1
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
2
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
3
|
Zhang J, Liu HL, Liu JB, Zhang Y, Liu J, Li YH. LncRNA AL592284.1 facilitates proliferation and metastasis of cervical cancer cells via miR-30a-5p/Vimentin/EMT axis. Biochem Biophys Res Commun 2021; 577:95-102. [PMID: 34509725 DOI: 10.1016/j.bbrc.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are implicated in cancer-related cellular behaviors. Our research aimed to explore the biological functions of lncRNA AL592284.1 (AL592284.1) in cervical cancer (CC). METHODS qRT-PCR was performed to examine AL592284.1 expressions in cell lines and tumor specimens. To study the roles of AL592284.1 on malignant behaviors in both in vitro and in vivo, Loss-of-function assays were carried out. Besides, bioinformatics prediction and dual-luciferase reporter assays were performed to reveal the interaction among AL592284.1 and its target genes. The functions of the AL592284.1/miR-30a-5p/Vimentin axis in CC cells was clarified by rescue assays. RESULTS We observed that the levels of AL592284.1 in CC were distinctly increased. Functional assays revealed that knockdown of AL592284.1 suppressed the proliferation, migration, invasion and EMT progress of CC cells. Luciferase reporter assay confirmed that miR-30a-5p/Vimentin regulatory axis is the direct downstream of AL592284.1. Rescue experiments indicated that AL592284.1 induced overexpression of Vimentin via sponging miR-30a-5p, resulting in the promotion of CC progression. CONCLUSION The present study proves that AL592284.1 plays an tumor-promotive role in CC via regulating the miR-30a-5p/Vimentin axis, and inhibition of AL592284.1 may pave the way for CC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hong-Li Liu
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing-Bo Liu
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yuan Zhang
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Liu
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan-Hua Li
- Department of Gynecologic Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
4
|
Zhu W, Zhang H, Gao J, Xu Y. Silencing of miR-497-5p inhibits cell apoptosis and promotes autophagy in Parkinson's disease by upregulation of FGF2. ENVIRONMENTAL TOXICOLOGY 2021; 36:2302-2312. [PMID: 34459097 DOI: 10.1002/tox.23344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with increasing prevalence in elderly individuals globally. MicroRNAs (miRNAs) have been confirmed to participate in the pathogenesis of various neurodegenerative diseases, including PD. MiR-497-5p is previously reported to be upregulated in PD. The present study was designed to further explore the function of miR-497-5p in PD. MiR-497-5p was significantly upregulated in 1-methyl-4-phenylpyridinium (MPP+ )-treated SH-SY5Y cells. Inhibition of miR-497-5p suppressed the cell apoptosis and triggered autophagy of MPP+ -treated SH-SY5Y cells. Further, miR-497-5p targeted fibroblast growth factor-2 (FGF2) in MPP+ -treated SH-SY5Y cells. Subsequently, rescue assays revealed that miR-497-5p regulated apoptosis and autophagy of MPP+ -treated SH-SY5Y cells by mediation on FGF2. In addition, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice models were established. The results exhibited that silencing of miR-497-5p improved mice bradykinesia, reduced cell apoptosis and induced autophagy in PD mice by FGF2. In conclusion, silencing of miR-497-5p alleviates PD by suppressing cell apoptosis and promoting autophagy in a FGF2 dependent manner, which will provide a novel target for Parkinson's disease management.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Mao J, Gao W, Xue L, Wang J, Zhao L. The lncRNA SLCO4A1-AS1/miR-876-3p/RBBP6 axis regulates cell proliferation and apoptosis in acute lymphocytic leukemia via the JNK signaling pathway. Int J Lab Hematol 2021; 43:1050-1061. [PMID: 33683013 DOI: 10.1111/ijlh.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acute lymphocytic leukemia (ALL) is a hematologic malignancy caused by the clonal proliferation of immature lymphocytes. Long noncoding RNAs (lncRNAs) have been reported as critical regulators in several cancers, including ALL. LncRNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been revealed to be implicated in tumorigenesis of several cancers. Our study focused on the role of SLCO4A1-AS1 in ALL. METHODS RT-qPCR, Western blot analysis, CCK-8, EdU, and Flow cytometry analysis were used to explore the biological function of SLCO4A1-AS1 in ALL cellular processes. Luciferase reporter and RNA pull-down assays were applied to explore the mechanism of SLCO4A1-AS1 in ALL cells. RESULTS SLCO4A1-AS1 was upregulated in ALL tissues and cell lines. We found that suppression of SLCO4A1-AS1 suppressed ALL cell proliferation and facilitated cell apoptosis. Our result confirmed that SLCO4A1-AS1 acted as a ceRNA by sponging microRNA 876-3p (miR-876-3p) to upregulate retinoblastoma binding protein 6 (RBBP6) expression in ALL cells. Moreover, SLCO4A1-AS1 activated the JNK signaling pathway by upregulating RBBP6. Rescue assays revealed that the activation of the JNK signaling or overexpression of RBBP6 revered the suppressive effect of SLCO4A1-AS1 knockdown on growth of ALL cells. CONCLUSION SLCO4A1-AS1 promoted cell growth of ALL by the miR-876-3p/RBBP6 axis to activate the JNK signaling pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Wenliang Gao
- Department of Internal Medicine, The Second Children & Women's Healthcare of Jinan City, Jinan, China
| | - Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
6
|
Liu W, Sheng L, Nie L, Wen X, Mo X. Functional interaction between long non-coding RNA and microRNA in rheumatoid arthritis. J Clin Lab Anal 2020; 34:e23489. [PMID: 33319382 PMCID: PMC7755821 DOI: 10.1002/jcla.23489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
MicroRNA (miRNA) has received widespread attention for its role in several key cellular processes such as cell differentiation, cell proliferation, apoptosis, and autoimmune diseases. Although we now have a good understanding of miRNA expression and function, our knowledge regarding the molecular mechanism of long non‐coding RNA (lncRNA) is still in its infancy. In this review, we will briefly introduce the definition and function of lncRNA and summarize the interactions between lncRNA and miRNA and their research progress in rheumatoid arthritis (RA). The expression of miR‐16, miR‐146a, miR‐155, and miR‐223 and the interactions between HOTAIR and miR138, ZFAS1 and miR‐27a, and GAPLINC and miR‐575 are representative examples that may augment the understanding of the pathogenesis of RA and help in the development of new biomarkers and target therapies.
Collapse
Affiliation(s)
- Weiwei Liu
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Li Sheng
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Lei Nie
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Wen
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaodan Mo
- Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Feng H, Gui Q, Wu G, Zhu W, Dong X, Shen M, Fu X, Shi G, Luo H, Yang X, Xue S, Cheng Q. Long noncoding RNA Nespas inhibits apoptosis of epileptiform hippocampal neurons by inhibiting the PI3K/Akt/mTOR pathway. Exp Cell Res 2020; 398:112384. [PMID: 33212147 DOI: 10.1016/j.yexcr.2020.112384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common neurological diseases with spontaneous recurrent seizures. Long noncoding RNAs (lncRNAs) are crucial modulators in numerous diseases, including epilepsy. However, the functional role and potential mechanism of lncRNA Nespas in epilepsy remain unknown. Our study clarified that Nespas was underexpressed in epileptiform hippocampal tissues and neurons. Furthermore, Nespas promoted hippocampal neuron viability and proliferation, and inhibited hippocampal neuron apoptosis. Mechanistically, Nespas interacted with microRNA 615-3p (miR-615-3p) in epileptiform hippocampal neurons. 26S proteasome non-ATPase regulatory subunit 11 (Psmd11) was a downstream target of miR-615-3p, and Nespas elevated Psmd11 expression via competitively binding to miR-615-3p in epileptiform hippocampal neurons. In addition, rescue assays suggested that Nespas promoted hippocampal neuron viability and proliferation, and suppressed hippocampal neuron apoptosis by upregulation of Psmd11. Furthermore, Nespas suppressed the PI3K/Akt/mTOR pathway via upregulating Psmd11 in epileptiform hippocampal neurons. This report explored the function and regulatory mechanism of Nespas in epileptiform hippocampal neurons for the first time. Our findings revealed that Nespas suppressed the apoptosis of epileptiform hippocampal neurons by inhibiting the PI3K/Akt/mTOR pathway via upregulation of Psmd11 at a miR-615-3p dependent way, indicating that Nespas may offer a new direction for the treatment of epilepsy.
Collapse
Affiliation(s)
- Hongxuan Feng
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Wei Zhu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Mingqiang Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Xuetao Fu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Guomei Shi
- Department of Neurology, Taixing People's Hospital, Taixing, 225400, Jiangsu, China
| | - Hailong Luo
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaoyan Yang
- Department of Neurology, The People's Hospital of SND, Suzhou, 215129, Jiangsu, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
8
|
Cai P, Wu M, Zhang B, Wu S, Wei H, Wei L. Long non‑coding RNA SNHG12 regulates cell proliferation, invasion and migration in endometrial cancer by targeting miR‑4429. Mol Med Rep 2020; 22:2842-2850. [PMID: 32945395 PMCID: PMC7453627 DOI: 10.3892/mmr.2020.11370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) has been demonstrated to be oncogenic. The aim of the present study was to examine the effects of SNHG12 on the progression of endometrial cancer (EC). The expression levels of SNHG12 and microRNA (miR)-4429 were assessed in EC cell lines by reverse transcription-quantitative PCR. Plasmids, including SNHG12 short hairpin RNAs (shRNAs), shRNA negative control (NC), SNHG12 overexpression (OV), OV-NC, miR-4429 mimic and mimic-NC, were transfected into RL95-2 cells. Post-transfection, Cell Counting Kit-8, Transwell Matrigel and wound-healing assays were performed to assess cell proliferation, invasion and migration, respectively. Cell cycle phase distribution was assessed by flow cytometry. The protein expression levels of matrix metalloproteinase (MMP)2 and MMP9 were detected by western blotting. miR-4429 target genes were predicted by bioinformatics analysis using target prediction online tools; the findings of this analysis were verified using a dual-luciferase reporter system. Identified as a target of miR-4429, SNHG12 was overexpressed in EC cell lines with decreased expression of miR-4429. Further experiments demonstrated that SNHG12 silencing and overexpression of miR-4429 markedly suppressed proliferation, migration and invasion of RL95-2 cells, arrested cells in the G1 phase, and markedly downregulated the expression of MMP2 and MMP9. The opposite effects were observed in miR-4429 mimic-transfected RL95-2 cells after SNHG12 was overexpressed. The findings of the present study established the role of SNHG12 and miR-4429 in EC. Therefore, targeting the SNHG12/miR-4429 axis could serve as a potential future therapeutic target for treatment of EC.
Collapse
Affiliation(s)
- Pengyu Cai
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Mingxiu Wu
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Shuyi Wu
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Haiyun Wei
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Li Wei
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| |
Collapse
|
9
|
Du P, Liao Y, Zhao H, Zhang J, Mu K. ANXA2P2/miR-9/LDHA axis regulates Warburg effect and affects glioblastoma proliferation and apoptosis. Cell Signal 2020; 74:109718. [PMID: 32707073 DOI: 10.1016/j.cellsig.2020.109718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Aerobic glycolysis is a unique tumor cell phenotype considered as one of the hallmarks of cancer. Aerobic glycolysis can accelerate tumor development by increasing glucose uptake and lactate production. In the present study, lactate dehydrogenase A (LDHA) is significantly increased within glioma tissue samples and cells, further confirming the oncogenic role of LDHA within glioma. METHODS Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were applied for histopathological examination. The protein levels of LDHA, transporter isoform 1 (GLUT1), hexokinase 2 (HK2), phosphofructokinase (PFK) in target cells were detected by Immunoblotting. The predicted miR-9 binding to lncRNA Annexin A2 Pseudogene 2 (ANXA2P2) or the 3' untranslated region (UTR) of LDHA was verified using Luciferase reporter assay. Cell viability or apoptosis were examined by MTT assay or Flow cytometry. Intracellular glucose and Lactate levels were measured using glucose assay kit and lactate colorimetric assay kit. RESULTS The expression of ANXA2P2 showed to be dramatically upregulated within glioma tissue samples and cells. Knocking down ANXA2P2 within glioma cells significantly inhibited cell proliferation and aerobic glycolysis, as manifested as decreased lactate and increased glucose in culture medium, and downregulated protein levels of glycolysis markers, GLUT1, HK2, PFK, as well as LDHA. miR-9 was predicted to target both lncRNA ANXA2P2 and LDHA. The overexpression of miR-9 suppressed the cell proliferation and aerobic glycolysis of glioma cells. Notably, miR-9 could directly bind to LDHA 3'UTR to inhibit LDHA expression and decrease the protein levels of LDHA. ANXA2P2 competitively targeted miR-9, therefore counteracting miR-9-mediated repression on LDHA. Within tissues, miR-9 exhibited a negative correlation with ANXA2P2 and LDHA, respectively, whereas ANXA2P2 and LDHA exhibited a positive correlation with each other. CONCLUSIONS In conclusion, ANXA2P2/miR-9/LDHA axis modulates the aerobic glycolysis progression in glioma cells, therefore affecting glioma cell proliferation.
Collapse
Affiliation(s)
- Peng Du
- Department of Neurosurgery, Xiangya Hospital, The Central South University, Changsha 410008, PR China; Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, PR China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, The Central South University, Changsha 410008, PR China.
| | - Haiting Zhao
- Department of Neurology, Xiangya Hospital, The Central South University, Changsha 410008, PR China
| | - Jingjing Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, PR China
| | - Kere Mu
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, PR China
| |
Collapse
|
10
|
Tamang S, Acharya V, Roy D, Sharma R, Aryaa A, Sharma U, Khandelwal A, Prakash H, Vasquez KM, Jain A. SNHG12: An LncRNA as a Potential Therapeutic Target and Biomarker for Human Cancer. Front Oncol 2019; 9:901. [PMID: 31620362 PMCID: PMC6759952 DOI: 10.3389/fonc.2019.00901] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Limitations in current diagnostic procedures warrant identification of new methodologies to improve diagnoses of cancer patients. In this context, long non-coding RNAs (lncRNAs) have emerged as stable biomarkers which are expressed abundantly in tumors. Importantly, these can be detected at all stages of tumor development, and thus may provide potential biomarkers and/or therapeutic targets. Recently, we suggested that aberrant levels of lncRNAs can be used to determine the invasive and metastatic potential of tumor cells. Further, direct correlations of lncRNAs with cancer-derived inflammation, metastasis, epithelial-to-mesenchymal transition, and other hallmarks of cancer indicate their potential as biomarkers and targets for cancer. Thus, in this review we have discussed the importance of small nucleolar RNA host gene 12 (SNHG12), a lncRNA, as a potential biomarker for a variety of cancers. A meta-analysis of a large cohort of cancer patients revealed that SNHG12 may also serve as a potential target for cancer-directed interventions due to its involvement in unfolded protein responses, which many tumor cells exploit to both evade immune-mediated attack and enhance the polarization of effector immune cells (e.g., macrophages and T cells). Thus, we propose that SNHG12 may serve as both a biomarker and a druggable therapeutic target with promising clinical potential.
Collapse
Affiliation(s)
- Suraksha Tamang
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Varnali Acharya
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Deepronil Roy
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Rinka Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Apeksha Aryaa
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Akanksha Khandelwal
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Hridayesh Prakash
- Department of Virology and Immunology, Amity University, Noida, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
11
|
miR-181b regulates ER stress induced neuron death through targeting Heat Shock Protein A5 following intracerebral haemorrhage. Immunol Lett 2018; 206:1-10. [PMID: 30503822 DOI: 10.1016/j.imlet.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Endoplasmic reticulum (ER) stress acts as a protein folding and contributes to neuronal damage and neurological deterioration following intracerebral hemorrhage (ICH). Heat Shock Protein A5 (HSPA5) serves as an essential regulator of the endoplasmic reticulum (ER) stress response. However, the specific mechanism has not been will identified. Primary cortical neurons from C57BL/6 mice were subjected to erythrocyte lysates. Cell viability, microRNA and HSPA5 levels, and ER stress was detected. The interaction between microRNA and the target HSPA5 was identified by dual luciferase reporter gene assay. In addition, inflammatory cytokines, brain edema, and neurological functions in ICH mice were also assessed. Erythrocyte lysates induced ER stress and neuron damage, downregulated miR-181b and upregulated HSPA5 levels. MiR-181b suppressed HSPA5 expression by directly binding its 3'-untranslated region. Correspondingly, our data demonstrated that overexpression of miR-181b attenuated erythrocyte lysates induced neuronal necrosis and apoptosis. In vivo, downregulated miR-181b increased the HSPA5 level, along with significant elevations of pro-inflammatory cytokines, brain edema, and neurological injury following ICH. HSPA5 pathway plays an important role in ER stress induced brain damage following ICH. In addition, miR-181b has neuroprotective effects that alleviates neurological injury and represents a promising therapeutic strategy in ICH.
Collapse
|
12
|
Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis 2018; 9:888. [PMID: 30166525 PMCID: PMC6117363 DOI: 10.1038/s41419-018-0882-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Abstract
Accumulating evidence have suggested that long non-coding RNAs (lncRNAs) had malfunctioning roles in the development of human cancers. The present study aimed to investigate the role of lncRNA small nucleolar RNA host gene 5 (SNHG5) in hepatocellular carcinoma (HCC) progression using human tissues and cell lines. The quantitative real-time PCR results showed that SNHG5 was up-regulated in both HCC tissues and hepatoma cell lines and was closely associated with tumor size, hepatitis B virus infection, histologic grade, TNM stage, and portal vein tumor thrombus (PVTT) in HCC patients. Knockdown of SNHG5 induced apoptosis and repressed cell cycle progression, cell growth, and metastasis in hepatoma cell lines, whereas overexpression of SNHG5 had the opposite effects. In vivo functional assay, xenograft tumors grown from SNHG5-knockdown cells had smaller mean volumes than the tumors grown from negative control cells. Further investigations showed that SNHG5 may act as a competing endogenous RNA by competitively binding miR-26a-5p and thereby modulating the derepression of downstream target GSK3β, which were further confirmed by luciferase reporter assay. Functionally, SNHG5 promotes tumor growth and metastasis by activating Wnt/β-catenin pathway and inducing epithelial to mesenchymal transition (EMT). Taken together, SNHG5 promotes HCC progression by competitively binding miR-26a-5p and regulating GSK3β and Wnt/β-catenin signal pathway.
Collapse
|
13
|
Mo BY, Guo XH, Yang MR, Liu F, Bi X, Liu Y, Fang LK, Luo XQ, Wang J, Bellanti JA, Pan YF, Zheng SG. Long Non-Coding RNA GAPLINC Promotes Tumor-Like Biologic Behaviors of Fibroblast-Like Synoviocytes as MicroRNA Sponging in Rheumatoid Arthritis Patients. Front Immunol 2018; 9:702. [PMID: 29692777 PMCID: PMC5902673 DOI: 10.3389/fimmu.2018.00702] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Rapidly accumulating evidence has now suggested that the long non-coding RNAs (LncRNAs), a large and diverse class of non-coding transcribed RNA molecules with diverse functional roles and mechanisms, play a major role in the pathogenesis of many human inflammatory diseases. Although some LncRNAs are overexpressed in plasma, T cell, and synovial tissues of patients with rheumatoid arthritis (RA), there is a dearth of knowledge in what role these transcripts play in fibroblast-like synoviocytes (FLSs) of these patients. Here, our studies showed that GAPLINC, a newly identified functional LncRNA in oncology, displayed a greater degree of expression in FLSs from RA than in patients with traumatic injury. GAPLINC suppression in RA-FLS cells revealed significant alterations in cell proliferation, invasion, migration, and proinflammatory cytokines production. Additionally, we performed a preliminary bioinformatics analysis of GAPLINC gene sequence in order to find its target molecules, using miRanda, PITA, RNAhybrid algorithms, Kyoto encyclopedia of genes and genomes, and gene ontology analysis. Since the results predicted that some of microRNAs and mRNA may interact with GAPLINC, we simulated a gene co-action network model based on a competitive endogenous RNA theory. Further verification of this model demonstrated that silencing of GAPLINC increased miR-382-5p and miR-575 expression. The results of this study suggest that GAPLINC may function as a novel microRNAs sponging agent affecting the biological characteristics of RA-FLSs. Additionally, GAPLINC may also promote RA-FLS tumor-like behaviors in a miR-382-5p-dependent and miR-575-dependent manner. Based upon these findings, LncRNA GAPLINC may provide a novel valuable therapeutic target for RA patients.
Collapse
Affiliation(s)
- Bi Yao Mo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Hua Guo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Ru Yang
- Department of Internal Medicine, Division of Rheumatology, The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinic Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Kai Fang
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Qing Luo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yun Feng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
14
|
Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Venø MT, Kjems J, Laybutt DR, Regazzi R. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 2018; 9:69-83. [PMID: 29396373 PMCID: PMC5870096 DOI: 10.1016/j.molmet.2018.01.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE There is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions. METHODS We used a microarray approach to identify circular RNAs expressed in human islets and searched their orthologues in RNA sequencing data from mouse islets. We then measured the level of four selected circular RNAs in the islets of different Type 1 and Type 2 diabetes models and analyzed the role of these circular transcripts in the regulation of insulin secretion, β-cell proliferation, and apoptosis. RESULTS We identified thousands of circular RNAs expressed in human pancreatic islets, 497 of which were conserved in mouse islets. The level of two of these circular transcripts, circHIPK3 and ciRS-7/CDR1as, was found to be reduced in the islets of diabetic db/db mice. Mimicking this decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced β-cell proliferation, and survival. ciRS-7/CDR1as has been previously proposed to function by blocking miR-7. Transcriptomic analysis revealed that circHIPK3 acts by sequestering a group of microRNAs, including miR-124-3p and miR-338-3p, and by regulating the expression of key β-cell genes, such as Slc2a2, Akt1, and Mtpn. CONCLUSIONS Our findings point to circular RNAs as novel regulators of β-cell activities and suggest an involvement of this novel class of non-coding RNAs in β-cell dysfunction under diabetic conditions.
Collapse
Affiliation(s)
- Lisa Stoll
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | - Kailun Lee
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Morten Trillingsgaard Venø
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland.
| |
Collapse
|
15
|
Zeng T, Wang D, Chen J, Tian Y, Cai X, Peng H, Zhu L, Huang A, Tang H. LncRNA-AF113014 promotes the expression of Egr2 by interaction with miR-20a to inhibit proliferation of hepatocellular carcinoma cells. PLoS One 2017; 12:e0177843. [PMID: 28542387 PMCID: PMC5438171 DOI: 10.1371/journal.pone.0177843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), tentatively identified as non-protein coding RNA, are transcripts more than 200nt in length and accounting for 98% of the whole genome of human being. Accumulating evidence showed aberrant expressions of lncRNAs are strongly correlated to the development of cancers. In this study, AF113014 is a new lncRNA identified from Microarray. We found AF113014 is differentially expressed between HCC cell lines and normal hepatocytes. Functionally, AF113014 inhibited proliferation of HCC cells both in vitro and in vivo, whereas the opposite effect was observed when AF113014 knockdown. Moreover, we identified that Egr2, a tumor suppressor gene, was a downstream target gene of AF113014. Furthermore, we discovered that AF113014 up-regulated Egr2 expression through interacting with miR-20a by using dual-luciferase reporter assay, qRT-PCR and Western blotting analysis. Our data provides a new insight for understanding the mechanisms of HCC.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liying Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- * E-mail: (HT); (AH)
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- * E-mail: (HT); (AH)
| |
Collapse
|
16
|
Li J, Zhang Z, Xiong L, Guo C, Jiang T, Zeng L, Li G, Wang J. SNHG1 lncRNA negatively regulates miR-199a-3p to enhance CDK7 expression and promote cell proliferation in prostate cancer. Biochem Biophys Res Commun 2017; 487:146-152. [PMID: 28400279 DOI: 10.1016/j.bbrc.2017.03.169] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/01/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play vital roles in the development of human cancers, but our understandings of most lncRNAs in cancers are still limited. Recently, accumlating evidences have showed that many RNA transcripts could function as competing endogenous RNAs (ceRNAs) by competitively binding common microRNAs. In this study, we demonstrated that a lncRNA, Small Nucleolar RNA Host Gene 1 (SNHG1), as a ceRNA for miR-199a-3p, played a critical role in prostate cancer cell proliferation. We found that SNHG1 was aberrantly up-regulated in prostate carcinoma tissues; while, miR-199a-3p was abnormally down-regulated. The level of SNHG1 in prostate cancer was significantly negatively correlated with that of miR-199a-3p. Our data indicated that SNHG1 could interact with miR-199a-3p and inhibit the activity of miR-199a-3p in prostate cancer cells. In addition, miR-199a-3p could target the 3' UTR of CDK7 and suppress CDK7 expression. More importantly, SNHG1 increased CDK7 expression by competitively binding miR-199a-3p, and then promoted cell proliferation and cell cycle progression in prostate cancer. Taken together, these findings elucidated a novel mechanism of prostate cancer progression. Thus, SNHG1 might serve as a potential target for prostate cancer therapies.
Collapse
Affiliation(s)
- Jianping Li
- Department of Operation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhipeng Zhang
- School of Pubilc Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Xiong
- People's Hospital of Luxian, Luzhou, China
| | - Chuan Guo
- Department of Urology, Chengdu Chengfei Hospital, Chengdu, China
| | - Tao Jiang
- Department of Operation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilan Zeng
- Department of Operation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ge Li
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Juan Wang
- Department of Operation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
17
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
18
|
Conte F, Fiscon G, Chiara M, Colombo T, Farina L, Paci P. Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 2017; 12:e0171661. [PMID: 28187158 PMCID: PMC5302781 DOI: 10.1371/journal.pone.0171661] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
Recent findings have identified competing endogenous RNAs (ceRNAs) as the drivers in many disease conditions, including cancers. The ceRNAs indirectly regulate each other by reducing the amount of microRNAs (miRNAs) available to target messenger RNAs (mRNAs). The ceRNA interactions mediated by miRNAs are modulated by a titration mechanism, i.e. large changes in the ceRNA expression levels either overcome, or relieve, the miRNA repression on competing RNAs; similarly, a very large miRNA overexpression may abolish competition. The ceRNAs are also called miRNA "decoys" or miRNA "sponges" and encompass different RNAs competing with each other to attract miRNAs for interactions: mRNA, long non-coding RNAs (lncRNAs), pseudogenes, or circular RNAs. Recently, we developed a computational method for identifying ceRNA-ceRNA interactions in breast invasive carcinoma. We were interested in unveiling which lncRNAs could exert the ceRNA activity. We found a drastic rewiring in the cross-talks between ceRNAs from the physiological to the pathological condition. The main actor of this dysregulated lncRNA-associated ceRNA network was the lncRNA PVT1, which revealed a net biding preference towards the miR-200 family members in normal breast tissues. Despite its up-regulation in breast cancer tissues, mimicked by the miR-200 family members, PVT1 stops working as ceRNA in the cancerous state. The specific conditions required for a ceRNA landscape to occur are still far from being determined. Here, we emphasized the importance of the relative concentration of the ceRNAs, and their related miRNAs. In particular, we focused on the withdrawal in breast cancer tissues of the PVT1 ceRNA activity and performed a gene expression and sequence analysis of its multiple isoforms. We found that the PVT1 isoform harbouring the binding site for a representative miRNA of the miR-200 family shows a drastic decrease in its relative concentration with respect to the miRNA abundance in breast cancer tissues, providing a plausibility argument to the breakdown of the sponge program orchestrated by the oncogene PVT1.
Collapse
Affiliation(s)
- Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Teresa Colombo
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, “Sapienza” University, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- * E-mail:
| |
Collapse
|