1
|
Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Ann Hematol 2024; 103:3385-3398. [PMID: 38148344 DOI: 10.1007/s00277-023-05595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanhui Tang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Haiquan Lu
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Wan
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Xiao
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
| | - You Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Bhattacharya S, Harris HL, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele SM, Muders M, Batra SK, Ghosh PM, Datta K, Rowley MJ, Dutta S. Understanding the function of Pax5 in development of docetaxel-resistant neuroendocrine-like prostate cancers. Cell Death Dis 2024; 15:617. [PMID: 39183332 PMCID: PMC11345443 DOI: 10.1038/s41419-024-06916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small-cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts neurite-mediated cellular communication in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to docetaxel therapies. Moreover, t-NEPC-specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
MESH Headings
- Humans
- Male
- Docetaxel/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Antineoplastic Agents/pharmacology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dipanwita Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Subodh M Lele
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Muders
- MVZ Pathology Bethesda, Heerstrasse 219, Duisburg, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paramita M Ghosh
- Department of Urological Surgery, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Choi SR, Lee J, Seo YJ, Jin HS, Ahn HB, Go Y, Kim NK, Ryu KS, Lee JH. Molecular basis of facilitated target search and sequence discrimination of TALE homeodomain transcription factor Meis1. Nat Commun 2024; 15:6984. [PMID: 39143123 PMCID: PMC11325038 DOI: 10.1038/s41467-024-51297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.
Collapse
Affiliation(s)
- Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Seoul, 02456, Republic of Korea
| | - Juyong Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Arontier Co., Seoul, 06735, Republic of Korea.
| | - Yeo-Jin Seo
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Ho-Seong Jin
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Hye-Bin Ahn
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Seoul, 02456, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, 28119, Republic of Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| |
Collapse
|
4
|
Huang N, Zhang H, Huang Z, Wu X, Zhang N, Jiang Y, Chen C, Zhuang J. Whole Exome Sequencing Revealing a Novel PBX1 Gene Variant in a Chinese Family Causing Recurrent Neonatal Death. Birth Defects Res 2024; 116:e2396. [PMID: 39189629 DOI: 10.1002/bdr2.2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Causative mutations of PBX1 are associated with congenital abnormalities of the kidney and urinary tract (CAKUT), often accompanied by hearing loss, abnormal ear morphology, or developmental delay. The aim of the present investigation was to introduce a novel variant in the PBX1 gene identified in a Chinese family, leading to recurrent neonatal mortality. METHODS A pregnant woman (gravida 5, para 0), who had experienced recurrent neonatal deaths, sought genetic etiology diagnosis. Whole exome sequencing (WES) was conducted to identify sequence variants and copy number variants in the fetus presenting with posterior nuchal cystic hygroma and fetal hydrops. RESULTS A novel NM_002585.4:c.694G>C(p.D232H) in PBX1 was identified in the fetus through trio whole exome sequencing (WES), revealing a paternal mosaic PBX1 variant in blood at 11.54% (6/52 variants reads). Subsequent parental Sanger sequencing confirmed the variant detected by WES. Ultimately, the variant was classified as likely pathogenic, leading the family to elect pregnancy termination at 17 weeks gestation. CONCLUSION The novel variant in the PBX1 gene appears to be a significant factor contributing to recurrent neonatal deaths in the Chinese family. Such findings expand the spectrum of PBX1 gene variants and provide valuable perinatal guidance for diagnosing fetuses with PBX1 mutations.
Collapse
Affiliation(s)
- Nan Huang
- The Teaching and Research Office of Clinical Laboratory Medicine, Quanzhou Medical College, Quanzhou, China
| | - Hegan Zhang
- Department of Gynecology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhengping Huang
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoxia Wu
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Na Zhang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Chunnuan Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| |
Collapse
|
5
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
6
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597450. [PMID: 38895322 PMCID: PMC11185640 DOI: 10.1101/2024.06.04.597450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been fully investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded SHH expression, while overexpressing PBX3 decreased SHH expression. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro . When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis- regulatory element, named SFE1, that interacts with PBX1/3 to modulate SHH expression in the FEZ and establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
|
7
|
Coty-Fattal Z, Carter B, Volek MJ, Obeidin F. Low-grade undifferentiated sarcoma with MEIS1::NCOA2-rearrangement primary to the lung: a case report. Diagn Pathol 2024; 19:65. [PMID: 38678288 PMCID: PMC11055358 DOI: 10.1186/s13000-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND MEIS1::NCOA2 is a rare fusion gene that has been recently described in a subset of spindle cell rhabdomyosarcomas and multiple low-grade undifferentiated spindle cell sarcomas predominantly arising in the genitourinary and gynecologic tracts with no specific line of differentiation. We present the first documented case of this neoplasm arising as a lung primary tumor. CASE PRESENTATION A 74-year-old woman with a 40-year smoking history presented with a 2.1 × 1.7 cm lung nodule discovered on computed tomography (CT) scan. A biopsy and subsequent lobe resection were performed, as well as an extensive metastatic work up, which revealed no additional masses. No specific line of differentiation was found by immunohistochemical staining, and an RNA-based fusion panel revealed a MEIS1::NCOA2 fusion, at which point a diagnosis of Low-Grade Undifferentiated Sarcoma with MEIS1::NCOA2-Rearrangement was rendered. CONCLUSIONS This report represents the first diagnosis of this tumor primary to the lung, and provides additional insight into the origin and localization of these rare tumors.
Collapse
Affiliation(s)
- Zachary Coty-Fattal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Bianca Carter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Volek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Farres Obeidin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
9
|
Bobola N, Sagerström CG. TALE transcription factors: Cofactors no more. Semin Cell Dev Biol 2024; 152-153:76-84. [PMID: 36509674 DOI: 10.1016/j.semcdb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Exd/PBX, Hth/MEIS and PREP proteins belong to the TALE (three-amino-acid loop extension) superclass of transcription factors (TFs) with an atypical homedomain (HD). Originally discovered as "cofactors" to HOX proteins, revisiting their traditional role in light of genome-wide experiments reveals a strong and reproducible pattern of HOX and TALE co-occupancy across diverse embryonic tissues. While confirming that TALE increases HOX specificity and selectivity in vivo, this wider outlook also reveals novel aspects of HOX:TALE collaboration, namely that HOX TFs generally require pre-bound TALE factors to access their functional binding sites in vivo. In contrast to the restricted expression domains of HOX TFs, TALE factors are largely ubiquitous, and PBX and PREP are expressed at the earliest developmental stages. PBX and MEIS control development of many organs and tissues and their dysregulation is associated with congenital disease and cancer. Accordingly, many instances of TALE cooperation with non HOX TFs have been documented in various systems. The model that emerges from these studies is that TALE TFs create a permissive chromatin platform that is selected by tissue-restricted TFs for binding. In turn, HOX and other tissue-restricted TFs selectively convert a ubiquitous pool of low affinity TALE binding events into high confidence, tissue-restricted binding events associated with transcriptional activation. As a result, TALE:TF complexes are associated with active chromatin and domain/lineage-specific gene activity. TALE ubiquitous expression and broad genomic occupancy, as well as the increasing examples of TALE tissue-specific partners, reveal a universal and obligatory role for TALE in the control of tissue and lineage-specific transcriptional programs, beyond their initial discovery as HOX co-factors.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK.
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
10
|
Dutta S, Bhattacharya S, Harris H, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele S, Muders M, Batra S, Ghosh P, Datta K, Rowley M. Understanding the role of Pax5 in development of taxane-resistant neuroendocrine like prostate cancers. RESEARCH SQUARE 2023:rs.3.rs-3464475. [PMID: 38168280 PMCID: PMC10760218 DOI: 10.21203/rs.3.rs-3464475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts cellular interaction in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to taxane therapies. Moreover, t-NEPC specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center
| | - Surinder Batra
- University of Nebraska Medical Center, Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases
| | | | | | | |
Collapse
|
11
|
Hu J, Yang H, Wang X, Ding J, Liao P, Zhu G, Qi C. A novel pathogenic variant c.262delA in PBX1 causing oligomeganephronia identified using whole-exome sequencing and a literature review. Am J Med Genet A 2023; 191:2850-2855. [PMID: 37571997 DOI: 10.1002/ajmg.a.63364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Oligomeganephronia (OMN) is a rare congenital renal hypoplasia reported more often in children than in adults. The diagnosis of OMN relies on renal biopsy and exhibits a significant reduction in the number of glomeruli and pronounced glomerular hypertrophy. Here, we report the case of an 8-year-old boy with recurrent proteinuria and abnormal external ears. A renal biopsy revealed large and rare glomeruli. The histological findings confirmed the diagnosis of OMN. Whole-exome sequencing of the patient revealed a new pathogenic variant in PBX1 (hg19, NM_002585, c.262delA, p.Thr88Glnfs*3). The PBX1 gene encodes a transcription factor whose pathogenic variants can result in congenital renal and urinary system anomalies, with or without hearing loss, abnormal ears, and developmental retardation (CAKUTED). This is the first report to detect PBX1 pathogenic variants in children with OMN, a novel phenotype of human PBX1 pathogenic variants. We performed functional prediction analyses of deletions in the corresponding structural domains. We summarized 27 cases of PBX1 single pathogenic variants reported between 2003 and 2023 in terms of truncating and missense pathogenic variants, which can deepen our understanding of the PBX1 structural domain and expand our knowledge of the PBX1 genotype and phenotype.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Ding
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panli Liao
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Zhu
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Qi
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Cabaro S, Agognon AL, Nigro C, Orso S, Prevenzano I, Leone A, Morelli C, Mormone F, Romano S, Miele C, Beguinot F, Formisano P, Oriente F. Resveratrol Improves Endothelial Function by A PREP1-Mediated Pathway in Mouse Aortic Endothelial Cells. Int J Mol Sci 2023; 24:11891. [PMID: 37569266 PMCID: PMC10419093 DOI: 10.3390/ijms241511891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
PREP1 is a homeodomain transcription factor that impairs metabolism and is involved in age-related aortic thickening. In this study, we evaluated the role of PREP1 on endothelial function. Mouse Aortic Endothelial Cells (MAECs) transiently transfected with a Prep1 cDNA showed a 1.5- and 1.6-fold increase in eNOSThr495 and PKCα phosphorylation, respectively. Proinflammatory cytokines Tnf-α and Il-6 increased by 3.5 and 2.3-fold, respectively, in the presence of Prep1, while the antioxidant genes Sod2 and Atf4 were significantly reduced. Bisindolylmaleimide reverted the effects induced by PREP1, suggesting PKCα to be a mediator of PREP1 action. Interestingly, resveratrol, a phenolic micronutrient compound, reduced the PREP1 levels, eNOSThr495, PKCα phosphorylation, and proinflammatory cytokines and increased Sod2 and Atf4 mRNA levels. The experiments performed on the aorta of 18-month-old Prep1 hypomorphic heterozygous mice (Prep1i/+) expressing low levels of this protein showed a 54 and 60% decrease in PKCα and eNOSThr495 phosphorylation and a 45% reduction in Tnf-α levels, with no change in Il-6, compared to same-age WT mice. However, a significant decrease in Sod2 and Atf4 was observed in Prep1i/+ old mice, indicating the lack of age-induced antioxidant response. These results suggest that Prep1 deficiency partially improved the endothelial function in aged mice and suggested PREP1 as a novel target of resveratrol.
Collapse
Affiliation(s)
- Serena Cabaro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Ayewa L. Agognon
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cecilia Nigro
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Sonia Orso
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Immacolata Prevenzano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Alessia Leone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Cristina Morelli
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Federica Mormone
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Serena Romano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Claudia Miele
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT Genomic of Diabetes of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Via Pansini 5, 80131 Naples, Italy; (S.C.); (A.L.A.); (C.N.); (S.O.); (I.P.); (A.L.); (C.M.); (F.M.); (S.R.); (C.M.); (F.B.); (F.O.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
13
|
Girgin B, Kocabaş F. Newly developed MEIS inhibitor selectively blocks MEIS High prostate cancer growth and induces apoptosis. Gene 2023; 871:147425. [PMID: 37044182 DOI: 10.1016/j.gene.2023.147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in males. Understanding the molecular mechanism and investigation of novel ways to block PCa growth or metastasis are vital and a medical necessity. In this study, we examined differential expression of MEIS1/2/3 and its associated factors in PCa cell lines. MEIS1/2/3 content, reactive oxygen species, and cell cycle status were analyzed in PCa cells post MEIS inhibitor (MEISi) treatments, which is developed in our laboratory as a first-in-class small molecule inhibitor. A correlation was detected between MEIS content and MEISi IC50 values of PCa cells. MEISi decreased the viability of PC-3, DU145, 22Rv-1 and LNCaP cells, and significantly increased apoptosis in parallel with the increased cellular ROS content. The efficacy of MEISi was shown to positively correlate with the levels of MEIS1/2/3 proteins and the long term exposure to MEISi elevated MEIS1/2/3 protein content in PCa cells. Our findings suggest that MEISi could be used to target PCa with high MEIS expression in order to reduce PCa viability and growth; however, more research is needed before this can be translated into clinical settings.
Collapse
Affiliation(s)
- Birkan Girgin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
14
|
Spindle function and Wnt pathway inhibition by PBX1 to suppress tumor progression via downregulating DCDC2 in colorectal cancer. Oncogenesis 2023; 12:3. [PMID: 36739270 PMCID: PMC9899229 DOI: 10.1038/s41389-023-00448-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
PBX1 is a transcription factor that regulates a variety of genes, involved in intracellular lipid metabolism, cell proliferation, and other pathways. The promoting and inhibiting function of PBX1 in various cancer types was extensively discussed, however, there have been no studies on PBX1 proteins in colorectal cancer (CRC). This study aimed to reveal the anti-tumor function of PBX1 in CRC and the underlying molecular mechanism. Bioinformatics analysis revealed that PBX1 is downregulated in CRC, indicating that is a potential antioncogene in CRC. Overexpression of PBX1 suppresses tumor growth and metastasis in vitro and in vivo. Mechanistically, we found that PBX1 acted as a transcription factor that suppressed DCDC2 expression and inhibited spindle function. Moreover, the PBX1-DCDC2 axis controlled the Wnt pathway in CRC cells. Overexpression of DCDC2 restored CRC proliferation, metastasis abilities and Wnt pathway. In conclusion, this study suggests that PBX1 acts as a transcription factor to suppress DCDC2 expression and inhibit cell proliferation and metastasis by disrupting spindle function and the Wnt pathway in CRC.
Collapse
|
15
|
Functional Assessment of a New PBX1 Variant in a 46,XY Fetus with Severe Syndromic Difference of Sexual Development through CRISPR-Cas9 Gene Editing. Genes (Basel) 2023; 14:genes14020273. [PMID: 36833200 PMCID: PMC9956894 DOI: 10.3390/genes14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Sexual development is a complex process relying on numerous genes. Disruptions in some of these genes are known to cause differences of sexual development (DSDs). Advances in genome sequencing allowed the discovery of new genes implicated in sexual development, such as PBX1. We present here a fetus with a new PBX1 NM_002585.3: c.320G>A,p.(Arg107Gln) variant, presenting with severe DSD along with renal and lung malformations. Using CRISPR-Cas9 gene editing on HEK293T cells, we generated a KD cell line for PBX1. The KD cell line showed reduced proliferation and adhesion properties compared with HEK293T cells. HEK293T and KD cells were then transfected plasmids coding either PBX1 WT or PBX1-320G>A (mutant). WT or mutant PBX1 overexpression rescued cell proliferation in both cell lines. RNA-seq analyses showed less than 30 differentially expressed genes, in ectopic mutant-PBX1-expressing cells compared with WT-PBX1. Among them, U2AF1, encoding a splicing factor subunit, is an interesting candidate. Overall, mutant PBX1 seems to have modest effects compared with WT PBX1 in our model. However, the recurrence of PBX1 Arg107 substitution in patients with closely related phenotypes calls for its impact in human diseases. Further functional studies are needed to explore its effects on cellular metabolism.
Collapse
|
16
|
Liu B, Zhao S, Liu L. PKNOX1 acts as a transcription factor of DHH and promotes the progression of stomach adenocarcinoma by regulating the Hedgehog signalling pathway. Int J Immunopathol Pharmacol 2023; 37:3946320231208833. [PMID: 37864517 PMCID: PMC10591495 DOI: 10.1177/03946320231208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND This study explored the effects and potential mechanism by which PBX/knotted 1 homeobox 1 (PKNOX1) may exacerbate stomach adenocarcinoma (STAD). METHODS For the in silico analysis, we examined TCGA-PKNOX1 expression using the UALCAN website, as well as its expression patterns in the GSE172032 and GSE174237 datasets, obtained from the GEO database. The associated patient survival curves, were analysed via the KMplot webtool. In vitro, we measured cell viability, proliferation, migration, and invasion using cell counting kit-8, colony formation, wound healing, and cell migration assays, respectively. Real time qPCR and western blotting assessed the mRNA and protein levels of PKNOX1, Snail, vimentin, N-cadherin, E-cadherin, desert hedgehog (DHH), cyclin D2, glioma-associated oncogene homolog 1, and smoothened. Gene Set Enrichment Analysis was performed using LinkedOmics webtools and the clusterProfiler package in R. Dual-luciferase reporter assay was used to examine the interactions of PKNOX1 with DHH, and of TEA domain transcription factor 4 (TEAD4) with PKNOX1. RESULTS PKNOX1 was highly expressed in STAD and linked to poor patient survival. Downregulation of PKNOX1 inhibited STAD cell viability, proliferation, migration, invasion, and epithelial-mesenchymal transition. Upregulation of TEAD4 promoted colony formation and migration, while these effects were reversed by PKNOX1 depletion. Furthermore, PKNOX1 regulated the activation of the hedgehog signalling pathway at the gene level, as we identified PKNOX1 to be a putative transcription factor for DHH that promotes its expression. CONCLUSION Our results show that PKNOX1 acts as a candidate transcription factor for DHH and facilitates STAD development by regulating the hedgehog signalling pathway.
Collapse
Affiliation(s)
- Bing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Siwei Zhao
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| | - Liqing Liu
- Gastrointestinal Surgery, Shandong First Medical University Affiliated Cancer Hospital, Jinan, P. R. China
| |
Collapse
|
17
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
18
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Blel A, Saadi A, Chakroun M, Naimi Z, Zaghbib S, Ksontini M, Meddeb K, Rammeh S, Ayed H, Chebil M, Piaggio G, Ouerhani S. An insight into the diagnostic and prognostic value of
HOX A13
’s expression in non‐muscle invasive bladder cancer. J Clin Lab Anal 2022; 36:e24606. [PMID: 35853090 PMCID: PMC9459288 DOI: 10.1002/jcla.24606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Several studies have interrogated the molecular pathways and their interacting genes underlying bladder cancer (BCa) tumorigenesis, yet, the role of homeobox genes is still poorly understood. Specifically, HOXA13, which plays an important role as a major actor in the urogenital tract's development. Methods Immunohistochemical (IHC) staining was performed to inspect the differential expression of HOXA13 protein in non‐muscle‐invasive bladder cancer (NMIBC) and non‐tumoral tissues. A semiquantitative scoring system was adopted to evaluate the IHC labeling. Correlation to clinical parameters was performed by descriptive statistics. Overall survival was estimated by the Kaplan–Meier method and Cox regression model. The functional HOX A13 protein association networks (PPI) were obtained using String 11.0 database. Results HOX A13 exhibited cytoplasmic and nuclear staining. Its expression levels were lower in high‐grade NMIBC (HG NMIBC) compared to low‐grade ones (LG NMIBC). The expression of HOX A13 was correlated to tumor grade (LG/HG) (p = 0.036) and stage (TA/T1) (p = 0.036). Nevertheless, its expression was not correlated to clinical parameters and was not able to predict the overall survival of patients with HG NMIBC. Finally, PPI analysis revealed that HOX A13 seems to be a part of a molecular network holding mainly PBX1, MEIS, ALDH1A2, HOX A10, and HOX A11. Conclusion The deregulation of HOX A13 is not associated with the prognosis of BCa. It seems to be rather implicated in the early initiation of urothelial tumorigenesis and thus may serve as a diagnostic marker in patients with NMIBC. Further experimentations on larger validation sets are mandatory.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Aymone Gurtner
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Institute of Translational Pharmacology (IFT) National Research Council (CNR) Rome Italy
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| | - Isabella Manni
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Ahlem Blel
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Ahmed Saadi
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Marouene Chakroun
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Zeineb Naimi
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Selim Zaghbib
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Meriam Ksontini
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Khedija Meddeb
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Soumaya Rammeh
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Haroun Ayed
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Mohamed Chebil
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Giulia Piaggio
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| |
Collapse
|
19
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
20
|
Liu Y, Zhai E, Chen J, Qian Y, Zhao R, Ma Y, Liu J, Huang Z, Cai S, Chen J. m 6 A-mediated regulation of PBX1-GCH1 axis promotes gastric cancer proliferation and metastasis by elevating tetrahydrobiopterin levels. Cancer Commun (Lond) 2022; 42:327-344. [PMID: 35261206 PMCID: PMC9017753 DOI: 10.1002/cac2.12281] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Methyltransferase 3 (METTL3)-mediated N6-methyladenosine (m6 A) RNA modification has been demonstrated to be a potential factor in promoting gastric cancer (GC). METTL3 regulates a series of signaling pathways by modifying various mRNAs. This study aimed to identify novel METTL3-mediated signaling pathways and explored possible targets for use in the clinical setting of gastric cancer. METHODS To investigate the proliferation and metastatic capacity of GC cell lines with METTL3 knockdown, a xenograft, lung metastasis, and popliteal lymph node metastasis model was used. The m6 A-modified RNA immunoprecipitation (Me-RIP) sequence was utilized to explore the target mRNAs of METTL3. Cell counting kit 8 and transwell assays were performed to investigate the promoting function of pre-B cell leukemia homeobox 1 (PBX1) and GTP cyclohydrolase 1 (GCH1). Western blotting and chromatin immunoprecipitation were employed to confirm the involvement of the METTL3-PBX1-GCH1 axis. ELISA and liquid chromatography-mass spectrometry were used to explore the biological function of tetrahydrobiopterin (BH4 ). RESULTS Knockdown of METTL3 suppressed xenograft tumor growth and lung/lymph node metastasis in vivo. Mechanistically, we found that METTL3 combined with and stabilized PBX1 mRNAs. Chromatin immunoprecipitation (ChIP) and further experiments suggested that PBX1 acted as a transcription factor inducing GCH1 expression. Moreover, the METTL3-PBX1-GCH1 axis increased BH4 levels in GC cells, thereby promoting tumor progression. CONCLUSIONS This study suggested that METTL3 enzymes promote tumor growth and lung/lymph node metastasis via METTL3-PBX1-GCH1 axis increasing BH4 levels in GC.
Collapse
Affiliation(s)
- Yinan Liu
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Laboratory of Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Junting Chen
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Yan Qian
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Yan Ma
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Jianqiu Liu
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Centerthe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
- Gastric Cancer CenterSun Yat‐sen UniversityGuangzhouGuangdong510080P. R. China
| |
Collapse
|
21
|
Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer. Signal Transduct Target Ther 2022; 7:87. [PMID: 35351858 PMCID: PMC8964798 DOI: 10.1038/s41392-022-00902-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is widely used in the frontline treatment of colorectal cancer (CRC), but an estimated 50% of patients will eventually stop responding to treatment due to acquired resistance. This study revealed that diminished MEIS1 expression was detected in CRC and harmed the survival of CRC patients. MEIS1 impaired CRC cell viabilities and tumor growth in mice and enhanced CRC cell sensitivity to oxaliplatin by preventing DNA damage repair. Mechanistically, oxaliplatin resistance following MEIS1 suppression was critically dependent on enhanced FEN1 expression. Subsequently, we confirmed that EZH2-DNMT3a was assisted by lncRNA ELFN1-AS1 in locating the promoter of MEIS1 to suppress MEIS1 transcription epigenetically. Based on the above, therapeutics targeting the role of MEIS1 in oxaliplatin resistance were developed and our results suggested that the combination of oxaliplatin with either ELFN1-AS1 ASO or EZH2 inhibitor GSK126 could largely suppress tumor growth and reverse oxaliplatin resistance. This study highlights the potential of therapeutics targeting ELFN1-AS1 and EZH2 in cell survival and oxaliplatin resistance, based on their controlling of MEIS1 expression, which deserve further verification as a prospective therapeutic strategy.
Collapse
|
22
|
Morita T, Hayashi K. Actin-related protein 5 functions as a novel modulator of MyoD and MyoG in skeletal muscle and in rhabdomyosarcoma. eLife 2022; 11:77746. [PMID: 35348112 PMCID: PMC8983046 DOI: 10.7554/elife.77746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Myogenic regulatory factors (MRFs) are pivotal transcription factors in myogenic differentiation. MyoD commits cells to the skeletal muscle lineage by inducing myogenic genes through recruitment of chromatin remodelers to its target loci. This study showed that Actin-related protein 5 (Arp5) acts as an inhibitory regulator of MyoD and MyoG by binding to their cysteine-rich (CR) region, which overlaps with the region essential for their epigenetic functions. Arp5 expression was faint in skeletal muscle tissues. Excessive Arp5 in mouse hind limbs caused skeletal muscle fiber atrophy. Further, Arp5 overexpression in myoblasts inhibited myotube formation by diminishing myogenic gene expression, whereas Arp5 depletion augmented myogenic gene expression. Arp5 disturbed MyoD-mediated chromatin remodeling through competition with the three-amino-acid-loop-extension-class homeodomain transcription factors the Pbx1–Meis1 heterodimer for binding to the CR region. This antimyogenic function was independent of the INO80 chromatin remodeling complex, although Arp5 is an important component of that. In rhabdomyosarcoma (RMS) cells, Arp5 expression was significantly higher than in normal myoblasts and skeletal muscle tissue, probably contributing to MyoD and MyoG activity dysregulation. Arp5 depletion in RMS partially restored myogenic properties while inhibiting tumorigenic properties. Thus, Arp5 is a novel modulator of MRFs in skeletal muscle differentiation.
Collapse
|
23
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Stafeev YS, Shevchenko EK, Boldireva MA, Penkov DN. Possible Role of Prep1 Homeodomain Transcription Factor in Cardiac Mesenchymal Stromal Cells. Mol Biol 2021. [DOI: 10.1134/s0026893321050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
26
|
Shen YA, Jung J, Shimberg GD, Hsu FC, Rahmanto YS, Gaillard SL, Hong J, Bosch J, Shih IM, Chuang CM, Wang TL. Development of small molecule inhibitors targeting PBX1 transcription signaling as a novel cancer therapeutic strategy. iScience 2021; 24:103297. [PMID: 34816098 PMCID: PMC8591422 DOI: 10.1016/j.isci.2021.103297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
PBX1 is a transcription factor involved in diverse cellular functions including organ development, stem cell renewal, and tumorigenesis. PBX1 is localized at chr1q23.3, a frequently amplified chromosomal region, and it is overexpressed in many human malignancies. Cancer cells with elevated PBX1 signaling are particularly vulnerable to PBX1 withdrawal. We designed a series of small molecule compounds capable of docking to the interface between PBX1 and its cognate DNA target sequence. Among them, T417 is found to be a lead compound. In cell-based assays, T417 significantly suppressed self-renewal and proliferation of cancer cells expressing high levels of PBX1. T417 also re-sensitized platinum-resistant ovarian tumors to carboplatin. T417 did not affect healthy tissues likely due to their lower PBX1 expression levels. Therefore, targeting PBX-DNA interface can be a promising strategy for treating human tumors reliant on PBX1 for survival.
Collapse
Affiliation(s)
- Yao-An Shen
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jin Jung
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geoffrey D. Shimberg
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fang-Chi Hsu
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
| | - Yohan Suryo Rahmanto
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie L. Gaillard
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaxin Hong
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jürgen Bosch
- Division of Pulmonology and Allergy/Immunology, Case Western Reserve University, Cleveland, OH, USA
- InterRayBio, LLC, Baltimore MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
28
|
Xie J, Zhao C, Sun J, Li J, Yang F, Wang J, Nie Q. Prediction of Essential Genes in Comparison States Using Machine Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1784-1792. [PMID: 32991286 DOI: 10.1109/tcbb.2020.3027392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying essential genes in comparison states (EGS) is vital to understanding cell differentiation, performing drug discovery, and identifying disease causes. Here, we present a machine learning method termed Prediction of Essential Genes in Comparison States (PreEGS). To capture the alteration of the network in comparison states, PreEGS extracts topological and gene expression features of each gene in a five-dimensional vector. PreEGS also recruits a positive sample expansion method to address the problem of unbalanced positive and negative samples, which is often encountered in practical applications. Different classifiers are applied to the simulated datasets, and the PreEGS based on the random forests model (PreEGSRF) was chosen for optimal performance. PreEGSRF was then compared with six other methods, including three machine learning methods, to predict EGS in a specific state. On real datasets with four gene regulatory networks, PreEGSRF predicted five essential genes related to leukemia and five enriched KEGG pathways. Four of the predicted essential genes and all predicted pathways were consistent with previous studies and highly correlated with leukemia. With high prediction accuracy and generalization ability, PreEGSRF is broadly applicable for the discovery of disease-causing genes, driver genes for cell fate decisions, and complex biomarkers of biological systems.
Collapse
|
29
|
Monti A, Bruckmann C, Blasi F, Ruvo M, Vitagliano L, Doti N. Amyloid-like Prep1 peptides exhibit reversible blue-green-red fluorescence in vitro and in living cells. Chem Commun (Camb) 2021; 57:3720-3723. [PMID: 33729264 DOI: 10.1039/d1cc01145f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PREP1-based peptides form amyloid-like aggregates endowed with an intrinsic blue-green-red fluorescence with an unusual sharp maximum at 520 nm upon excitation with visible light under physiological conditions. The peptide PREP1[117-132], whose sequence does not contain aromatic residues, presents a pH-dependent and reversible fluorescence, in line with its structural transition from β-sheet rich aggregates to α-helix structures. These findings further demonstrate that the non-canonical fluorescence exhibited by amyloids is an articulated phenomenon.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, Naples 80134, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The vertebrate eye is derived from the neuroepithelium, surface ectoderm, and extracellular mesenchyme. The neuroepithelium forms an optic cup in which the spatial separation of three domains is established, namely, the region of multipotent retinal progenitor cells (RPCs), the ciliary margin zone (CMZ)-which possesses both a neurogenic and nonneurogenic potential-and the optic disk (OD), the interface between the optic stalk and the neuroretina. Here, we show by genetic ablation in the developing optic cup that Meis1 and Meis2 homeobox genes function redundantly to maintain the retinal progenitor pool while they simultaneously suppress the expression of genes characteristic of CMZ and OD fates. Furthermore, we demonstrate that Meis transcription factors bind regulatory regions of RPC-, CMZ-, and OD-specific genes, thus providing a mechanistic insight into the Meis-dependent gene regulatory network. Our work uncovers the essential role of Meis1 and Meis2 as regulators of cell fate competence, which organize spatial territories in the vertebrate eye.
Collapse
|
31
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
32
|
Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. ACTA ACUST UNITED AC 2021; 44:328-355. [PMID: 33402862 PMCID: PMC7759197 DOI: 10.3906/biy-2006-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
MEIS proteins are historically associated with tumorigenesis, metastasis, and invasion in cancer. MEIS and associated PBX-HOX proteins may act as tumor suppressors or oncogenes in different cellular settings. Their expressions tend to be misregulated in various cancers. Bioinformatic analyses have suggested their upregulation in leukemia/lymphoma, thymoma, pancreas, glioma, and glioblastoma, and downregulation in cervical, uterine, rectum, and colon cancers. However, every cancer type includes, at least, a subtype with high MEIS expression. In addition, studies have highlighted that MEIS proteins and associated factors may function as diagnostic or therapeutic biomarkers for various diseases. Herein, MEIS proteins and associated factors in tumorigenesis are discussed with recent discoveries in addition to how they could be modulated by noncoding RNAs or newly developed small-molecule MEIS inhibitors.
Collapse
Affiliation(s)
- Birkan Gİrgİn
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| | - Medine KaradaĞ-Alpaslan
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun Turkey
| | - Fatih KocabaŞ
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
33
|
Ronzio M, Bernardini A, Pavesi G, Mantovani R, Dolfini D. On the NF-Y regulome as in ENCODE (2019). PLoS Comput Biol 2020; 16:e1008488. [PMID: 33370256 PMCID: PMC7793273 DOI: 10.1371/journal.pcbi.1008488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/08/2021] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
NF-Y is a trimeric Transcription Factor -TF- which binds with high selectivity to the conserved CCAAT element. Individual ChIP-seq analysis as well as ENCODE have progressively identified locations shared by other TFs. Here, we have analyzed data introduced by ENCODE over the last five years in K562, HeLa-S3 and GM12878, including several chromatin features, as well RNA-seq profiling of HeLa cells after NF-Y inactivation. We double the number of sequence-specific TFs and co-factors reported. We catalogue them in 4 classes based on co-association criteria, infer target genes categorizations, identify positional bias of binding sites and gene expression changes. Larger and novel co-associations emerge, specifically concerning subunits of repressive complexes as well as RNA-binding proteins. On the one hand, these data better define NF-Y association with single members of major classes of TFs, on the other, they suggest that it might have a wider role in the control of mRNA production. The ongoing ENCODE consortium represents a useful compendium of locations of TFs, chromatin marks, gene expression data. In previous reports, we identified modules of CCAAT-binding NF-Y with individual TFs. Here, we analyzed all 363 factors currently present: 68 with enrichment of CCAAT in their locations, 38 with overlap of peaks. New sequence-specific TFs, co-activators and co-repressors are reported. Co-association patterns correspond to specific targeted genes categorizations and gene expression changes, as assessed by RNA-seq after NF-Y inactivation. These data widen and better define a coherent model of synergy of NF-Y with selected groups of TFs and co-factors.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
34
|
The Arg/N-degron pathway targets transcription factors and regulates specific genes. Proc Natl Acad Sci U S A 2020; 117:31094-31104. [PMID: 33229537 DOI: 10.1073/pnas.2020124117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal or internal degrons. Our previous work produced double-knockout (2-KO) HEK293T human cell lines that lacked the functionally overlapping UBR1 and UBR2 E3 ubiquitin ligases of the Arg/N-degron pathway. Here, we studied these cells in conjunction with RNA-sequencing, mass spectrometry (MS), and split-ubiquitin binding assays. 1) Some mRNAs, such as those encoding lactate transporter MCT2 and β-adrenergic receptor ADRB2, are strongly (∼20-fold) up-regulated in 2-KO cells, whereas other mRNAs, including those encoding MAGEA6 (a regulator of ubiquitin ligases) and LCP1 (an actin-binding protein), are completely repressed in 2-KO cells, in contrast to wild-type cells. 2) Glucocorticoid receptor (GR), an immunity-modulating transcription factor (TF), is up-regulated in 2-KO cells and also physically binds to UBR1, strongly suggesting that GR is a physiological substrate of the Arg/N-degron pathway. 3) PREP1, another TF, was also found to bind to UBR1. 4) MS-based analyses identified ∼160 proteins whose levels were increased or decreased by more than 2-fold in 2-KO cells. For example, the homeodomain TF DACH1 and the neurofilament subunits NF-L (NFEL) and NF-M (NFEM) were expressed in wild-type cells but were virtually absent in 2-KO cells. 5) The disappearance of some proteins in 2-KO cells took place despite up-regulation of their mRNAs, strongly suggesting that the Arg/N-degron pathway can also modulate translation of specific mRNAs. In sum, this multifunctional proteolytic system has emerged as a regulator of mammalian gene expression, in part through conditional targeting of TFs that include ATF3, GR, and PREP1.
Collapse
|
35
|
Yang Y, Zhong F, Huang X, Zhang N, Du J, Long Z, Zheng B, Lin W, Liu W, Ma W. High expression of HOXA5 is associated with poor prognosis in acute myeloid leukemia. Curr Probl Cancer 2020; 45:100673. [PMID: 33223227 DOI: 10.1016/j.currproblcancer.2020.100673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND HOXA5 is considered as an oncogene in many tumors. This study in- vestigated the HOXA5 expression in Chinese acute myeloid leukemia (AML) patients and evaluated the predictive significance of HOXA5 with a single-center retrospective study. METHODS We investigated the expression pattern and prognostic value of HOXA5 in patients with AML through by using a series of databases and various datasets, including the ONCOMINE, TCGA, and STRING datasets. The bone marrow samples of 53 newly diagnosed AML patients (non-M3 subtype) and 19 benign individuals were collected in our center. HOXA5 mRNA expression levels were detected by real-time qPCR, HOXA5 protein expression levels were detected by Western Blot. Clinical data was obtained from inpatient medical records. RESULTS Two microarrays in Oncomine showed that the expression level of HOXA5 was significantly upregulated in AML. Our data revealed that AML patients had higher HOXA5 mRNA and protein expression levels than the controls (P < 0.001). The blast percentage in bone marrow of HOXA5 high-expression group was higher that of HOXA5 low-expression group (P < 0.05). Higher expression level of HOXA5 revealed a worse OS in AML (P < 0.05). CONCLUSION Our findings suggested that HOXA5 might have the potential ability to act as a diagnostic biomarker and potential therapeutic target for AML.
Collapse
Affiliation(s)
- You Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Fangfang Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Xiaoming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ze Long
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Bowen Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenjun Liu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
36
|
Bruckmann C, Tamburri S, De Lorenzi V, Doti N, Monti A, Mathiasen L, Cattaneo A, Ruvo M, Bachi A, Blasi F. Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis. Sci Rep 2020; 10:16809. [PMID: 33033354 PMCID: PMC7545097 DOI: 10.1038/s41598-020-74032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Bruckmann
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| | - Simone Tamburri
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Valentina De Lorenzi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56124, Pisa, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Lisa Mathiasen
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Angela Cattaneo
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Cogentech S.R.L. Benefit Corporation IT, Via Adamello 16, 20139, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Angela Bachi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
37
|
Doti N, Monti A, Bruckmann C, Calvanese L, Smaldone G, Caporale A, Falcigno L, D'Auria G, Blasi F, Ruvo M, Vitagliano L. Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. Int J Biol Macromol 2020; 163:618-629. [PMID: 32634512 DOI: 10.1016/j.ijbiomac.2020.06.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The ability of many proteins to fold into well-defined structures has been traditionally considered a prerequisite for fulfilling their functions. Protein folding is also regarded as a valuable loophole to escape uncontrolled and harmful aggregations. Here we show that the PBX-regulating protein-1 (PREP1), an important homeodomain transcription factor involved in cell growth and differentiation during embryogenesis, is endowed with an uncommon thermostability. Indeed, circular dichroism analyses indicate that it retains most of its secondary structure at very high temperatures. These findings have important implications for PREP1 functions since it is a stabilizing factor of its partner PBX1. Predictive analyses suggest that the observed PREP1 thermostability could be related to the presence of aggregation-prone regions. Interestingly, synthetic peptides corresponding to these regions exhibit a remarkable propensity to form toxic β-rich amyloid-like aggregates in physiological conditions. On this basis, we suggest that PREP1 stability is an effective way to prevent or limit the formation of harmful aggregates. Notably, one of these PREP1 fragments (residues 117-132) is able to reversibly switch from α-helical to β-rich states depending on the environmental conditions. The chameleon conformational behavior of this peptide makes it an ideal system to study this intriguing and widespread structural transition.
Collapse
Affiliation(s)
- Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Luisa Calvanese
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Lucia Falcigno
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D'Auria
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research), Institute of Molecular Oncology, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
38
|
Liu N, Zhang Z, Li L, Shen X, Sun B, Wang R, Zhong H, Shi Q, Wei L, Zhang Y, Wang Y, Xu C, Liu Y, Yuan W. MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics 2020; 10:7492-7509. [PMID: 32685001 PMCID: PMC7359103 DOI: 10.7150/thno.44309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives: Ossification of the posterior longitudinal ligament (OPLL) presents as the development of heterotopic ossification in the posterior longitudinal ligament of the spine. The etiology of OPLL is genetically linked, as shown by its high prevalence in Asian populations. However, the molecular mechanism of the disease remains obscure. In this study, we explored the function and mechanism of OPLL-specific microRNAs. Methods: The expression levels of the ossification-related OPLL-specific miR-181 family were measured in normal or OPLL ligament tissues. The effect of miR-181a on the ossification of normal or pathogenic ligament cells was tested using real-time polymerase chain reaction (PCR), Western blot, alizarin red staining and alkaline phosphatase (ALP) staining. The candidate targets of miR-181 were screened using a dual luciferase reporter assay and functional analysis. The link between miR-181a and its target PBX1 was investigated using chromatin immunoprecipitation, followed by real-time PCR detection. Histological and immunohistochemical analysis as well as micro-CT scanning were used to evaluate the effects of miR-181 and its antagonist using both tip-toe-walking OPLL mice and in vivo bone formation assays. Results: Using bioinformatic analysis, we found that miR-181a-5p is predicted to play important roles in the development of OPLL. Overexpression of miR-181a-5p significantly increased the expression of ossification-related genes, staining level of alizarin red and ALP activity, while the inhibition of miR-181a-5p by treatment with an antagomir had the opposite effects. Functional analysis identified PBX1 as a direct target of miR-181a-5p, and we determined that PBX1 was responsible for miR-181a-5p's osteogenic phenotype. By chromatin immunoprecipitation assay, we found that miR-181a-5p controls ligament cell ossification by regulating PBX1-mediated modulation of histone methylation and acetylation levels in the promoter region of osteogenesis-related genes. Additionally, using an in vivo model, we confirmed that miR-181a-5p can substantially increase the bone formation ability of posterior ligament cells and cause increased osteophyte formation in the cervical spine of tip-toe-walking mice. Conclusions: Our data unveiled the mechanism by which the miR-181a-5p/PBX1 axis functions in the development of OPLL, and it revealed the therapeutic effects of the miR-181a-5p antagomir in preventing OPLL development both in vivo and in vitro. Our work is the first to demonstrate that microRNA perturbation could modulate the development of OPLL through epigenetic regulation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Zicheng Zhang
- Undergraduate Brigade, Changhai Hospital Affiliated to Second Military Medical University, 168th Chang Hai Road, Shanghai, 200433, China
| | - Li Li
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Xiaolong Shen
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Baifeng Sun
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Ruizhe Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Huajian Zhong
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Qianghui Shi
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Leixin Wei
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yizhi Zhang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Chen Xu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yang Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Wen Yuan
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| |
Collapse
|
39
|
Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol 2020; 43:695-702. [PMID: 30720533 DOI: 10.1097/pas.0000000000001227] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary intraosseous rhabdomyosarcomas (RMSs) are extremely rare. Recently 2 studies reported 4 cases of primary intraosseous RMS with EWSR1/FUS-TFCP2 gene fusions, associated with somewhat conflicting histologic features, ranging from spindle to epithelioid. In this study we sought to further investigate the pathologic and molecular abnormalities of a larger group of intraosseous RMSs by a combined approach using targeted RNA sequencing analysis and fluorescence in situ hybridization (FISH). We identified 7 cases, 3 males and 4 females, all in young adults, age range 20 to 39 years (median, 27 y). Three cases involved the pelvis, 2 involved the femur and 1 each involved the maxilla and the skull. Molecular studies identified recurrent gene fusions in all 7 cases tested, including: a novel MEIS1-NCOA2 fusion in 2 cases, EWSR1-TFCP2 in 3 cases, and FUS-TFCP2 gene fusions in 1 case. One case showed a FUS gene rearrangement, without a TFCP2 gene abnormality by FISH. The MEIS1-NCOA2-positive cases were characterized by a more primitive and fascicular spindle cell appearance, while the EWSR1/FUS rearranged tumors had a hybrid spindle and epithelioid phenotype, with more abundant eosinophilic cytoplasm and mild nuclear pleomorphism. Immunohistochemically, all tumors were positive for desmin and myogenin (focal). In addition, 4 tumors with TFCP2-associated gene fusions also coexpressed ALK and cytokeratin. In conclusion, our results suggest a high incidence of gene fusions in primary RMSs of bone, with 2 molecular subsets emerging, defined by either MEIS1-NCOA2 or EWSR1/FUS-TFCP2 fusions, showing distinct morphology and immunophenotype. Additional studies with larger numbers of cases and longer follow-up data are required to definitively evaluate the biological behavior of these tumors and to establish their relationship to other spindle cell RMS genetic groups.
Collapse
|
40
|
Guan L, Li T, Ai N, Wang W, He B, Bai Y, Yu Z, Li M, Dong S, Zhu Q, Ding XX, Zhang S, Li M, Tang G, Xia X, Zhao J, Lin S, Yao S, Zhang L, Chen G, Liu FE, Li X, Zhang H. MEIS2C and MEIS2D promote tumor progression via Wnt/β-catenin and hippo/YAP signaling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:417. [PMID: 31623651 PMCID: PMC6796342 DOI: 10.1186/s13046-019-1417-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/09/2019] [Indexed: 01/14/2023]
Abstract
Background MEIS2 has been identified as one of the key transcription factors in the gene regulatory network in the development and pathogenesis of human cancers. Our study aims to identify the regulatory mechanisms of MEIS2 in hepatocellular carcinoma (HCC), which could be targeted to develop new therapeutic strategies. Methods The variation of MEIS2 levels were assayed in a cohort of HCC patients. The proliferation, clone-formation, migration, and invasion abilities of HCC cells were measured to analyze the effects of MEIS2C and MEIS2D (MEIS2C/D) knockdown with small hairpin RNAs in vitro and in vivo. Chromatin immunoprecipitation (ChIP) was performed to identify MEIS2 binding site. Immunoprecipitation and immunofluorescence assays were employed to detect proteins regulated by MEIS2. Results The expression of MEIS2C/D was increased in the HCC specimens when compared with the adjacent noncancerous liver (ANL) tissues. Moreover, MEIS2C/D expression negatively correlated with the prognosis of HCC patients. On the other hand, knockdown of MEIS2C/D could inhibit proliferation and diminish migration and invasion of hepatoma cells in vitro and in vivo. Mechanistically, MESI2C activated Wnt/β-catenin pathway in cooperation with Parafibromin (CDC73), while MEIS2D suppressed Hippo pathway by promoting YAP nuclear translocation via miR-1307-3p/LATS1 axis. Notably, CDC73 could directly either interact with MEIS2C/β-catenin or MEIS2D/YAP complex, depending on its tyrosine-phosphorylation status. Conclusions Our studies indicate that MEISC/D promote HCC development via Wnt/β-catenin and Hippo/YAP signaling pathways, highlighting the complex molecular network of MEIS2C/D in HCC pathogenesis. These results suggest that MEISC/D may serve as a potential novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Nanping Ai
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wei Wang
- Department of Immunology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Bing He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yanxia Bai
- Department of Otolaryngology-Head-Neck Surgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zhaocai Yu
- Department of Medical Oncology. Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 712 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Shanshan Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Qingge Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Xiao Xiao Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Shiming Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ming Li
- School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guangbo Tang
- Medical College, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaochun Xia
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Jing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Song Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Shi Yao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of General Surgery, 967 Hospital of PLA, Dalian, 116041, People's Republic of China
| | - Geng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Fang-E Liu
- Medical College, Xi'an Peihua University, Xi'an, People's Republic of China
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 712 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
41
|
Cimmino I, Margheri F, Prisco F, Perruolo G, D'Esposito V, Laurenzana A, Fibbi G, Paciello O, Doti N, Ruvo M, Miele C, Beguinot F, Formisano P, Oriente F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism. FASEB J 2019; 33:13893-13904. [PMID: 31618597 DOI: 10.1096/fj.201901230rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor β (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| |
Collapse
|
42
|
Novel MEIS1-NCOA2 Gene Fusions Define a Distinct Primitive Spindle Cell Sarcoma of the Kidney. Am J Surg Pathol 2019; 42:1562-1570. [PMID: 30179902 DOI: 10.1097/pas.0000000000001140] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe 2 cases of a distinct sarcoma characterized by a novel MEIS1-NCOA2 gene fusion. This gene fusion was identified in the renal neoplasms of 2 adults (21-y-old male, 72-y-old female). Histologically, the resected renal neoplasms had a distinctively nodular appearance, and while one renal neoplasm was predominantly cystic, the other demonstrated solid architecture, invasion of perirenal fat, and renal sinus vasculature invasion. The neoplasms were characterized predominantly by monomorphic plump spindle cells arranged in vague fascicles with a whorling pattern; however, a more primitive small round cell component was also noted. Both neoplasms were mitotically active and one case showed necrosis. The neoplasms did not have a distinctive immunohistochemical profile, though both labeled for TLE1. The morphologic features are distinct from other sarcomas associated with NCOA2 gene fusions, including mesenchymal chondrosarcoma, congenital/infantile spindle cell rhabdomyosarcoma, and soft tissue angiofibroma. While we have minimal clinical follow-up, the aggressive histologic features of these neoplasms indicate malignant potential, thus warranting classification as a novel subtype of sarcoma.
Collapse
|
43
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Mahmoudian RA, Bahadori B, Rad A, Abbaszadegan MR, Forghanifard MM. MEIS1 knockdown may promote differentiation of esophageal squamous carcinoma cell line KYSE-30. Mol Genet Genomic Med 2019; 7:e00746. [PMID: 31090196 PMCID: PMC6625128 DOI: 10.1002/mgg3.746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background MEIS1 (Myeloid ecotropic viral integration site 1), as a homeobox (HOX) transcription factor, has a dual function in different types of cancer. Although numerous roles are proposed for MEIS1 in differentiation, stem cell function, gastrointestinal development and tumorigenesis, the involved molecular mechanisms are poor understood. Our aim in this study was to elucidate the functional correlation between MEIS1, as regulator of differentiation process, and the involved genes in cell differentiation in human esophageal squamous carcinoma (ESC) cell line KYSE‐30. Methods The KYSE‐30 cells were transduced using recombinant retroviral particles containing specific shRNA sequence against MEIS1 to knockdown MEIS1 gene expression. Following RNA extraction and cDNA synthesis, mRNA expression of MEIS1 and the selected genes including TWIST1, EGF, CDX2, and KRT4 was examined using relative comparative real‐time PCR. Results Retroviral transduction caused a significant underexpression of MEIS1 in GFP‐hMEIS1 compared to control GFP cells approximately 5.5‐fold. While knockdown of MEIS1 expression caused a significant decrease in EGF and TWIST1 mRNA expression, nearly ‐8‐ and ‐12‐fold respectively, it caused a significant increase in mRNA expression of differentiation markers including KRT4 and CDX2, approximately 34‐ and 1.14‐fold, correspondingly. Conclusion MEIS1 gene silencing in KYSE‐30 cells increased expression of epithelial markers and decreased expression of epithelial‐mesenchymal transition (EMT) marker TWIST1. It may highlight the role of MEIS1 in differentiation process of KYSE‐30 cells. These results may confirm that MEIS1 silencing promotes differentiation and decreases EMT capability of ESC cell line KYSE‐30.
Collapse
Affiliation(s)
| | - Bahareh Bahadori
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar Univeristy of Medical Sciences, Sabzevar, Iran
| | | | | |
Collapse
|
45
|
Völkel S, Stielow B, Finkernagel F, Berger D, Stiewe T, Nist A, Suske G. Transcription factor Sp2 potentiates binding of the TALE homeoproteins Pbx1:Prep1 and the histone-fold domain protein Nf-y to composite genomic sites. J Biol Chem 2018; 293:19250-19262. [PMID: 30337366 DOI: 10.1074/jbc.ra118.005341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. Hence, Sp2 is strikingly different from its closely related paralogs Sp1 and Sp3, but how Sp2 recognizes its targets is unknown. Here, we sought to gain more detailed insights into the genomic targeting mechanism of Sp2. ChIP-exo sequencing in mouse embryonic fibroblasts revealed genomic binding of Sp2 to a composite motif where a recognition sequence for TALE homeoproteins and a recognition sequence for the trimeric histone-fold domain protein nuclear transcription factor Y (Nf-y) are separated by 11 bp. We identified a complex consisting of the TALE homeobox protein Prep1, its partner PBX homeobox 1 (Pbx1), and Nf-y as the major partners in Sp2-promoter interactions. We found that the Pbx1:Prep1 complex together with Nf-y recruits Sp2 to co-occupied regulatory elements. In turn, Sp2 potentiates binding of Pbx1:Prep1 and Nf-y. We also found that the Sp-box, a short sequence motif close to the Sp2 N terminus, is crucial for Sp2's cofactor function. Our findings reveal a mechanism by which the DNA binding-independent activity of Sp2 potentiates genomic loading of Pbx1:Prep1 and Nf-y to composite motifs present in many promoters of highly expressed genes.
Collapse
Affiliation(s)
- Sara Völkel
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Bastian Stielow
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | | | - Dana Berger
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Thorsten Stiewe
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Andrea Nist
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Guntram Suske
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| |
Collapse
|
46
|
Chang-Panesso M, Kadyrov FF, Machado FG, Kumar A, Humphreys BD. Meis1 is specifically upregulated in kidney myofibroblasts during aging and injury but is not required for kidney homeostasis or fibrotic response. Am J Physiol Renal Physiol 2018; 315:F275-F290. [PMID: 29592525 PMCID: PMC6139520 DOI: 10.1152/ajprenal.00030.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022] Open
Abstract
The homeobox transcription factor Meis1 is required for mammalian development, and its overexpression plays a role in tumorigenesis, especially leukemia. Meis1 is known to be expressed in kidney stroma, but its function in kidney is undefined. We hypothesized that Meis1 may regulate stromal cell proliferation in kidney development and disease and tested the hypothesis using cell lineage tracing and cell-specific Meis1 deletion in development, aging, and fibrotic disease. We observed strong expression of Meis1 in platelet-derived growth factor receptor-β-positive pericytes and perivascular fibroblasts, both in adult mouse kidney and to a lesser degree in human kidney. Either bilateral ischemia-reperfusion injury or aging itself led to strong upregulation of Meis1 protein and mRNA in kidney myofibroblasts, and genetic lineage analysis confirmed that Meis1-positive cells proliferate as they differentiate into myofibroblasts after injury. Conditional deletion of Meis1 in all kidney stroma with two separate tamoxifen-inducible Cre recombinase drivers had no phenotype with the exception of consistent induction of the tubular injury marker kidney injury molecule-1 (Kim-1) only in Meis1 mutants. Further examination of Kim-1 expression revealed linkage disequilibrium of Kim-1 and Meis1, such that Meis1 mutants carried the longer BALB/c Kim-1 allele. Unexpectedly, we report that this Kim-1 allele is expressed at baseline in wild-type BALB/c mice, without any associated abnormalities, including long-term fibrosis, as predicted from the literature. We conclude that Meis1 is specifically expressed in stroma and myofibroblasts of mouse and human kidney, that it is not required for kidney development, disease, or aging, and that BALB/c mice unexpectedly express Kim-1 protein at baseline without other kidney abnormality.
Collapse
Affiliation(s)
- Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine , St. Louis, Missouri
| | - Farid F Kadyrov
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine , St. Louis, Missouri
| | - Flavia G Machado
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine , St. Louis, Missouri
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine , St. Louis, Missouri
| |
Collapse
|
47
|
Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothaman D, Makhija E, Luzi L, di Fagagna FD, Pelicci PG, Shivashankar V, Dellino GI, Blasi F. PREP1 tumor suppressor protects the late-replicating DNA by controlling its replication timing and symmetry. Sci Rep 2018; 8:3198. [PMID: 29453404 PMCID: PMC5816642 DOI: 10.1038/s41598-018-21363-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The synthesis of middle-to-late-replicating DNA can be affected independently of the rest of the genome by down-regulating the tumor suppressor PREP1 (PKNOX1). Indeed, DNA combing shows that PREP1 down-regulation affects DNA replication rate, increases the number of simultaneously firing origins and the asymmetry of DNA replication, leading to DNA damage. Genome-wide analysis of replication timing by Repli-seq shows that, upon PREP1 down-regulation, 25% of the genome is replicated earlier in the S-phase. The targeted DNA sequences correspond to Lamin-Associated Domains (LADs), and include late-replicating (LRRs) and temporal transition regions (TTRs). Notably, the distribution of PREP1 DNA binding sites and of its target genes indicates that DNA replication defects are independent of the overall PREP1 transcriptional activity. Finally, PREP1 down-regulation causes a substantial decrease in Lamin B1 levels. This suggests that DNA is released from the nuclear lamina earlier than in the control cells and is available for replication, thus explaining timing defects and DNA damage.This is the first evidence that the replication timing of a specific fraction of the human genome is affected by PREP1 tumor suppressor. This previously unknown function might significantly contribute to the genomic instability observed in human tumors.
Collapse
Affiliation(s)
- Angela Palmigiano
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan, 20138, Italy
| | - Francesco Santaniello
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Aurora Cerutti
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Oncogenomics Department, Netherland Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dmitry Penkov
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Lomonosov Moscow State University, Leninskiye Gori 1, 119991, Moscow, Russia
| | - Divya Purushothaman
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
| | - Ekta Makhija
- Mechano-Biology Institute, National University of Singapore, Singapore, Singapore
| | - Lucilla Luzi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy
| | - Viveswara Shivashankar
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy
- Mechano-Biology Institute, National University of Singapore, Singapore, Singapore
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20142, Milan, Italy.
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
48
|
Prep1 prevents premature adipogenesis of mesenchymal progenitors. Sci Rep 2017; 7:15573. [PMID: 29138456 PMCID: PMC5686065 DOI: 10.1038/s41598-017-15828-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
Transcriptional regulators are crucial in adipocyte differentiation. We now show that the homeodomain-containing transcription factor Prep1 is a repressor of adipogenic differentiation since its down-regulation (DR) in both ex vivo bone marrow-derived mesenchymal stromal cells (MSC) and in vitro 3T3-L1 preadipocytes significantly increases their adipogenic differentiation ability. Prep1 acts at a stage preceding the activation of the differentiation machinery because its DR makes cells more prone to adipogenic differentiation even in the absence of the adipogenic inducers. Prep1 DR expands the DNA binding landscape of C/EBPβ (CCAAT enhancer binding protein β) without affecting its expression or activation. The data indicate that Prep1 normally acts by restricting DNA binding of transcription factors to adipogenic enhancers, in particular C/EBPβ.
Collapse
|