1
|
Bramwell G, DeGregori J, Thomas F, Ujvari B. Transmissible cancers, the genomes that do not melt down. Evolution 2024; 78:1205-1211. [PMID: 38656785 DOI: 10.1093/evolut/qpae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Evolutionary theory predicts that the accumulation of deleterious mutations in asexually reproducing organisms should lead to genomic decay. Clonally reproducing cell lines, i.e., transmissible cancers, when cells are transmitted as allografts/xenografts, break these rules and survive for centuries and millennia. The currently known 11 transmissible cancer lineages occur in dogs (canine venereal tumour disease), in Tasmanian devils (devil facial tumor diseases, DFT1 and DFT2), and in bivalves (bivalve transmissible neoplasia). Despite the mutation loads of these cell lines being much higher than observed in human cancers, they have not been eliminated in space and time. Here, we provide potential explanations for how these fascinating cell lines may have overcome the fitness decline due to the progressive accumulation of deleterious mutations and propose that the high mutation load may carry an indirect positive fitness outcome. We offer ideas on how these host-pathogen systems could be used to answer outstanding questions in evolutionary biology. The recent studies on the evolution of these clonal pathogens reveal key mechanistic insight into transmissible cancer genomes, information that is essential for future studies investigating how these contagious cancer cell lines can repeatedly evade immune recognition, evolve, and survive in the landscape of highly diverse hosts.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Dujon AM, Vincze O, Lemaitre JF, Alix-Panabières C, Pujol P, Giraudeau M, Ujvari B, Thomas F. The effect of placentation type, litter size, lactation and gestation length on cancer risk in mammals. Proc Biol Sci 2023; 290:20230940. [PMID: 37357861 PMCID: PMC10291710 DOI: 10.1098/rspb.2023.0940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Reproduction is a central activity for all living organisms but is also associated with a diversity of costs that are detrimental for survival. Until recently, the cost of cancer as a selective force has been poorly considered. Considering 191 mammal species, we found cancer mortality was more likely to be detected in species having large, rather than low, litter sizes and long lactation lengths regardless of the placentation types. However, increasing litter size and gestation length are not per se associated with an enhanced cancer mortality risk. Contrary to basic theoretical expectations, the species with the highest cancer mortality were not those with the most invasive (i.e. haemochorial) placentation, but those with a moderately invasive (i.e. endotheliochorial) one. Overall, these results suggest that (i) high reproductive efforts favour oncogenic processes' dynamics, presumably because of trade-offs between allocation in reproduction effort and anti-cancer defences, (ii) cancer defence mechanisms in animals are most often adjusted to align reproductive lifespan, and (iii) malignant cells co-opt existing molecular and physiological pathways for placentation, but species with the most invasive placentation have also selected for potent barriers against lethal cancers. This work suggests that the logic of Peto's paradox seems to be applicable to other traits that promote tumorigenesis.
Collapse
Affiliation(s)
- Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Jean-François Lemaitre
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Catherine Alix-Panabières
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Laboratory of Rare Human Circulating Cells (LCCRH), University Hospital of Montpellier, Montpellier, France
| | - Pascal Pujol
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France
| | - Mathieu Giraudeau
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266,CNRS- La Rochelle Université, La Rochelle, France
| | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Madsen T, Klaassen M, Raven N, Dujon AM, Jennings G, Thomas F, Hamede R, Ujvari B. Transmissible cancer and longitudinal telomere dynamics in Tasmanian devils (Sarcophilus harrisii). Mol Ecol 2022; 31:6531-6540. [PMID: 36205590 PMCID: PMC10091798 DOI: 10.1111/mec.16721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
A plethora of intrinsic and environmental factors have been shown to influence the length of telomeres, the protector of chromosome ends. Despite the growing interest in infection-telomere interactions, there is very limited knowledge on how transmissible cancers influence telomere maintenance. An emblematic example of transmissible cancer occurs in the Tasmanian devil (Sarcophilus harrisii), whose populations have been dramatically reduced by infectious cancer cells. To investigate associations between telomere dynamics and the transmissible cancer, we used longitudinal data from a Tasmanian devil population that has been exposed to the disease for over 15 years. We detected substantial temporal variation in individual telomere length (TL), and a positive significant association between TL and age, as well as a marginally significant trend for devils with devil facial tumour disease (DFTD) having longer telomeres. A proportional hazard analysis yielded no significant effect of TL on the development of DFTD. Like previous studies, we show the complexity that TL dynamics may exhibit across the lifetime of organisms. Our work highlights the importance of long-term longitudinal sampling for understanding the effects of wildlife diseases on TL.
Collapse
Affiliation(s)
- Thomas Madsen
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.,CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Geordie Jennings
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.,MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
4
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
5
|
Tissot S, Gérard AL, Boutry J, Dujon AM, Russel T, Siddle H, Tasiemski A, Meliani J, Hamede R, Roche B, Ujvari B, Thomas F. Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory. Pathogens 2022; 11:pathogens11020241. [PMID: 35215185 PMCID: PMC8876101 DOI: 10.3390/pathogens11020241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Although the true prevalence of transmissible cancers is not known, these atypical malignancies are likely rare in the wild. The reasons behind this rarity are only partially understood, but the “Perfect Storm hypothesis” suggests that transmissible cancers are infrequent because a precise confluence of tumor and host traits is required for their emergence. This explanation is plausible as transmissible cancers, like all emerging pathogens, will need specific biotic and abiotic conditions to be able to not only emerge, but to spread to detectable levels. Because those conditions would be rarely met, transmissible cancers would rarely spread, and thus most of the time disappear, even though they would regularly appear. Thus, further research is needed to identify the most important factors that can facilitate or block the emergence of transmissible cancers and influence their evolution. Such investigations are particularly relevant given that human activities are increasingly encroaching into wild areas, altering ecosystems and their processes, which can influence the conditions needed for the emergence and spread of transmissible cell lines.
Collapse
Affiliation(s)
- Sophie Tissot
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Correspondence:
| | - Anne-Lise Gérard
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Justine Boutry
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| | - Antoine M. Dujon
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Tracey Russel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Hannah Siddle
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aurélie Tasiemski
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France;
| | - Jordan Meliani
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Benjamin Roche
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinariay Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 01030, Mexico
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Frédéric Thomas
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| |
Collapse
|
6
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
7
|
Dujon AM, Aktipis A, Alix‐Panabières C, Amend SR, Boddy AM, Brown JS, Capp J, DeGregori J, Ewald P, Gatenby R, Gerlinger M, Giraudeau M, Hamede RK, Hansen E, Kareva I, Maley CC, Marusyk A, McGranahan N, Metzger MJ, Nedelcu AM, Noble R, Nunney L, Pienta KJ, Polyak K, Pujol P, Read AF, Roche B, Sebens S, Solary E, Staňková K, Swain Ewald H, Thomas F, Ujvari B. Identifying key questions in the ecology and evolution of cancer. Evol Appl 2021; 14:877-892. [PMID: 33897809 PMCID: PMC8061275 DOI: 10.1111/eva.13190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
The application of evolutionary and ecological principles to cancer prevention and treatment, as well as recognizing cancer as a selection force in nature, has gained impetus over the last 50 years. Following the initial theoretical approaches that combined knowledge from interdisciplinary fields, it became clear that using the eco-evolutionary framework is of key importance to understand cancer. We are now at a pivotal point where accumulating evidence starts to steer the future directions of the discipline and allows us to underpin the key challenges that remain to be addressed. Here, we aim to assess current advancements in the field and to suggest future directions for research. First, we summarize cancer research areas that, so far, have assimilated ecological and evolutionary principles into their approaches and illustrate their key importance. Then, we assembled 33 experts and identified 84 key questions, organized around nine major themes, to pave the foundations for research to come. We highlight the urgent need for broadening the portfolio of research directions to stimulate novel approaches at the interface of oncology and ecological and evolutionary sciences. We conclude that progressive and efficient cross-disciplinary collaborations that draw on the expertise of the fields of ecology, evolution and cancer are essential in order to efficiently address current and future questions about cancer.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Athena Aktipis
- Biodesign InstituteDepartment of PsychologyArizona State UniversityTempeAZUSA
| | - Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
| | - Sarah R. Amend
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Amy M. Boddy
- Department of AnthropologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Joel S. Brown
- Department of Integrated MathematicsMoffitt Cancer CenterTampaFLUSA
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSA/University of ToulouseCNRSINRAEToulouseFrance
| | - James DeGregori
- Department of Biochemistry and Molecular GeneticsIntegrated Department of ImmunologyDepartment of PaediatricsDepartment of Medicine (Section of Hematology)University of Colorado School of MedicineAuroraCOUSA
| | - Paul Ewald
- Department of BiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Robert Gatenby
- Department of RadiologyH. Lee Moffitt Cancer Center & Research InstituteTampaFLUSA
| | - Marco Gerlinger
- Translational Oncogenomics LabThe Institute of Cancer ResearchLondonUK
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Littoral Environnement et Sociétés (LIENSs)UMR 7266CNRS‐Université de La RochelleLa RochelleFrance
| | | | - Elsa Hansen
- Center for Infectious Disease Dynamics, Biology DepartmentPennsylvania State UniversityUniversity ParkPAUSA
| | - Irina Kareva
- Mathematical and Computational Sciences CenterSchool of Human Evolution and Social ChangeArizona State UniversityTempeAZUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyH Lee Moffitt Cancer Centre and Research InstituteTampaFLUSA
| | - Nicholas McGranahan
- Translational Cancer Therapeutics LaboratoryThe Francis Crick InstituteLondonUK
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
| | | | | | - Robert Noble
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| | - Kenneth J. Pienta
- Brady Urological InstituteThe Johns Hopkins School of MedicineBaltimoreMDUSA
| | - Kornelia Polyak
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Pascal Pujol
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Centre Hospitalier Universitaire Arnaud de VilleneuveMontpellierFrance
| | - Andrew F. Read
- Center for Infectious Disease DynamicsHuck Institutes of the Life SciencesDepartments of Biology and EntomologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
- Unité Mixte Internationale de Modélisation Mathématique et Informatique des Systèmes ComplexesUMI IRD/Sorbonne UniversitéUMMISCOBondyFrance
| | - Susanne Sebens
- Institute for Experimental Cancer Research Kiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Eric Solary
- INSERM U1287Gustave RoussyVillejuifFrance
- Faculté de MédecineUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Kateřina Staňková
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
- Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRDMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
| |
Collapse
|
8
|
Dujon AM, Bramwell G, Roche B, Thomas F, Ujvari B. Transmissible cancers in mammals and bivalves: How many examples are there?: Predictions indicate widespread occurrence. Bioessays 2020; 43:e2000222. [PMID: 33210313 DOI: 10.1002/bies.202000222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Transmissible cancers are elusive and understudied parasitic life forms caused by malignant clonal cells (nine lineages are known so far). They emerge by completing sequential steps that include breaking cell cooperation, evade anti-cancer defences and shedding cells to infect new hosts. Transmissible cancers impair host fitness, and their importance as selective force is likely largely underestimated. It is, therefore, crucial to determine how common they might be in the wild. Here, we draw a parallel between the steps required for a transmissible cancer to emerge and the steps required for an intelligent civilisation to emerge in the Milky Way using a modified Drake equation. Using numerical analyses, we estimate the potential number of extant marine and bivalve species in which transmissible cancers might exist. Our results suggest that transmissible cancers are more common than expected, and that new lineages can be found by screening a large number of species.
Collapse
Affiliation(s)
- Antoine M Dujon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Vic, Australia.,CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.,CANECEV International Research Project, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Vic, Australia.,CANECEV International Research Project, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier
| | - Benjamin Roche
- IRD, Sorbonne Université, Bondy, France.,MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France.,Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.,CANECEV International Research Project, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Vic, Australia.,CANECEV International Research Project, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier
| |
Collapse
|
9
|
Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 2020; 564:114-133. [PMID: 33162026 DOI: 10.1016/j.bbrc.2020.10.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.
Collapse
|
10
|
Hamede R, Owen R, Siddle H, Peck S, Jones M, Dujon AM, Giraudeau M, Roche B, Ujvari B, Thomas F. The ecology and evolution of wildlife cancers: Applications for management and conservation. Evol Appl 2020; 13:1719-1732. [PMID: 32821279 PMCID: PMC7428810 DOI: 10.1111/eva.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ecological and evolutionary concepts have been widely adopted to understand host-pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour-host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human-domestic-wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Rachel Owen
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Sarah Peck
- Wildlife Veterinarian, Veterinary Register of TasmaniaSouth HobartTas.Australia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
11
|
Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, Schultz A, Hamede R, Gérard AL, Giraudeau M, Thomas F, Ujvari B. Transmissible Cancers in an Evolutionary Perspective. iScience 2020; 23:101269. [PMID: 32592998 PMCID: PMC7327844 DOI: 10.1016/j.isci.2020.101269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inter-individual transmission of cancer cells represents an intriguing and unexplored host-pathogen system, with significant ecological and evolutionary ramifications. The pathogen consists of clonal malignant cell lines that spread horizontally as allografts and/or xenografts. Although only nine transmissible cancer lineages in eight host species from both terrestrial and marine environments have been investigated, they exhibit evolutionary dynamics that may provide novel insights into tumor-host interactions particularly in the formation of metastases. Here we present an overview of known transmissible cancers, discuss the necessary and sufficient conditions for cancer transmission, and provide a comprehensive review on the evolutionary dynamics between transmissible cancers and their hosts.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Georgina Bramwell
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nick MacDonald
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Erin Dohrmann
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nynke Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Aaron Schultz
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Anne-Lise Gérard
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
12
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
13
|
Woods GM, Lyons AB, Bettiol SS. A Devil of a Transmissible Cancer. Trop Med Infect Dis 2020; 5:tropicalmed5020050. [PMID: 32244613 PMCID: PMC7345153 DOI: 10.3390/tropicalmed5020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Devil facial tumor disease (DFTD) encompasses two independent transmissible cancers that have killed the majority of Tasmanian devils. The cancer cells are derived from Schwann cells and are spread between devils during biting, a common behavior during the mating season. The Centers for Disease Control and Prevention (CDC) defines a parasite as "An organism that lives on or in a host organism and gets its food from, or at, the expense of its host." Most cancers, including DFTD, live within a host organism and derive resources from its host, and consequently have parasitic-like features. Devil facial tumor disease is a transmissible cancer and, therefore, DFTD shares one additional feature common to most parasites. Through direct contact between devils, DFTD has spread throughout the devil population. However, unlike many parasites, the DFTD cancer cells have a simple lifecycle and do not have either independent, vector-borne, or quiescent phases. To facilitate a description of devil facial tumor disease, this review uses life cycles of parasites as an analogy.
Collapse
Affiliation(s)
- Gregory M. Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Correspondence:
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| | - Silvana S. Bettiol
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| |
Collapse
|
14
|
Chale RS, Ghiam N, McNamara SA, Jimenez JJ. Transmissible Cancers and Immune Downregulation in Tasmanian Devil ( Sacrophilus harrisii) and Canine Populations. Comp Med 2019; 69:291-298. [PMID: 31387668 DOI: 10.30802/aalas-cm-18-000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Known as devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT), transmissible cancer occurs in both Tasmanian devil and canine populations, respectively. Both malignancies show remarkable ability to be transmitted as allografts into subsequent hosts. How DFTD and CTVT avoid detection by immunocompetent hosts is of particular interest, given that these malignancies are rarely seen in other species in nature. Both of these transmissible cancers can downregulate the host immune system, enabling proliferation. DFTD is characterized by epigenetic modifications to the DNA promoter regions of β₂microglobulin, transporters associated with antigen processing 1 and 2, MHC I, and MHC II-crucial proteins required in the detection and surveillance of foreign material. Downregulation during DFTD may be achieved by altering the activity of histone deacetylases. DFTD has caused widespread destruction of devil populations, placing the species on the brink of extinction. CTVT demonstrates a proliferative phase, during which the tumor evades immune detection, allowing it to proliferate, and a regressive phase when hosts mount an effective immune response. Alteration of TGFβ signaling in CTVT likely impedes the antigen-processing capabilities of canine hosts in addition to hindering the ability of natural killer cells to detect immune system downregulation. Immunosuppressive cytokines such as CXCL7 may contribute to a favorable microenvironment that supports the proliferation of CTVT. When viewed from an evolutionary paradigm, both DFTD and CTVT may conform to a model of host-parasite coevolution. Furthermore, various genetic features, such as genetically active transposons in CTVT and chromosomal rearrangements in DFTD, play important roles in promoting the survival of these disease agents. Understanding the mode of transmission for these transmissible cancers may shed light on mechanisms for human malignancies and reveal opportunities for treatment in the future.
Collapse
|
15
|
Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. CONSERV GENET 2019; 20:81-87. [PMID: 31551664 PMCID: PMC6759055 DOI: 10.1007/s10592-019-01157-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Matthew F. Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Hubert JN, Zerjal T, Hospital F. Cancer- and behavior-related genes are targeted by selection in the Tasmanian devil (Sarcophilus harrisii). PLoS One 2018; 13:e0201838. [PMID: 30102725 PMCID: PMC6089428 DOI: 10.1371/journal.pone.0201838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022] Open
Abstract
Devil Facial Tumor Disease (DFTD) is an aggressive cancer notorious for its rare etiology and its impact on Tasmanian devil populations. Two regions underlying an evolutionary response to this cancer were recently identified using genomic time-series pre- and post-DTFD arrival. Here, we support that DFTD shaped the genome of the Tasmanian devil in an even more extensive way than previously reported. We detected 97 signatures of selection, including 148 protein coding genes having a human orthologue, linked to DFTD. Most candidate genes are associated with cancer progression, and an important subset of candidate genes has additional influence on social behavior. This confirms the influence of cancer on the ecology and evolution of the Tasmanian devil. Our work also demonstrates the possibility to detect highly polygenic footprints of short-term selection in very small populations.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Hospital
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|