1
|
Peš T, Straková B, Kratochvíl L. Environmental (and Random?) Sex Determination in Endangered and Invasive Phelsuma Geckos. Sex Dev 2024:1-6. [PMID: 38615656 DOI: 10.1159/000538906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Sex is a fundamental characteristic of an individual. It is therefore puzzling why in some systems sex is precisely determined by a genotype, while in others it is influenced by the environment or even subtle, not to say random, factors. Some stochasticity in sex determination would be expected if environmental conditions did not have a large sex-specific effect on fitness. Although data are only available for a small fraction of species, geckos show exceptional variability in sex determination. METHODS We tested the effects of three incubation temperatures on sex ratio and adult body size in the invasive gecko Phelsuma laticauda and the vulnerable gecko Phelsuma nigristriata. RESULTS We document temperature-dependent sex determination (TSD) in both species. Only females hatched at a low temperature (24°C), whereas male production peaked at an intermediate temperature (28°C) and declined, at least in P. laticauda, again at the highest temperature (31°C). Interestingly, full siblings hatched from eggs glued together during the incubation at temperatures producing both sexes are often of the opposite sex. We found no significant effect of incubation temperature on adult body length. CONCLUSIONS Documentation of TSD in the day geckos has implications for conservation practice in environmental management of endangered species or eradication of invasive species. However, it appears that a very subtle (random?) factor may also be involved in their sex determination. In line with this, we found no significant effect of incubation temperature on adult body length.
Collapse
Affiliation(s)
- Tomáš Peš
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- Zoological and Botanical Garden of the city of Pilsen, Plzeň, Czechia
| | - Barbora Straková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
3
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
4
|
Smith SH, Hsiung K, Böhne A. Evaluating the role of sexual antagonism in the evolution of sex chromosomes: new data from fish. Curr Opin Genet Dev 2023; 81:102078. [PMID: 37379742 DOI: 10.1016/j.gde.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
The recent increase in available molecular and genomic data for diverse taxa helps to shed new light on long-standing theories. Research into sex chromosome evolution has particularly benefited from a growing number of studies of fish, motivated by their highly diverse mechanisms of sex determination. Sexual antagonism is regularly cited as an influential force in sex chromosome emergence; however, this so far proves difficult to demonstrate. In this review, we highlight recent developments in the investigation of sexual antagonism in sex chromosome research in fish. We find strong emphasis placed on study-organism specific genomic features and patterns of recombination, rather than evidence for a comprehensive role of sexual antagonism. In this light, we discuss the alternative models of sex chromosome evolution. We conclude that fish represents a key resource for further research, provided attention is given to species-specific effects while simultaneously integrating comparative studies across taxa for a vital and comprehensive understanding of sex chromosome evolution and investigation of proposed models.
Collapse
Affiliation(s)
- Sophie Helen Smith
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany. https://twitter.com/@shg_smith
| | - Kevin Hsiung
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany. https://twitter.com/@KevinKHsiung
| | - Astrid Böhne
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany.
| |
Collapse
|
5
|
Dufresnes C, Crochet PA. Sex chromosomes as supergenes of speciation: why amphibians defy the rules? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210202. [PMID: 35694748 PMCID: PMC9189495 DOI: 10.1098/rstb.2021.0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As reflected by the two rules of speciation (Haldane's rule and the large X-/Z-effect), sex chromosomes are expected to behave like supergenes of speciation: they recombine only in one sex (XX females or ZZ males), supposedly recruit sexually antagonistic genes and evolve faster than autosomes, which can all contribute to pre-zygotic and post-zygotic isolation. While this has been mainly studied in organisms with conserved sex-determining systems and highly differentiated (heteromorphic) sex chromosomes like mammals, birds and some insects, these expectations are less clear in organismal groups where sex chromosomes repeatedly change and remain mostly homomorphic, like amphibians. In this article, we review the proposed roles of sex-linked genes in isolating nascent lineages throughout the speciation continuum and discuss their support in amphibians given current knowledge of sex chromosome evolution and speciation modes. Given their frequent recombination and lack of differentiation, we argue that amphibian sex chromosomes are not expected to become supergenes of speciation, which is reflected by the rarity of empirical studies consistent with a 'large sex chromosome effect' in frogs and toads. The diversity of sex chromosome systems in amphibians has a high potential to disentangle the evolutionary mechanisms responsible for the emergence of sex-linked speciation genes in other organisms. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | |
Collapse
|
6
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
7
|
Possible stochastic sex determination in Bursaphelenchus nematodes. Nat Commun 2022; 13:2574. [PMID: 35546147 PMCID: PMC9095866 DOI: 10.1038/s41467-022-30173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by “bottom-up” accretion from the most downstream regulator, tra-1. In most species, sex is determined by genetic or environmental factors. Here, the authors present evidence that sex determination in Bursaphelenchus nematodes is instead likely to be regulated by a random, epigenetic mechanism.
Collapse
|
8
|
Bókony V, Ujhegyi N, Mikó Z, Erös R, Hettyey A, Vili N, Gál Z, Hoffmann OI, Nemesházi E. Sex Reversal and Performance in Fitness-Related Traits During Early Life in Agile Frogs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.745752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.
Collapse
|
9
|
Mikó Z, Nemesházi E, Ujhegyi N, Verebélyi V, Ujszegi J, Kásler A, Bertalan R, Vili N, Gál Z, Hoffmann OI, Hettyey A, Bókony V. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117464. [PMID: 34380212 DOI: 10.1016/j.envpol.2021.117464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the female-to-male sex-reversing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Fish Parasitology Research Team, Veterinary Medical Research Institute, Eötvös Loránd Research Network, Hungária körút 21, H-1143, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| |
Collapse
|
10
|
Kratochvíl L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, Peichel CL, Perrin N, Valenzuela N, Pokorná MJ. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200097. [PMID: 34304593 PMCID: PMC8310716 DOI: 10.1098/rstb.2020.0097] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Las Lagunillas Campus S/N, 23071 Jaén, Spain
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
11
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Adolfi MC, Herpin A, Schartl M. The replaceable master of sex determination: bottom-up hypothesis revisited. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200090. [PMID: 34247496 DOI: 10.1098/rstb.2020.0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different group of vertebrates and invertebrates demonstrate an amazing diversity of gene regulations not only at the top but also at the bottom of the sex determination genetic network. As early as 1995, based on emerging findings in Drosophila melanogaster and Caenorhabditis elegans, Wilkins suggested that the evolution of the sex determination pathway evolved from the bottom to the top of the hierarchy. Based on our current knowledge, this review revisits the 'bottom-up' hypothesis and applies its logic to vertebrates. The basic operation of the determination network is through the dynamics of the opposing male and female pathways together with a persistent need to maintain the sexual identity of the cells of the gonad up to the reproductive stage in adults. The sex-determining trigger circumstantially acts from outside the genetic network, but the regulatory network is not built around it as a main node, thus maintaining the genetic structure of the network. New sex-promoting genes arise either through allelic diversification or gene duplication and act specially at the sex-determination period, without integration into the complete network. Due to this peripheral position the new regulator is not an indispensable component of the sex-determining network and can be easily replaced. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
13
|
Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. Evolution of master sex determiners: TGF-β signalling pathways at regulatory crossroads. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200091. [PMID: 34247498 DOI: 10.1098/rstb.2020.0091] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, more than 20 different vertebrate master sex-determining genes have been identified on different sex chromosomes of mammals, birds, frogs and fish. Interestingly, six of these genes are transcription factors (Dmrt1- or Sox3- related) and 13 others belong to the TGF-β signalling pathway (Amh, Amhr2, Bmpr1b, Gsdf and Gdf6). This pattern suggests that only a limited group of factors/signalling pathways are prone to become top regulators again and again. Although being clearly a subordinate member of the sex-regulatory network in mammals, the TGF-β signalling pathway made it to the top recurrently and independently. Facing this rolling wave of TGF-β signalling pathways, this review will decipher how the TGF-β signalling pathways cope with the canonical sex gene regulatory network and challenge the current evolutionary concepts accounting for the diversity of sex-determining mechanisms. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Mateus Adolfi
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Yann Guiguen
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Amaury Herpin
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| |
Collapse
|
14
|
Ruiz-García A, Roco ÁS, Bullejos M. Sex Differentiation in Amphibians: Effect of Temperature and Its Influence on Sex Reversal. Sex Dev 2021; 15:157-167. [PMID: 34000727 DOI: 10.1159/000515220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/20/2020] [Indexed: 11/19/2022] Open
Abstract
The role of environmental factors in sexual differentiation in amphibians is not new. The effect of hormones or hormone-like compounds is widely demonstrated. However, the effect of temperature has traditionally been regarded as something anecdotal that occurs in extreme situations and not as a factor to be considered. The data currently available reveal a different situation. Sexual differentiation in some amphibian species can be altered even by small changes in temperature. On the other hand, although not proven, it is possible that temperature is related to the appearance of sex-reversed individuals in natural populations under conditions unrelated to environmental contaminants. According to this, temperature, through sex reversal (phenotypic sex opposed to genetic sex), could play an important role in the turnover of sex-determining genes and in the maintenance of homomorphic sex chromosomes in this group. Accordingly, and given the expected increase in global temperatures, growth and sexual differentiation in amphibians could easily be affected, altering the sex ratio in natural populations and posing major conservation challenges for a group in worldwide decline. It is therefore particularly urgent to understand the mechanism by which temperature affects sexual differentiation in amphibians.
Collapse
Affiliation(s)
- Adrián Ruiz-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Álvaro S Roco
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
15
|
Piferrer F, Anastasiadi D. Do the Offspring of Sex Reversals Have Higher Sensitivity to Environmental Perturbations? Sex Dev 2021; 15:134-147. [PMID: 33910195 DOI: 10.1159/000515192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Sex determination systems in vertebrates vary along a continuum from genetic (GSD) to environmental sex determination (ESD). Individuals that show a sexual phenotype opposite to their genotypic sex are called sex reversals. Aside from genetic elements, temperature, sex steroids, and exogenous chemicals are common factors triggering sex reversal, a phenomenon that may occur even in strict GSD species. In this paper, we review the literature on instances of sex reversal in fish, amphibians, reptiles, birds, and mammals. We focus on the offspring of sex-reversed parents in the instances that they can be produced, and show that in all cases studied the offspring of these sex-reversed parents exhibit a higher sensitivity to environmental perturbations than the offspring of non-sex-reversed parents. We suggest that the inheritance of this sensitivity, aside from possible genetic factors, is likely to be mediated by epigenetic mechanisms such as DNA methylation, since these mechanisms are responsive to environmental cues, and epigenetic modifications can be transmitted to the subsequent generations. Species with a chromosomal GSD system with environmental sensitivity and availability of genetic sex markers should be employed to further test whether offspring of sex-reversed parents have greater sensitivity to environmental perturbations. Future studies could also benefit from detailed whole-genome data in order to elucidate the underlying molecular mechanisms. Finally, we discuss the consequences of such higher sensitivity in the context of global climate change.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
16
|
Roco ÁS, Ruiz-García A, Bullejos M. Testis Development and Differentiation in Amphibians. Genes (Basel) 2021; 12:578. [PMID: 33923451 PMCID: PMC8072878 DOI: 10.3390/genes12040578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates-the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Las Lagunillas S/N, Universidad de Jaén, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.)
| |
Collapse
|
17
|
Ant behavioral maturation is mediated by a stochastic transition between two fundamental states. Curr Biol 2021; 31:2253-2260.e3. [PMID: 33730550 DOI: 10.1016/j.cub.2020.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023]
Abstract
The remarkable ecological success of social insects is often attributed to their advanced division of labor, which is closely associated with temporal polyethism in which workers transition between different tasks as they age. Young nurses are typically found deep within the nest where they tend to the queen and the brood, whereas older foragers are found near the entrance and outside the nest.1-3 However, the individual-level maturation dynamics remain poorly understood because following individuals over relevant timescales is difficult; hence, previous experimental studies used same-age cohort designs.4-15 To address this, we used an automated tracking system to follow >500 individuals over >100 days and constructed networks of physical contacts to provide a continuous measure of worker social maturity. These analyses revealed that most workers occupied one of two steady states, namely a low-maturity nurse state and a high-maturity forager state, with the remaining workers rapidly transitioning between these states. There was considerable variation in the age at transition, and, surprisingly, the transition probability was age independent. This suggests that the transition is largely stochastic rather than a hard-wired age-dependent physiological change. Despite the variation in timing, the transition dynamics were highly stereotyped. Transitioning workers moved from the nurse to the forager state according to an S-shaped trajectory, and only began foraging after completing the transition. Stochastic switching, which occurs in many other biological systems, may provide ant colonies with robustness to extrinsic perturbations by allowing the colony to decouple its division of labor from its demography.
Collapse
|
18
|
Evolutionary and demographic consequences of temperature-induced masculinization under climate warming: the effects of mate choice. BMC Ecol Evol 2021; 21:16. [PMID: 33541263 PMCID: PMC7860201 DOI: 10.1186/s12862-021-01747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the dangers of global climate change to wildlife is distorting sex ratios by temperature-induced sex reversals in populations where sex determination is not exclusively genetic, potentially leading to population collapse and/or sex-determination system transformation. Here we introduce a new concept on how these outcomes may be altered by mate choice if sex-chromosome-linked phenotypic traits allow females to choose between normal and sex-reversed (genetically female) males. Results We developed a theoretical model to investigate if an already existing autosomal allele encoding preference for sex-reversed males would spread and affect demographic and evolutionary processes under climate warming. We found that preference for sex-reversed males (1) more likely spread in ZW/ZZ than in XX/XY sex-determination systems, (2) in populations starting with ZW/ZZ system, it significantly hastened the transitions between different sex-determination systems and maintained more balanced adult sex ratio for longer compared to populations where all females preferred normal males; and (3) in ZW/ZZ systems with low but non-zero viability of WW individuals, a widespread preference for sex-reversed males saved the populations from early extinction. Conclusions Our results suggest that climate change may affect the evolution of mate choice, which in turn may influence the evolution of sex-determination systems, sex ratios, and thereby adaptive potential and population persistence. These findings show that preferences for sex-linked traits have special implications in species with sex reversal, highlighting the need for empirical research on the role of sex reversal in mate choice.
Collapse
|
19
|
Tao W, Conte MA, Wang D, Kocher TD. Network architecture and sex chromosome turnovers: Do epistatic interactions shape patterns of sex chromosome replacement? Bioessays 2020; 43:e2000161. [PMID: 33283342 DOI: 10.1002/bies.202000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
20
|
Joschinski J, Bonte D. Transgenerational Plasticity and Bet-Hedging: A Framework for Reaction Norm Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.517183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), whereas predictable environments favor phenotypic plasticity. However, entirely predictable or entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when the time lag between information sensing and phenotype induction is large (e.g., transgenerational plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current theory regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: based on traits with binary outcomes like seed germination or diapause incidence we clarify that diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are mutually exclusive strategies, arising from opposing changes in reaction norms (allocating phenotypic variance among or within environments). We further explain the relationship of this continuum with arithmetic mean maximization vs. conservative bet-hedging (a risk-avoidance strategy), and canalization vs. phenotypic variance in a three-dimensional continuum of reaction norm evolution. We discuss under which scenarios costs and limits may constrain the evolution of reaction norm shapes.
Collapse
|
21
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
22
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
23
|
Sissao R, D'Cotta H, Baroiller JF, Toguyeni A. Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia Oreochromis niloticus. PeerJ 2019; 7:e7709. [PMID: 31579600 PMCID: PMC6754722 DOI: 10.7717/peerj.7709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.
Collapse
Affiliation(s)
- Rokyatou Sissao
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Institut de l'environnement et de recherches agricoles, Centre national de la recherche scientifique et technologique, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| | - Helena D'Cotta
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Jean-François Baroiller
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Aboubacar Toguyeni
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
24
|
Chromosome-Wide Evolution and Sex Determination in the Three-Sexed Nematode Auanema rhodensis. G3-GENES GENOMES GENETICS 2019; 9:1211-1230. [PMID: 30770412 PMCID: PMC6469403 DOI: 10.1534/g3.119.0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trioecy, a mating system in which males, females and hermaphrodites co-exist, is a useful system to investigate the origin and maintenance of alternative mating strategies. In the trioecious nematode Auanema rhodensis, males have one X chromosome (XO), whereas females and hermaphrodites have two (XX). The female vs. hermaphrodite sex determination mechanisms have remained elusive. In this study, RNA-seq analyses show a 20% difference between the L2 hermaphrodite and female gene expression profiles. RNAi experiments targeting the DM (doublesex/mab-3) domain transcription factor dmd-10/11 suggest that the hermaphrodite sexual fate requires the upregulation of this gene. The genetic linkage map (GLM) shows that there is chromosome-wide heterozygosity for the X chromosome in F2 hermaphrodite-derived lines originated from crosses between two parental inbred strains. These results confirm the lack of recombination of the X chromosome in hermaphrodites, as previously reported. We also describe conserved chromosome elements (Nigon elements), which have been mostly maintained throughout the evolution of Rhabditina nematodes. The seven-chromosome karyotype of A. rhodensis, instead of the typical six found in other rhabditine species, derives from fusion/rearrangements events involving three Nigon elements. The A. rhodensis X chromosome is the smallest and most polymorphic with the least proportion of conserved genes. This may reflect its atypical mode of father-to-son transmission and its lack of recombination in hermaphrodites and males. In conclusion, this study provides a framework for studying the evolution of chromosomes in rhabditine nematodes, as well as possible mechanisms for the sex determination in a three-sexed species.
Collapse
|
25
|
Fernandino JI, Hattori RS. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 2019; 273:172-183. [PMID: 29990492 DOI: 10.1016/j.ygcen.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
The high biodiversity of fish in the Neotropical region contrasts with scarce or biased studies on the mechanisms involved in the sex determination in members of this fauna. In this review, we attempted to compile the information available on determination, differentiation, and manipulation of sex for Neotropical species, with special focus on silversides and other two speciose groups, known as characins (Characiformes) and catfishes (Siluriformes). Currently, there is plenty of information available on chromosomal sex determination systems, which includes both male and female heterogamety with many variations, and sex chromosomes evolution at the macro chromosomal level. However, there is hitherto a blank in information at micro, gene/molecule levels and in research related to the effects of environmental cues on sex determination; most of reported studies are limited to silversides and guppies. In view of such a high diversity, it is critically necessary to establish key model species for relevant Neotropical fish taxa and also multi-disciplinary research groups in order to uncover the main patterns and trends that dictate the mechanisms of sex determination and gonadal differentiation in this icthyofauna. By increasing our knowledge on sex determination/differentiation with the identification of sex chromosome-linked markers or sex-determining genes, characterization of the onset timing of morphological gonadal differentiation, and determination of the environmental-hormonal labile period of gonadal sex determination in reference species, it will be possible to use those information as guidelines for application in other related groups. Overall, the strategic advance in this research field will be crucial for the development of biotechnological tools for aquaculture industry and for conservation of fish fauna from the Neotropical Region.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), Chascomús, Argentina.
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil.
| |
Collapse
|
26
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
27
|
Leimar O, Dall SRX, McNamara JM, Kuijper B, Hammerstein P. Ecological Genetic Conflict: Genetic Architecture Can Shift the Balance between Local Adaptation and Plasticity. Am Nat 2018; 193:70-80. [PMID: 30624104 DOI: 10.1086/700719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic polymorphism can contribute to local adaptation in heterogeneous habitats, for instance, as a single locus with alleles adapted to different habitats. Phenotypic plasticity can also contribute to trait variation across habitats, through developmental responses to habitat-specific cues. We show that the genetic architecture of genetically polymorphic and plasticity loci may influence the balance between local adaptation and phenotypic plasticity. These effects of genetic architecture are instances of ecological genetic conflict. A reduced effective migration rate for genes tightly linked to a genetic polymorphism provides an explanation for the effects, and they can occur both for a single trait and for a syndrome of coadapted traits. Using individual-based simulations and numerical analysis, we investigate how among-habitat genetic polymorphism and phenotypic plasticity depend on genetic architecture. We also study the evolution of genetic architecture itself, in the form of rates of recombination between genetically polymorphic loci and plasticity loci. Our main result is that for plasticity genes that are unlinked to loci with between-habitat genetic polymorphism, the slope of a reaction norm is steeper in comparison with the slope favored by plasticity genes that are tightly linked to genes for local adaptation.
Collapse
|
28
|
Bókony V, Kövér S, Nemesházi E, Liker A, Székely T. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0325. [PMID: 28760766 DOI: 10.1098/rstb.2016.0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Szilvia Kövér
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - András Liker
- Department of Limnology, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary.,MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
29
|
Maitre D, Selmoni OM, Uppal A, Marques da Cunha L, Wilkins LGE, Roux J, Mobley KB, Castro I, Knörr S, Robinson-Rechavi M, Wedekind C. Sex differentiation in grayling (Salmonidae) goes through an all-male stage and is delayed in genetic males who instead grow faster. Sci Rep 2017; 7:15024. [PMID: 29101375 PMCID: PMC5670243 DOI: 10.1038/s41598-017-14905-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/19/2017] [Indexed: 01/05/2023] Open
Abstract
Fish populations can be threatened by distorted sex ratios that arise during sex differentiation. Here we describe sex differentiation in a wild grayling (Thymallus thymallus) population that suffers from distorted sex ratios. We verified that sex determination is linked to the sex determining locus (sdY) of salmonids. This allowed us to study sex-specific gene expression and gonadal development. Sex-specific gene expression could be observed during embryogenesis and was strong around hatching. About half of the fish showed immature testes around eleven weeks after fertilization. This phenotype was mostly replaced by the "testis-to-ovary" or "ovaries" phenotypes during development. The gonads of the remaining fish stayed undifferentiated until six months after fertilization. Genetic sexing revealed that fish with undifferentiated gonads were all males, who grew larger than the genetic females during the observational period. Only 12% of the genetic males showed testicular tissue six months after fertilization. We conclude that sex differentiation starts before hatching, goes through an all-male stage for both sexes (which represents a rare case of "undifferentiated" gonochoristic species that usually go through an all-female stage), and is delayed in males. During these juvenile stages males grow faster than females instead of developing their gonads.
Collapse
Affiliation(s)
- Diane Maitre
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Oliver M Selmoni
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Federal Institute of Technology (EPFL), Bâtiment GC, 1015, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Department of Environmental Sciences, Policy and Management, 130 Mulford Hall #3114, University of California, Berkeley, CA 94720, USA
| | - Julien Roux
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Department of Biomedicine, University of Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - Kenyon B Mobley
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Max-Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, August Thienemann Str. 2, 24306, Plön, Germany
| | - Isabelle Castro
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Susanne Knörr
- Aquatic Ecology and Toxicology Group, Center of Organismic Studies, University of Heidelberg, Heidelberg, Germany
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
30
|
Wedekind C. Demographic and genetic consequences of disturbed sex determination. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160326. [PMID: 28760767 PMCID: PMC5540866 DOI: 10.1098/rstb.2016.0326] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness vyy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low vyy is mostly beneficial for population growth. During feminization, low vyy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low vyy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about vyy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Rodrigues N, Studer T, Dufresnes C, Ma WJ, Veltsos P, Perrin N. Dmrt1 polymorphism and sex-chromosome differentiation in Rana temporaria. Mol Ecol 2017; 26:4897-4905. [PMID: 28675502 DOI: 10.1111/mec.14222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Sex-determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex-chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex-determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X-linked and Y-linked Dmrt1 haplotypes. Some males had fixed male-specific alleles at all markers ("differentiated" Y chromosomes), others only at Dmrt1 ("proto-" Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex-determining locus. From our results, the polymorphism in sex-chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tania Studer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Rodrigues N, Dufresnes C. Using conventional F-statistics to study unconventional sex-chromosome differentiation. PeerJ 2017; 5:e3207. [PMID: 28462023 PMCID: PMC5410149 DOI: 10.7717/peerj.3207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023] Open
Abstract
Species with undifferentiated sex chromosomes emerge as key organisms to understand the astonishing diversity of sex-determination systems. Whereas new genomic methods are widening opportunities to study these systems, the difficulty to separately characterize their X and Y homologous chromosomes poses limitations. Here we demonstrate that two simple F-statistics calculated from sex-linked genotypes, namely the genetic distance (Fst) between sexes and the inbreeding coefficient (Fis) in the heterogametic sex, can be used as reliable proxies to compare sex-chromosome differentiation between populations. We correlated these metrics using published microsatellite data from two frog species (Hyla arboreaand Rana temporaria), and show that they intimately relate to the overall amount of X–Y differentiation in populations. However, the fits for individual loci appear highly variable, suggesting that a dense genetic coverage will be needed for inferring fine-scale patterns of differentiation along sex-chromosomes. The applications of these F-statistics, which implies little sampling requirement, significantly facilitate population analyses of sex-chromosomes.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Baroiller JF, D'Cotta H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex Dev 2016; 10:242-266. [PMID: 27907925 DOI: 10.1159/000452362] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Fish sex reversal is a means to understand sex determination and differentiation, but it is also used to control sex in aquaculture. This review discusses sex reversal in gonochoristic fish, with the coexistence of genetic and environmental influences. The different periods of fish sensitivity to sex reversal treatments are presented with the mechanisms implicated. The old players of sex differentiation are revisited with transcriptome data and loss of function studies following hormone- or temperature-induced sex reversal. We also discuss whether cortisol is the universal mediator of sex reversal in fish due to its implication in ovarian meiosis and 11KT increase. The large plasticity in fish for sex reversal is also evident in the brain, with a reversibility existing even in adulthood. Studies on epigenetics are presented, since it links the environment, gene expression, and sex reversal, notably the association of DNA methylation in sex reversal. Manipulations with exogenous factors reverse the primary sex in many fish species under controlled conditions, but several questions arise on whether this can occur under wild conditions and what is the ecological significance. Cases of sex reversal in wild fish populations are shown and their fitness and future perspectives are discussed.
Collapse
|