collapse
Affiliation(s)
| | - Ngang Heok Tang
- a The Francis Crick Institute, Lincoln's Inn Fields , London , United Kingdom
| | - Takashi Toda
- a The Francis Crick Institute, Lincoln's Inn Fields , London , United Kingdom.,b Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
24
|
Liu B, Yao Z, Hu K, Huang H, Xu S, Wang Q, Yang Y, Ren J. ShRNA-mediated silencing of the Ndc80 gene suppress cell proliferation and affected hepatitis B virus-related hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2016; 40:297-303. [PMID: 26382282 DOI: 10.1016/j.clinre.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies in the world, and hepatitis B virus (HBV) has been well established to cause HCC. Ndc80 complex is a conserved mitotic regulator dedicated to ensuring faithful chromosome segregation and plays an important role in inducing tumor formation. However, its role in HCC caused by HBV infection remains unclear. METHODS Immunohistochemistry (IHC), Western blot (WB), and real-time qRT-PCR were used to measure the expression of Ndc80 in HBV-related HCC tissues. Ndc80-specific short hairpin RNA (shRNA) was used to knock-down Ndc80 expression in the hepatoma cell line HeG2 and HepG2.2.15, which is stable transcribed with HBV genome. Furthermore, the effect of Ndc80 on cellular proliferation and growth were examined, respectively. RESULTS The expression level of Ndc80 was remarkably up-regulated in HBV-related HCC tissues. Down-regulation of Ndc80 expression suppressed HBV replication. With cell counting and the MTS assay, cellular proliferation and growth of Ndc80 knocking-down cell line was shown to be effectively restrained. CONCLUSION This study suggests that Ndc80 may play an important role in the process of HBV-related HCC, and that it may be a potential biological treatment target in the future.
Collapse
Affiliation(s)
- Bo Liu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Zhicheng Yao
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Kunpeng Hu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - He Huang
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Shilei Xu
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Qinliang Wang
- Department of general surgery, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Yang Yang
- Department of liver transplantation, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China
| | - Jie Ren
- Department of ultrasound, the third affiliated hospital, Sun Yat-Sen University, Guangzhou 510530, China.
| |
Collapse
|
25
|
Yu JX, Chen Q, Yu YQ, Li SQ, Song JF. Upregulation of colonic and hepatic tumor overexpressed gene is significantly associated with the unfavorable prognosis marker of human hepatocellular carcinoma. Am J Cancer Res 2016; 6:690-700. [PMID: 27152245 PMCID: PMC4851847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023] Open
Abstract
Colonic hepatic tumor overexpressed gene (ch-TOG), a member of the highly conserved XMAP215 family of microtubule-associated proteins (MAPs), plays a crucial role in bipolar mitotic spindle assembly. Here, we performed proof-of-principle studies targeting ch-TOG for the development of HCC and further compared its prognostic significance with the clinicopathologic features of HCC. Quantitative real-time PCR was used to measure the expression level of ch-TOG mRNA in 207 cases of paired HCC and adjacent noncancerous liver tissues (ANLT). Additionally, immunohistochemistry was employed to identify ch-TOG protein in 71 HCC tissues. All HCC patients were divided into two groups according to the expression level of ch-TOG. Cumulative progression-free survival (PFS) and overall survival (OS) curves were estimated using the Kaplan-Meier method, and the prognostic value of ch-TOG was further evaluated using the Cox proportional hazards regression model. Our studies suggested that ch-TOG is overexpressed in HCC tissues compared with ANLT. The ch-TOG level was correlated with other prognostic factors, including the hepatitis B surface antigen (HBsAg) (p = 0.030), median size (p = 0.008), clinical tumor-node-metastasis (TNM) stage (p = 0.002), and alpha-fetoprotein (AFP) level (p = 0.030). Kaplan-Meier survival analysis showed that increased ch-TOG was associated with reduced PFS (p = 0.002) and OS (p = 0.004). Multivariate Cox proportional hazards analysis identified ch-TOG as an independent prognostic factor for the PFS (hazard ratio [HR] = 1.479, 95% confidence interval [CI] = 1.028-2.127, p = 0.035) and OS (HR = 1.609, 95% CI = 1.114-2.325, p = 0.011) of the HCC patients. Increased ch-TOG represents a powerful marker for predicting poorer prognosis in the clinical management of HCC, and may serve as a potential molecular target for HCC therapies in the future.
Collapse
Affiliation(s)
- Jun-Xiong Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Ya-Qun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Shu-Qun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Jian-Fei Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| |
Collapse
|
26
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
27
|
Nilsson J. Can sequestering of mitotic spindle proteins cause aneuploidy? (Comment on DOI 10.1002/bies.201400175). Bioessays 2015; 37:234. [PMID: 25640704 DOI: 10.1002/bies.201400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jakob Nilsson
- The Novo Nordisk Foundation - Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
28
|
Tang NH, Toda T. Alp7/TACC recruits kinesin-8-PP1 to the Ndc80 kinetochore protein for timely mitotic progression and chromosome movement. J Cell Sci 2014; 128:354-63. [PMID: 25472718 PMCID: PMC4294777 DOI: 10.1242/jcs.160036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon establishment of proper kinetochore–microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore–microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5–Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore–microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5–Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5–Klp6–PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8–PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|