1
|
Mboukou A, Rajendra V, Messmer S, Mandl TC, Catala M, Tisné C, Jantsch MF, Barraud P. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat Commun 2024; 15:10051. [PMID: 39572551 PMCID: PMC11582362 DOI: 10.1038/s41467-024-53777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Adenosine-to-inosine editing is catalyzed by adenosine deaminases acting on RNA (ADARs) in double-stranded RNA (dsRNA) regions. Although three ADARs exist in mammals, ADAR1 is responsible for the vast majority of the editing events and acts on thousands of sites in the human transcriptome. ADAR1 has been proposed to form a stable homodimer and dimerization is suggested to be important for editing activity. In the absence of a structural basis for the dimerization of ADAR1, and without a way to prevent dimer formation, the effect of dimerization on enzyme activity or site specificity has remained elusive. Here, we report on the structural analysis of the third double-stranded RNA-binding domain of ADAR1 (dsRBD3), which reveals stable dimer formation through a large inter-domain interface. Exploiting these structural insights, we engineered an interface-mutant disrupting ADAR1-dsRBD3 dimerization. Notably, dimerization disruption did not abrogate ADAR1 editing activity but intricately affected editing efficiency at selected sites. This suggests a complex role for dimerization in the selection of editing sites by ADARs, and makes dimerization a potential target for modulating ADAR1 editing activity.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Vinod Rajendra
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Serafina Messmer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Therese C Mandl
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France.
| |
Collapse
|
2
|
Hu Q, Chen Y, Zhou Q, Deng S, Hou W, Yi Y, Li C, Tang J. ADAR promotes USP38 auto-deubiquitylation and stabilization in an RNA editing-independent manner in esophageal squamous cell carcinoma. J Biol Chem 2024; 300:107789. [PMID: 39303916 PMCID: PMC11525134 DOI: 10.1016/j.jbc.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Esophageal cancer is mainly divided into esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC). China is one of the high-incidence areas of esophageal cancer, of which about 90% are ESCC. The deubiquitinase USP38 has been reported to play significant roles in several biological processes, including inflammatory responses, antiviral infection, cell proliferation, migration, invasion, DNA damage repair, and chemotherapy resistance. However, the role and mechanisms of USP38 in ESCC development remain still unclear. Furthermore, although many substrates of USP38 have been identified, few upstream regulatory factors of USP38 have been identified. In this study, we found that USP38 was significantly upregulated in esophageal cancer tissues. Knockdown of USP38 inhibited ESCC growth. USP38 stabilized itself through auto-deubiquitylation. In addition, we demonstrate that adenosine deaminase acting on RNA (ADAR) could enhance the stability of USP38 protein and facilitate USP38 auto-deubiquitylation by interacting with USP38 in an RNA editing-independent manner. ADAR inhibition of ESCC cell proliferation depended on USP38. In summary, these results highlight that the potential of targeting the ADAR-USP38 axis for ESCC treatment.
Collapse
Affiliation(s)
- Qingyong Hu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Yahui Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qianru Zhou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shanshan Deng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei Hou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China; Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiancai Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
3
|
Al Wardat S, Frassinelli L, Orecchini E, Rey F, Ciafrè SA, Galardi S, Garau J, Gagliardi S, Orcesi S, Tonduti D, Carelli S, Cereda C, Picardi E, Michienzi A. Characterization of the molecular dysfunctions occurring in Aicardi-Goutières syndrome patients with mutations in ADAR1. Genes Dis 2024; 11:101028. [PMID: 38292175 PMCID: PMC10827400 DOI: 10.1016/j.gendis.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Sofian Al Wardat
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Federica Rey
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milano, Milano 20157, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Jessica Garau
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Stella Gagliardi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Simona Orcesi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), Buzzi Children's Hospital, Milano 20154, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milano, Milano 20157, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari 70125, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari 70126, Italy
- Biostructures and Biosystems National Institute (INBB), Rome 00136, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
4
|
Szabo B, Mandl TC, Woldrich B, Diensthuber G, Martin D, Jantsch MF, Licht K. RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024; 34:231-242. [PMID: 38471738 PMCID: PMC10984384 DOI: 10.1101/gr.277686.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.
Collapse
Affiliation(s)
- Brigitta Szabo
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Therese C Mandl
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Woldrich
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gregor Diensthuber
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - David Martin
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
6
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
7
|
Collins JM, Wang D. A Comprehensive Evaluation of the Effects of RNA-Editing Proteins ADAR and ADARB1 on the Expression of the Drug-Metabolizing Enzymes in HepaRG Cells. Drug Metab Dispos 2023; 51:1508-1514. [PMID: 37532539 PMCID: PMC10586505 DOI: 10.1124/dmd.123.001396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Two RNA-editing proteins, the adenosine deaminase acting on RNA, ADAR, and ADARB1, broadly regulate gene expression in editing-dependent and editing-independent manners. Previous studies showed that the expression of the drug-metabolizing cytochrome P450s (P450s) and UDP glucuronosyltransferases (UGTs) changes upon knockdown (KD) of ADAR or ADARB1 in different hepatic cell lines. To systematically survey the effects of these two ADARs on the expression of P450s and UGTs, we used small interfering RNA in HepaRG cells and tested the association between the expression of the P450s and ADARs in a liver sample cohort (n = 246). KD of ADAR increased the expression of the CYP3As and CYP2C9 and reduced the expression of the others, whereas KD of ADARB1 reduced the expression of nearly all genes tested. ADAR KD also suppressed the induction of most P450s, whereas ADARB1 KD had mixed effects depending on the inducer/gene combination. P450 expression was positively associated with both ADARs in liver samples, consistent with the KD results. However, after adjusting for the expression of transcription factors (TFs) known to regulate P450 expression, the associations disappeared, indicating that the effects of ADAR or ADARB1 primarily occur through TFs. Moreover, we found that the expression of normally spliced CYP3A5 transcripts is increased in both KDs, indicating a direct effect of the ADARs on promoting the usage of the cryptic splice site generated by CYP3A5*3. Taken together, our results revealed the nonoverlapping regulatory effects of ADAR and ADARB1 and supported their broad roles in controlling the expression of drug-metabolizing enzymes in the liver. SIGNIFICANCE STATEMENT: Here, this study systematically surveyed the roles of ADAR and ADARB1 in both basal and induced expression of drug-metabolizing enzymes and assessed their coexpression in liver samples. This study's results support that ADAR and ADARB1 regulate the expression of the drug-metabolizing enzymes in the liver, suggesting that factors affecting ADAR expression also have the potential to impact drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, Yuan X, Graumann J, Stellos K, Kubin T, Schneider A, Braun T. ADAR1 Prevents Autoinflammatory Processes in the Heart Mediated by IRF7. Circ Res 2022; 131:580-597. [PMID: 36000401 DOI: 10.1161/circresaha.122.320839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.
Collapse
Affiliation(s)
- Claudia Garcia-Gonzalez
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. Del Hospital Universitario, Oviedo, Spain (C.G.-G.)
| | - Christoph Dieterich
- Department of Internal Medicine III and Klaus Tschira Institute for Computational Cardiology, Section of Bioinformatics and Systems Cardiology, University Hospital, Heidelberg, Germany (C.D.)
| | - Giovanni Maroli
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Marion Wiesnet
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Astrid Wietelmann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xiang Li
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Xuejun Yuan
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.).,Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (K.S.).,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom (K.S.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Bad Nauheim, Germany (T.K.)
| | - Andre Schneider
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.)
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany (C.G.-G., G.M., M.W., A.W., X.L., X.Y., J.G., A.S., T.B.).,German Centre for Cardiovascular Research (DZHK), Partner Sites Rhine-Main and Heidelberg/Mannheim, Bad Nauheim and Mannheim, Germany (J.G., K.S., T.B.)
| |
Collapse
|
9
|
Morales F, Pérez P, Tapia JC, Lobos-González L, Herranz JM, Guevara F, de Santiago PR, Palacios E, Andaur R, Sagredo EA, Marcelain K, Armisén R. Increase in ADAR1p110 activates the canonical Wnt signaling pathway associated with aggressive phenotype in triple negative breast cancer cells. Gene 2022; 819:146246. [PMID: 35122924 DOI: 10.1016/j.gene.2022.146246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/β-catenin pathway and activity of nuclear β-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3β, while increasing active β-catenin. It also increased the activity of nuclear β-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the β-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.
Collapse
Affiliation(s)
- Fernanda Morales
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile
| | - Paola Pérez
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; NIDCR, National Institute of Health, 9000 Rockville Pike, Bldg 10, Room 1A01, Bethesda, MD, USA
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Lorena Lobos-González
- Centro De Medicina Regenerativa, Facultad de Medicina - Clínica Alemana, Universidad Del Desarrollo, Av. Las Condes 12496, Santiago, Chile; Fundación Ciencia & Vida - Andes Biotechnologies S.A., Av. Zanartu 1482, Santiago, Chile
| | - José Manuel Herranz
- Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Santos Dumont 999, Santiago, Chile
| | - Francisca Guevara
- Fundación Ciencia & Vida - Andes Biotechnologies S.A., Av. Zanartu 1482, Santiago, Chile
| | - Pamela Rojas de Santiago
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo ÓHiggins 340, Santiago, Chile
| | - Esteban Palacios
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Rodrigo Andaur
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago Chile
| | - Eduardo A Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Katherine Marcelain
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12461, Edificio 3, oficina 205, CP 7590943, Santiago, Chile.
| |
Collapse
|
10
|
Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2. Proc Natl Acad Sci U S A 2022; 119:2112663119. [PMID: 35064076 PMCID: PMC8833170 DOI: 10.1073/pnas.2112663119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Viral RNA may be edited by enzymes of the ADAR family that deaminate adenosine residues with ensuing A→G mutations. We found multiple A→G mutations in minor viral populations of the SARS-CoV-2 genome. A→G mutations accumulated in the receptor binding domain of the spike gene, which may cause structural changes by altering binding to the ACE2 receptor. Presence of A→G mutations in minor viral populations was associated with reduced viral load, implying that ADAR may limit viral replication. Analyses of >250,000 European samples from 2020 revealed that A→G mutations in SARS-CoV-2 RNA were inversely correlated with mortality as a reflection of incidence. ADAR may thus be important in providing new variants of SARS-CoV-2 with altered infectivity and transmissibility. Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which A→G was more prevalent than any other mutation (P < 0.001). The A→G substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of A→G mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed A→G mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The A→G mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.
Collapse
|
11
|
Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. Int J Mol Sci 2022; 23:ijms23020768. [PMID: 35054954 PMCID: PMC8775963 DOI: 10.3390/ijms23020768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
Collapse
|
12
|
Szymczak F, Cohen-Fultheim R, Thomaidou S, de Brachène AC, Castela A, Colli M, Marchetti P, Levanon E, Eizirik D, Zaldumbide A. ADAR1-dependent editing regulates human β cell transcriptome diversity during inflammation. Front Endocrinol (Lausanne) 2022; 13:1058345. [PMID: 36518246 PMCID: PMC9742459 DOI: 10.3389/fendo.2022.1058345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Enterovirus infection has long been suspected as a possible trigger for type 1 diabetes. Upon infection, viral double-stranded RNA (dsRNA) is recognized by membrane and cytosolic sensors that orchestrate type I interferon signaling and the recruitment of innate immune cells to the pancreatic islets. In this context, adenosine deaminase acting on RNA 1 (ADAR1) editing plays an important role in dampening the immune response by inducing adenosine mispairing, destabilizing the RNA duplexes and thus preventing excessive immune activation. METHODS Using high-throughput RNA sequencing data from human islets and EndoC-βH1 cells exposed to IFNα or IFNγ/IL1β, we evaluated the role of ADAR1 in human pancreatic β cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing. RESULTS We show that both IFNα and IFNγ/IL1β stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-βH1 cells as well as in primary human islets. DISCUSSION We demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the β cell transcriptome under inflammatory conditions.
Collapse
Affiliation(s)
- Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Roni Cohen-Fultheim
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maikel Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Erez Levanon
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Arnaud Zaldumbide,
| |
Collapse
|
13
|
Frassinelli L, Orecchini E, Al-Wardat S, Tripodi M, Mancone C, Doria M, Galardi S, Ciafrè SA, Michienzi A. The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biol 2021; 18:75-87. [PMID: 34224323 PMCID: PMC8677026 DOI: 10.1080/15476286.2021.1940020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression. By using a dual-tag affinity purification procedure in cells expressing HIV-1 followed by mass spectrometry analysis, we identified 10 non-ribosomal ADAR2-interacting factors. A significant fraction of these proteins was previously found associated to the Long INterspersed Element 1 (LINE1 or L1) ribonucleoparticles and to regulate the life cycle of L1 retrotransposons. Considering that we previously demonstrated that ADAR1 is an inhibitor of LINE-1 retrotransposon activity, we investigated whether also ADAR2 played a similar function. To reach this goal, we performed specific cell culture retrotransposition assays in cells overexpressing or ablated for ADAR2. These experiments unveil a novel function of ADAR2 as suppressor of L1 retrotransposition. Furthermore, we showed that ADAR2 binds the basal L1 RNP complex. Overall, these data support the role of ADAR2 as regulator of L1 life cycle.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Sofian Al-Wardat
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Margherita Doria
- Unit of Primary Immunodeficiency, Bambino Gesu` Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
14
|
Abstract
The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.ADAR1 is among the genes found mutated in patients with this type of disorders.This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
15
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
16
|
ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci Rep 2020; 10:11536. [PMID: 32665638 PMCID: PMC7360552 DOI: 10.1038/s41598-020-67834-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine-to-inosine RNA editing, a fundamental RNA modification, is regulated by adenosine deaminase (AD) domain containing proteins. Within the testis, RNA editing is catalyzed by ADARB1 and is regulated in a cell-type dependent manner. This study examined the role of two testis-specific AD domain proteins, ADAD1 and ADAD2, on testis RNA editing and male germ cell differentiation. ADAD1, previously shown to localize to round spermatids, and ADAD2 had distinct localization patterns with ADAD2 expressed predominantly in mid- to late-pachytene spermatocytes suggesting a role for both in meiotic and post-meiotic germ cell RNA editing. AD domain analysis showed the AD domain of both ADADs was likely catalytically inactive, similar to known negative regulators of RNA editing. To assess the impact of Adad mutation on male germ cell RNA editing, CRISPR-induced alleles of each were generated in mouse. Mutation of either Adad resulted in complete male sterility with Adad1 mutants displaying severe teratospermia and Adad2 mutant germ cells unable to progress beyond round spermatid. However, mutation of neither Adad1 nor Adad2 impacted RNA editing efficiency or site selection. Taken together, these results demonstrate ADAD1 and ADAD2 are essential regulators of male germ cell differentiation with molecular functions unrelated to A-to-I RNA editing.
Collapse
|
17
|
Heraud-Farlow JE, Walkley CR. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 2020; 10:200085. [PMID: 32603639 PMCID: PMC7574547 DOI: 10.1098/rsob.200085] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000-150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo. Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Jain M, Jantsch MF, Licht K. The Editor's I on Disease Development. Trends Genet 2019; 35:903-913. [PMID: 31648814 DOI: 10.1016/j.tig.2019.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA leads to deamination of adenosine to inosine. Inosine is interpreted as guanosine by the cellular machinery, thus altering the coding, folding, splicing, or transport of transcripts. A-to-I editing is tightly regulated. Altered editing has severe consequences for human health and can cause interferonopathies, neurological disorders, and cardiovascular disease, as well as impacting on cancer progression. ADAR1-mediated RNA editing plays an important role in antiviral immunity and is essential for distinguishing between endogenous and viral RNA, thereby preventing autoimmune disorders. Interestingly, A-to-I editing can be used not only to correct genomic mutations at the RNA level but also to modulate tumor antigenicity with large therapeutic potential. We highlight recent developments in the field, focusing on cancer and other human diseases.
Collapse
Affiliation(s)
- Mamta Jain
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|