1
|
Finegan TM, Cammarota C, Mendoza Andrade O, Garoutte AM, Bergstralh DT. Fas2EB112: a tale of two chromosomes. G3 (BETHESDA, MD.) 2024; 14:jkae047. [PMID: 38447284 PMCID: PMC11075550 DOI: 10.1093/g3journal/jkae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The cell-cell adhesion molecule Fasciclin II (Fas2) has long been studied for its evolutionarily conserved role in axon guidance. It is also expressed in the follicular epithelium, where together with a similar protein, Neuroglian (Nrg), it helps to drive the reintegration of cells born out of the tissue plane. Remarkably, one Fas2 protein null allele, Fas2G0336, demonstrates a mild reintegration phenotype, whereas work with the classic null allele Fas2EB112 showed more severe epithelial disorganization. These observations raise the question of which allele (if either) causes a bona fide loss of Fas2 protein function. The problem is not only relevant to reintegration but fundamentally important to understanding what this protein does and how it works: Fas2EB112 has been used in at least 37 research articles, and Fas2G0336 in at least three. An obvious solution is that one of the two chromosomes carries a modifier that either suppresses (Fas2G0336) or enhances (Fas2EB112) phenotypic severity. We find not only the latter to be the case, but identify the enhancing mutation as Nrg14, also a classic null allele.
Collapse
Affiliation(s)
- Tara M Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65203, USA
| | - Christian Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | | | - Audrey M Garoutte
- Division of Biological Sciences, University of Missouri, Columbia, MO 65203, USA
| | - Dan T Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65203, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
2
|
Finegan TM, Cammarota C, Andrade OM, Garoutte AM, Bergstralh DT. Fas2EB112: A Tale of Two Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574100. [PMID: 38260405 PMCID: PMC10802346 DOI: 10.1101/2024.01.03.574100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The cell-cell adhesion molecule Fasciclin II (Fas2) has long been studied for its evolutionarily-conserved role in axon guidance. It is also expressed in the follicular epithelium, where together with a similar protein, Neuroglian (Nrg), it helps to drive the reintegration of cells born out of the tissue plane. Remarkably, one Fas2 protein null allele, Fas2G0336, demonstrates a mild reintegration phenotype, whereas work with the classic null allele Fas2EB112 showed more severe epithelial disorganization. These observations raise the question of which allele (if either) causes a bona fide loss of Fas2 protein function. The problem is not only relevant to reintegration but fundamentally important to understanding what this protein does and how it works: Fas2EB112 has been used in at least 37 research articles, and Fas2G0336 in at least three. An obvious solution is that one of the two chromosomes carries a modifier that either suppresses (Fas2G0336) or enhances (Fas2EB112) phenotypic severity. We find not only the latter to be the case, but identify the enhancing mutation as Nrg14, also a classic null allele.
Collapse
Affiliation(s)
- Tara M Finegan
- Departments of Biology, University of Rochester, Rochester NY, 14627, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Christian Cammarota
- Departments of Physics & Astronomy, University of Rochester, Rochester NY, 14627, USA
| | | | - Audrey M Garoutte
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Dan T Bergstralh
- Departments of Biology, University of Rochester, Rochester NY, 14627, USA
- Departments of Physics & Astronomy, University of Rochester, Rochester NY, 14627, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| |
Collapse
|
3
|
Pfannenstein A, Macara IG. A junction-dependent mechanism drives murine mammary cell intercalation for ductal elongation. Dev Cell 2023; 58:1126-1138.e4. [PMID: 37141887 PMCID: PMC10524519 DOI: 10.1016/j.devcel.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The luminal epithelium of the mammary gland is organized into monolayers; however, it originates from multilayered terminal end buds (TEBs) during development. Although apoptosis provides a plausible mechanism for cavitation of the ductal lumen, it doesn't account for ductal elongation behind TEBs. Spatial calculations in mice suggest that most TEB cells integrate into the outermost luminal layer to generate elongation. We developed a quantitative cell culture assay that models intercalation into epithelial monolayers. We found that tight junction proteins play a key role in this process. ZO-1 puncta form at the new cellular interface and resolve into a new boundary as intercalation proceeds. Deleting ZO-1 suppresses intercalation both in culture and in cells transplanted into mammary glands via intraductal injection. Cytoskeletal rearrangements at the interface are critical for intercalation. These data identify luminal cell rearrangements necessary for mammary development and suggest a mechanism for integration of cells into an existing monolayer.
Collapse
Affiliation(s)
- Alexander Pfannenstein
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
4
|
Dawney NS, Cammarota C, Jia Q, Shipley A, Glichowski JA, Vasandani M, Finegan TM, Bergstralh DT. A novel tool for the unbiased characterization of epithelial monolayer development in culture. Mol Biol Cell 2023; 34:ar25. [PMID: 36696175 PMCID: PMC10092640 DOI: 10.1091/mbc.e22-04-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The function of an epithelial tissue is intertwined with its architecture. Epithelial tissues are often described as pseudo-two-dimensional, but this view may be partly attributed to experimental bias: many model epithelia, including cultured cell lines, are easiest to image from the "top-down." We measured the three-dimensional architecture of epithelial cells in culture and found that it varies dramatically across cultured regions, presenting a challenge for reproducibility and cross-study comparisons. We therefore developed a novel tool (Automated Layer Analysis, "ALAn") to characterize architecture in an unbiased manner. Using ALAn, we find that cultured epithelial cells can organize into four distinct architectures and that architecture correlates with cell density. Cells exhibit distinct biological properties in each architecture. Organization in the apical-basal axis is determined early in monolayer development by substrate availability, while disorganization in the apical-basal axis arises from an inability to form substrate connections. Our work highlights the need to carefully control for three-dimensional architecture when using cell culture as a model system for epithelial cell biology and introduces a novel tool, built on a set of rules that can be widely applied to epithelial cell culture.
Collapse
Affiliation(s)
- Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
| | - Qingyuan Jia
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Alicia Shipley
- Department of Biology, University of Rochester, Rochester, NY 14627
| | | | | | - Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627
| |
Collapse
|
5
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|