1
|
Cooney EC, Holt CC, Hehenberger E, Adams JA, Leander BS, Keeling PJ. Investigation of heterotrophs reveals new insights in dinoflagellate evolution. Mol Phylogenet Evol 2024; 196:108086. [PMID: 38677354 DOI: 10.1016/j.ympev.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Dinoflagellates are diverse and ecologically important protists characterized by many morphological and molecular traits that set them apart from other eukaryotes. These features include, but are not limited to, massive genomes organized using bacterially-derived histone-like proteins (HLPs) and dinoflagellate viral nucleoproteins (DVNP) rather than histones, and a complex history of photobiology with many independent losses of photosynthesis, numerous cases of serial secondary and tertiary plastid gains, and the presence of horizontally acquired bacterial rhodopsins and type II RuBisCo. Elucidating how this all evolved depends on knowing the phylogenetic relationships between dinoflagellate lineages. Half of these species are heterotrophic, but existing molecular data is strongly biased toward the photosynthetic dinoflagellates due to their amenability to cultivation and prevalence in culture collections. These biases make it impossible to interpret the evolution of photosynthesis, but may also affect phylogenetic inferences that impact our understanding of character evolution. Here, we address this problem by isolating individual cells from the Salish Sea and using single cell, culture-free transcriptomics to expand molecular data for dinoflagellates to include 27 more heterotrophic taxa, resulting in a roughly balanced representation. Using these data, we performed a comprehensive search for proteins involved in chromatin packaging, plastid function, and photoactivity across all dinoflagellates. These searches reveal that 1) photosynthesis was lost at least 21 times, 2) two known types of HLP were horizontally acquired around the same time rather than sequentially as previously thought; 3) multiple rhodopsins are present across the dinoflagellates, acquired multiple times from different donors; 4) kleptoplastic species have nucleus-encoded genes for proteins targeted to their temporary plastids and they are derived from multiple lineages, and 5) warnowiids are the only heterotrophs that retain a whole photosystem, although some photosynthesis-related electron transport genes are widely retained in heterotrophs, likely as part of the iron-sulfur cluster pathway that persists in non-photosynthetic plastids.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Corey C Holt
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Hakai Institute, 1747 Hyacinthe Bay Rd., Heriot Bay, BC V0P 1H0, Canada.
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Jayd A Adams
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Brian S Leander
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200 - 6270, University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
López H, Mercier R. Meiosis: The silk moth and the elephant. Curr Biol 2024; 34:R211-R213. [PMID: 38471453 DOI: 10.1016/j.cub.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In most eukaryotes, balanced chromosome segregation at meiosis requires crossovers, but female Bombyx mori lack these structures. Instead, the synaptonemal complex is repurposed to compensate for this absence of crossovers, a remarkable example of exaptation.
Collapse
Affiliation(s)
- Hernán López
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, D-50829 Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, D-50829 Cologne, Germany.
| |
Collapse
|
3
|
Poirier M, Osmers P, Wilkins K, Morgan-Kiss RM, Cvetkovska M. Aberrant light sensing and motility in the green alga Chlamydomonas priscuii from the ice-covered Antarctic Lake Bonney. PLANT SIGNALING & BEHAVIOR 2023; 18:2184588. [PMID: 38126947 PMCID: PMC10012900 DOI: 10.1080/15592324.2023.2184588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
The Antarctic green alga Chlamydomonas priscuii is an obligate psychrophile and an emerging model for photosynthetic adaptation to extreme conditions. Endemic to the ice-covered Lake Bonney, this alga thrives at highly unusual light conditions characterized by very low light irradiance (<15 μmol m-2 s-1), a narrow wavelength spectrum enriched in blue light, and an extreme photoperiod. Genome sequencing of C. priscuii exposed an unusually large genome, with hundreds of highly similar gene duplicates and expanded gene families, some of which could be aiding its survival in extreme conditions. In contrast to the described expansion in the genetic repertoire in C. priscuii, here we suggest that the gene family encoding for photoreceptors is reduced when compared to related green algae. This alga also possesses a very small eyespot and exhibits an aberrant phototactic response, compared to the model Chlamydomonas reinhardtii. We also investigated the genome and behavior of the closely related psychrophilic alga Chlamydomonas sp. ICE-MDV, that is found throughout the photic zone of Lake Bonney and is naturally exposed to higher light levels. Our analyses revealed a photoreceptor gene family and a robust phototactic response similar to those in the model Chlamydomonas reinhardtii. These results suggest that the aberrant phototactic response in C. priscuii is a result of life under extreme shading rather than a common feature of all psychrophilic algae. We discuss the implications of these results on the evolution and survival of shade adapted polar algae.
Collapse
Affiliation(s)
| | - Pomona Osmers
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | - Kieran Wilkins
- Department of Biology, University of Ottawa, Ottawa, OH, Canada
| | | | | |
Collapse
|
4
|
Vee S, Barclay G, Lents NH. The glow of the night: The tapetum lucidum as a co-adaptation for the inverted retina. Bioessays 2022; 44:e2200003. [PMID: 36028472 DOI: 10.1002/bies.202200003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
The vertebrate retina is said to be inverted because the photoreceptors are oriented in the posterior direction and are thus unable to maximize photodetection under conditions of low illumination. The tapetum lucidum is a photoreflective structure located posterior to the photoreceptors in the eyes of some fish and terrestrial animals. The tapetum reflects light forward, giving incident photons a "second chance" to collide with a photoreceptor, substantially enhancing retinal photosensitivity in dim light. Across vertebrates (and arthropods), there are a wide variety of tapeta that vary in structure, chemical composition, and even tissue architecture, indicating repeated convergent evolution. To date, the tapetum has not been observed in any cephalopod, however, which also possess a camera-like eye, but with the retinal photoreceptors oriented in the anterior direction. We therefore hypothesize that the tapetum lucidum is a compensatory adaptation for the suboptimal design of the inverted retina of vertebrates.
Collapse
Affiliation(s)
- Samantha Vee
- Department of Ecology and Evolution, Stony Book University, The State University of New York, Stony Brook, New York, USA
| | - Gerald Barclay
- Department of Life Sciences, Highline College, Des Moines, Washington, USA
| | - Nathan H Lents
- Department of Sciences, John Jay College, The City University of New York, New York, New York, USA
| |
Collapse
|
5
|
Seth K, Kumawat G, Vyas P, Harish. The structure and functional mechanism of eyespot in Chlamydomonas. J Basic Microbiol 2022; 62:1169-1178. [PMID: 35778815 DOI: 10.1002/jobm.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 11/05/2022]
Abstract
Light plays a crucial role in photosynthesis, photoperiodism, and photomorphogenesis. Algae have a specialized visual system to perceive the light signal known as eyespot. A typical eyespot is an orange-colored, membranous structure packed with pigmented granules. In algae, the eyespot membrane bears a specialized type of photoreceptors, which shows similarity with animal rhodopsin photoreceptors. This light-sensing receptor is responsible for the photo-mobility response known as phototaxis. In this, light acts as a signal for onset and cascade of downstream signal transduction pathway leading to a conformational change in photoreceptor. This induces the continuous influx of calcium ions through the opening of calcium ion channels leading to membrane depolarization, and beating of flagella which is responsible for phototaxis. Mutational studies have assisted the discovery of eyespot genes, which are involved in eyespot development, assembly, size control, and functioning in Chlamydomonas. These genes belong to photoreceptors (cop1-12, acry, pcry, cry-dash1, cry-dash2, phot, uvr8), eyeless mutants (eye2, eye3), miniature-eyespot mutants (min1, min2), multiple eyespot mutants (mlt1, mlt2). This review discusses the structural biology of eyespots with special reference to Chlamydomonas, molecular insights, related genes, and proteins responsible for its proper functioning.
Collapse
Affiliation(s)
- Kunal Seth
- Department of Botany, Govt. Science College, Pardi Valsad, Gujarat, India
| | - Geetanjali Kumawat
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Pallavi Vyas
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
6
|
Frenkel-Pinter M, Petrov AS, Matange K, Travisano M, Glass JB, Williams LD. Adaptation and Exaptation: From Small Molecules to Feathers. J Mol Evol 2022; 90:166-175. [PMID: 35246710 PMCID: PMC8975760 DOI: 10.1007/s00239-022-10049-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Evolution works by adaptation and exaptation. At an organismal level, exaptation and adaptation are seen in the formation of organelles and the advent of multicellularity. At the sub-organismal level, molecular systems such as proteins and RNAs readily undergo adaptation and exaptation. Here we suggest that the concepts of adaptation and exaptation are universal, synergistic, and recursive and apply to small molecules such as metabolites, cofactors, and the building blocks of extant polymers. For example, adenosine has been extensively adapted and exapted throughout biological evolution. Chemical variants of adenosine that are products of adaptation include 2' deoxyadenosine in DNA and a wide array of modified forms in mRNAs, tRNAs, rRNAs, and viral RNAs. Adenosine and its variants have been extensively exapted for various functions, including informational polymers (RNA, DNA), energy storage (ATP), metabolism (e.g., coenzyme A), and signaling (cyclic AMP). According to Gould, Vrba, and Darwin, exaptation imposes a general constraint on interpretation of history and origins; because of exaptation, extant function should not be used to explain evolutionary history. While this notion is accepted in evolutionary biology, it can also guide the study of the chemical origins of life. We propose that (i) evolutionary theory is broadly applicable from the dawn of life to the present time from molecules to organisms, (ii) exaptation and adaptation were important and simultaneous processes, and (iii) robust origin of life models can be constructed without conflating extant utility with historical basis of origins.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA.,Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Anton S Petrov
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Kavita Matange
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jennifer B Glass
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Loren Dean Williams
- NASA Center for the Origins of Life, Atlanta, GA, 30332-0400, USA. .,NSF-NASA Center of Chemical Evolution, Atlanta, GA, 30332-0400, USA. .,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
7
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
8
|
Benton R, Dessimoz C, Moi D. A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor. eLife 2020; 9:62507. [PMID: 33274716 PMCID: PMC7746228 DOI: 10.7554/elife.62507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 01/26/2023] Open
Abstract
The insect chemosensory repertoires of Odorant Receptors (ORs) and Gustatory Receptors (GRs) together represent one of the largest families of ligand-gated ion channels. Previous analyses have identified homologous 'Gustatory Receptor-Like' (GRL) proteins across Animalia, but the evolutionary origin of this novel class of ion channels is unknown. We describe a survey of unicellular eukaryotic genomes for GRLs, identifying several candidates in fungi, protists and algae that contain many structural features characteristic of animal GRLs. The existence of these proteins in unicellular eukaryotes, together with ab initio protein structure predictions, provide evidence for homology between GRLs and a family of uncharacterized plant proteins containing the DUF3537 domain. Together, our analyses suggest an origin of this protein superfamily in the last common eukaryotic ancestor.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom
| | - David Moi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
9
|
Swafford AJM, Oakley TH. Light-induced stress as a primary evolutionary driver of eye origins. Integr Comp Biol 2020; 59:739-750. [PMID: 31539028 DOI: 10.1093/icb/icz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks. Here, we briefly review a vast literature indicating most genetic components of eyes historically responded to stress caused directly by light, including ultraviolet damage of DNA, oxidative stress, and production of aldehydes. We propose light-induced stress had a direct and prominent role in the evolution of eyes by bringing together genes to repair and prevent damage from light-stress, both before and during the evolution of eyes themselves. Stress-repair and stress-prevention genes were perhaps originally deployed as plastic responses to light and/or as beneficial mutations genetically driving expression where light was prominent. These stress-response genes sense, shield, and refract light but only as reactions to ongoing light stress. Once under regulatory-genetic control, they could be expressed before light stress appeared, evolve as a module, and be influenced by natural selection to increase functionality for sensing light, ultimately leading to complex eyes and behaviors. Recognizing the potentially prominent role of stress in eye evolution invites discussions of plasticity and assimilation and provides a hypothesis for why similar genes are repeatedly used in convergent eyes. Broadening the drivers of eye evolution encourages consideration of multi-faceted mechanisms of plasticity/assimilation and mutation/selection for complex novelties and innovations in general.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
10
|
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JST); (LMF)
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (JST); (LMF)
| |
Collapse
|
11
|
Moore A. The evolution of photoreception and vision: Or the blind watchmaker gone mad? Bioessays 2017. [PMID: 28650128 DOI: 10.1002/bies.201700094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|