1
|
Elkrewi M, Vicoso B. Single-nucleus atlas of the Artemia female reproductive system suggests germline repression of the Z chromosome. PLoS Genet 2024; 20:e1011376. [PMID: 39213449 PMCID: PMC11392275 DOI: 10.1371/journal.pgen.1011376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Our understanding of the molecular pathways that regulate oogenesis and define cellular identity in the Arthropod female reproductive system and the extent of their conservation is currently very limited. This is due to the focus on model systems, including Drosophila and Daphnia, which do not reflect the observed diversity of morphologies, reproductive modes, and sex chromosome systems. We use single-nucleus RNA and ATAC sequencing to produce a comprehensive single nucleus atlas of the adult Artemia franciscana female reproductive system. We map our data to the Fly Cell Atlas single-nucleus dataset of the Drosophila melanogaster ovary, shedding light on the conserved regulatory programs between the two distantly related Arthropod species. We identify the major cell types known to be present in the Artemia ovary, including germ cells, follicle cells, and ovarian muscle cells. Additionally, we use the germ cells to explore gene regulation and expression of the Z chromosome during meiosis, highlighting its unique regulatory dynamics and allowing us to explore the presence of meiotic sex chromosome silencing in this group.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
2
|
Qian SH, Xiong YL, Chen L, Geng YJ, Tang XM, Chen ZX. Dynamic Spatial-temporal Expression Ratio of X Chromosome to Autosomes but Stable Dosage Compensation in Mammals. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:589-600. [PMID: 36031057 PMCID: PMC10787176 DOI: 10.1016/j.gpb.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the evolutionary model of dosage compensation, per-allele expression level of the X chromosome has been proposed to have twofold up-regulation to compensate its dose reduction in males (XY) compared to females (XX). However, the expression regulation of X-linked genes is still controversial, and comprehensive evaluations are still lacking. By integrating multi-omics datasets in mammals, we investigated the expression ratios including X to autosomes (X:AA ratio) and X to orthologs (X:XX ratio) at the transcriptome, translatome, and proteome levels. We revealed a dynamic spatial-temporal X:AA ratio during development in humans and mice. Meanwhile, by tracing the evolution of orthologous gene expression in chickens, platypuses, and opossums, we found a stable expression ratio of X-linked genes in humans to their autosomal orthologs in other species (X:XX ≈ 1) across tissues and developmental stages, demonstrating stable dosage compensation in mammals. We also found that different epigenetic regulations contributed to the high tissue specificity and stage specificity of X-linked gene expression, thus affecting X:AA ratios. It could be concluded that the dynamics of X:AA ratios were attributed to the different gene contents and expression preferences of the X chromosome, rather than the stable dosage compensation.
Collapse
Affiliation(s)
- Sheng Hu Qian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Li Xiong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying-Jie Geng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Man Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Sasaki K, Sangrithi M. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Mol Cell Endocrinol 2023:111949. [PMID: 37201564 DOI: 10.1016/j.mce.2023.111949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Male and female germ cells undergo genome-wide reprogramming during their development, and execute sex-specific programs to complete meiosis and successfully generate healthy gametes. While sexually dimorphic germ cell development is fundamental, similarities and differences exist in the basic processes governing normal gametogenesis. At the simplest level, male gamete generation in mammals is centred on the activity of spermatogonial stem cells (SSCs), and an equivalent cell state is not present in females. Maintaining this unique SSC epigenetic state, while keeping to germ cell-intrinsic developmental programs, poses challenges for the correct completion of spermatogenesis. In this review, we highlight the origins of spermatogonia, comparing and contrasting them with female germline development to emphasize specific developmental processes that are required for their function as germline stem cells. We identify gaps in our current knowledge about human SSCs and further discuss the impact of the unique regulation of the sex chromosomes during spermatogenesis, and the roles of X-linked genes in SSCs.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, United States.
| | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
4
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Parker DJ, Jaron KS, Dumas Z, Robinson‐Rechavi M, Schwander T. X chromosomes show relaxed selection and complete somatic dosage compensation across
Timema
stick insect species. J Evol Biol 2022; 35:1734-1750. [PMID: 35933721 PMCID: PMC10087215 DOI: 10.1111/jeb.14075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes have evolved repeatedly across the tree of life. As they are present in different copy numbers in males and females, they are expected to experience different selection pressures than the autosomes, with consequences including a faster rate of evolution, increased accumulation of sexually antagonistic alleles and the evolution of dosage compensation. Whether these consequences are general or linked to idiosyncrasies of specific taxa is not clear as relatively few taxa have been studied thus far. Here, we use whole-genome sequencing to identify and characterize the evolution of the X chromosome in five species of Timema stick insects with XX:X0 sex determination. The X chromosome had a similar size (approximately 12% of the genome) and gene content across all five species, suggesting that the X chromosome originated prior to the diversification of the genus. Genes on the X showed evidence of relaxed selection (elevated dN/dS) and a slower evolutionary rate (dN + dS) than genes on the autosomes, likely due to sex-biased mutation rates. Genes on the X also showed almost complete dosage compensation in somatic tissues (heads and legs), but dosage compensation was absent in the reproductive tracts. Contrary to prediction, sex-biased genes showed little enrichment on the X, suggesting that the advantage X-linkage provides to the accumulation of sexually antagonistic alleles is weak. Overall, we found the consequences of X-linkage on gene sequences and expression to be similar across Timema species, showing the characteristics of the X chromosome are surprisingly consistent over 30 million years of evolution.
Collapse
Affiliation(s)
- Darren J. Parker
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Natural Sciences Bangor University Bangor UK
| | - Kamil S. Jaron
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- School of Biological Sciences Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Zoé Dumas
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
6
|
|
7
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
8
|
Charlesworth D. Evolution: Shape-shifting vole sex determination and sex chromosomes. Curr Biol 2021; 31:R967-R969. [PMID: 34375604 DOI: 10.1016/j.cub.2021.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has long been known that some mouse and vole species have unusual sex chromosomes. A recent genome sequencing study advances understanding of a particularly puzzling vole system.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Witt E, Shao Z, Hu C, Krause HM, Zhao L. Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis. PLoS Genet 2021; 17:e1009728. [PMID: 34403408 PMCID: PMC8396764 DOI: 10.1371/journal.pgen.1009728] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/27/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Dosage compensation equalizes X-linked expression between XY males and XX females. In male fruit flies, expression levels of the X-chromosome are increased approximately two-fold to compensate for their single X chromosome. In testis, dosage compensation is thought to cease during meiosis; however, the timing and degree of the resulting transcriptional suppression is difficult to separate from global meiotic downregulation of each chromosome. To address this, we analyzed testis single-cell RNA-sequencing (scRNA-seq) data from two Drosophila melanogaster strains. We found evidence that the X chromosome is equally transcriptionally active as autosomes in somatic and pre-meiotic cells, and less transcriptionally active than autosomes in meiotic and post-meiotic cells. In cells experiencing dosage compensation, close proximity to MSL (male-specific lethal) chromatin entry sites (CES) correlates with increased X chromosome transcription. We found low or undetectable levels of germline expression of most msl genes, mle, roX1 and roX2 via scRNA-seq and RNA-FISH, and no evidence of germline nuclear roX1/2 localization. Our results suggest that, although dosage compensation occurs in somatic and pre-meiotic germ cells in Drosophila testis, there might be non-canonical factors involved in the dosage compensation mechanism. The single-cell expression patterns and enrichment statistics of detected genes can be explored interactively in our database: https://zhao.labapps.rockefeller.edu/gene-expr/.
Collapse
Affiliation(s)
- Evan Witt
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York, United States of America
| | - Zhantao Shao
- Department of Molecular Genetics and The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Chun Hu
- Department of Molecular Genetics and The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Henry M. Krause
- Department of Molecular Genetics and The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
10
|
Ouimette JF, Rougeulle C. Many XCI-ting routes to reach the eXACT dose. Nat Cell Biol 2020; 22:1397-1398. [PMID: 33257807 DOI: 10.1038/s41556-020-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.
| |
Collapse
|
11
|
Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 2020; 54:548-566.e7. [PMID: 32795394 DOI: 10.1016/j.devcel.2020.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spermatogenesis is highly orchestrated and involves the differentiation of diploid spermatogonia into haploid sperm. The process is driven by spermatogonial stem cells (SSCs). SSCs undergo mitotic self-renewal, whereas sub-populations undergo differentiation and later gain competence to initiate meiosis. Here, we describe a high-resolution single-cell RNA-seq atlas of cells derived from Cynomolgus macaque testis. We identify gene signatures that define spermatogonial populations and explore self-renewal versus differentiation dynamics. We detail transcriptional changes occurring over the entire process of spermatogenesis and highlight the concerted activity of DNA damage response (DDR) pathway genes, which have dual roles in maintaining genomic integrity and effecting meiotic sex chromosome inactivation (MSCI). We show remarkable similarities and differences in gene expression during spermatogenesis with two other eutherian mammals, i.e., mouse and humans. Sex chromosome expression in the male germline in all three species demonstrates conserved features of MSCI but divergent multicopy and ampliconic gene content.
Collapse
|
12
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Applications of Genome Editing Technology in Research on Chromosome Aneuploidy Disorders. Cells 2020; 9:cells9010239. [PMID: 31963583 PMCID: PMC7016705 DOI: 10.3390/cells9010239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chromosomal segregation errors in germ cells and early embryonic development underlie aneuploidies, which are numerical chromosomal abnormalities causing fetal absorption, developmental anomalies, and carcinogenesis. It has been considered that human aneuploidy disorders cannot be resolved by radical treatment. However, recent studies have demonstrated that aneuploidies can be rescued to a normal diploid state using genetic engineering in cultured cells. Here, we summarize a series of studies mainly applying genome editing to eliminate an extra copy of human chromosome 21, the cause of the most common constitutional aneuploidy disorder Down syndrome. We also present findings on induced pluripotent stem cell reprogramming, which has been shown to be one of the most promising technologies for converting aneuploidies into normal diploidy without the risk of genetic alterations such as genome editing-mediated off-target effects.
Collapse
|
14
|
Leitner N, Ben-Shahar Y. The neurogenetics of sexually dimorphic behaviors from a postdevelopmental perspective. GENES BRAIN AND BEHAVIOR 2019; 19:e12623. [PMID: 31674725 DOI: 10.1111/gbb.12623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Most sexually reproducing animal species are characterized by two morphologically and behaviorally distinct sexes. The genetic, molecular and cellular processes that produce sexual dimorphisms are phylogenetically diverse, though in most cases they are thought to occur early in development. In some species, however, sexual dimorphisms are manifested after development is complete, suggesting the intriguing hypothesis that sex, more generally, might be considered a continuous trait that is influenced by both developmental and postdevelopmental processes. Here, we explore how biological sex is defined at the genetic, neuronal and behavioral levels, its effects on neuronal development and function, and how it might lead to sexually dimorphic behavioral traits in health and disease. We also propose a unifying framework for understanding neuronal and behavioral sexual dimorphisms in the context of both developmental and postdevelopmental, physiological timescales. Together, these two temporally separate processes might drive sex-specific neuronal functions in sexually mature adults, particularly as it pertains to behavior in health and disease.
Collapse
Affiliation(s)
- Nicole Leitner
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
15
|
Rathje CC, Johnson EEP, Drage D, Patinioti C, Silvestri G, Affara NA, Ialy-Radio C, Cocquet J, Skinner BM, Ellis PJI. Differential Sperm Motility Mediates the Sex Ratio Drive Shaping Mouse Sex Chromosome Evolution. Curr Biol 2019; 29:3692-3698.e4. [PMID: 31630954 PMCID: PMC6839398 DOI: 10.1016/j.cub.2019.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023]
Abstract
The mouse sex chromosomes exhibit an extraordinary level of copy number amplification of postmeiotically expressed genes [1, 2], driven by an “arms race” (genomic conflict) between the X and Y chromosomes over the control of offspring sex ratio. The sex-linked ampliconic transcriptional regulators Slx and Sly [3, 4, 5, 6, 7] have opposing effects on global transcription levels of the sex chromosomes in haploid spermatids via regulation of postmeiotic sex chromatin (PMSC) [8, 9, 10, 11] and opposing effects on offspring sex ratio. Partial deletions of the Y chromosome (Yq) that reduce Sly copy number lead to global overexpression of sex-linked genes in spermatids and either a distorted sex ratio in favor of females (smaller deletions) or sterility (larger deletions) [12, 13, 14, 15, 16]. Despite a large body of work studying the role of the sex chromosomes in regulating spermatogenesis (recent reviews [17, 18, 19, 20]), most studies do not address differential fertility effects on X- and Y-bearing cells. Hence, in this study, we concentrate on identifying physiological differences between X- and Y-bearing sperm from Yq-deleted males that affect their relative fertilizing ability and consequently lead to sex ratio skewing. We show that X- and Y-bearing sperm in these males have differential motility and morphology but are equally able to penetrate the cumulus and fertilize the egg once at the site of fertilization. The altered motility is thus deduced to be the proximate cause of the skew. This represents the first demonstration of a specific difference in sperm function associated with sex ratio skewing. The sex ratio skew in the offspring of Yq-deleted male mice is abolished by IVF In Yqdel males, Y sperm are more severely morphologically distorted than X sperm Similarly, Y sperm in these males have relatively impaired motility This motility difference explains the sex ratio skew in offspring of these males
Collapse
Affiliation(s)
| | | | - Deborah Drage
- University Biomedical Services, University of Cambridge, Cambridge CB2 2SP, UK
| | | | | | - Nabeel Ahmed Affara
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Côme Ialy-Radio
- Department of Development, Reproduction and Cancer, INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Julie Cocquet
- Department of Development, Reproduction and Cancer, INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Benjamin Matthew Skinner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | |
Collapse
|
16
|
Gene-dense autosomal chromosomes show evidence for increased selection. Heredity (Edinb) 2019; 123:774-783. [PMID: 31576017 DOI: 10.1038/s41437-019-0272-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Purifying selection tends to reduce nucleotide and haplotype diversity leading to increased linkage disequilibrium. However, detection of evidence for selection is difficult as the signature is confounded by wide variation in the recombination rate which has a complex relationship with selection. The effective bottleneck time (the ratio of the linkage disequilibrium map to the genetic map in Morgans) controls for variability in the recombination rate. Reduced effective bottleneck times indicate stronger residual linkage disequilibrium, consistent with increased selection. Using whole genome sequence data from one European and three Sub-Saharan African human populations we find, in the African samples, strong correlations between high gene densities and reduced effective bottleneck time for autosomal chromosomes. This suggests that gene-dense autosomes have been subject to increased purifying selection reducing effective bottleneck times compared to gene-poor autosomes. Although previous studies have shown unusually strong linkage disequilibrium for the sex chromosomes variation within the autosomes has not been recognised. The strongest relationship is between effective bottleneck time and the density of essential genes, which are likely targets of greater selective pressure (p = 0.006, for the 22 autosomes). The magnitude of the reduction in chromosome-specific effective bottleneck times from the least to the most gene-dense autosomes is ~17-21% for Sub-Saharan African populations. The effect size is greater in Sub-Saharan African populations, compared to a European sample, consistent with increased efficiency of selection in populations with larger effective population sizes which have not been subject to intense population bottlenecks as experienced by populations of European ancestry. The findings highlight the value of deeper analyses of selection within Sub-Saharan African populations.
Collapse
|
17
|
Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 2019; 572:660-664. [DOI: 10.1038/s41586-019-1500-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
|
18
|
Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proc Natl Acad Sci U S A 2019; 116:17916-17924. [PMID: 31427530 PMCID: PMC6731651 DOI: 10.1073/pnas.1900714116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sources of human germline mutations are poorly understood. Part of the difficulty is that mutations occur very rarely, and so direct pedigree-based approaches remain limited in the numbers that they can examine. To address this problem, we consider the spectrum of low-frequency variants in a dataset (Genome Aggregation Database, gnomAD) of 13,860 human X chromosomes and autosomes. X-autosome differences are reflective of germline sex differences and have been used extensively to learn about male versus female mutational processes; what is less appreciated is that they also reflect chromosome-level biochemical features that differ between the X and autosomes. We tease these components apart by comparing the mutation spectrum in multiple genomic compartments on the autosomes and between the X and autosomes. In so doing, we are able to ascribe specific mutation patterns to replication timing and recombination and to identify differences in the types of mutations that accrue in males and females. In particular, we identify C > G as a mutagenic signature of male meiotic double-strand breaks on the X, which may result from late repair. Our results show how biochemical processes of damage and repair in the germline interact with sex-specific life history traits to shape mutation patterns on both the X chromosome and autosomes.
Collapse
|
19
|
Picard MAL, Vicoso B, Roquis D, Bulla I, Augusto RC, Arancibia N, Grunau C, Boissier J, Cosseau C. Dosage Compensation throughout the Schistosoma mansoni Lifecycle: Specific Chromatin Landscape of the Z Chromosome. Genome Biol Evol 2019; 11:1909-1922. [PMID: 31273378 PMCID: PMC6628874 DOI: 10.1093/gbe/evz133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region.
Collapse
Affiliation(s)
- Marion A L Picard
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - David Roquis
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ingo Bulla
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Ronaldo C Augusto
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Céline Cosseau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
20
|
Duan JE, Flock K, Jue N, Zhang M, Jones A, Seesi SA, Mandoiu I, Pillai S, Hoffman M, O'Neill R, Zinn S, Govoni K, Reed S, Jiang H, Jiang ZC, Tian XC. Dosage Compensation and Gene Expression of the X Chromosome in Sheep. G3 (BETHESDA, MD.) 2019; 9:305-314. [PMID: 30482800 PMCID: PMC6325915 DOI: 10.1534/g3.118.200815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Ohno's hypothesis predicts that the expression of the single X chromosome in males needs compensatory upregulation to balance its dosage with that of the diploid autosomes. Additionally, X chromosome inactivation ensures that quadruple expression of the two X chromosomes is avoided in females. These mechanisms have been actively studied in mice and humans but lag behind in domestic species. Using RNA sequencing data, we analyzed the X chromosome upregulation in sheep fetal tissues from day 135 of gestation under control, over or restricted maternal diets (100%, 140% and 60% of National Research Council Total Digestible Nutrients), and in conceptuses, juvenile, and adult somatic tissues. By computing the mean expression ratio of all X-linked genes to all autosomal genes (X:A), we found that all samples displayed some levels of X chromosome upregulation. The degrees of X upregulation were not significant (P-value = 0.74) between ovine females and males in the same somatic tissues. Brain, however, displayed complete X upregulation. Interestingly, the male and female reproduction-related tissues exhibited divergent X dosage upregulation. Moreover, expression upregulation of the X chromosome in fetal tissues was not affected by maternal diets. Maternal nutrition, however, did change expression levels of several X-linked genes, such as sex determination genes SOX3 and NR0B1 In summary, our results showed that X chromosome upregulation occurred in nearly all sheep somatic tissues analyzed, thus support Ohno's hypothesis in a new species. However, the levels of upregulation differed by different subgroups of genes such as those that are house-keeping and "dosage-sensitive".
Collapse
Affiliation(s)
| | | | - Nathanial Jue
- School of Natural Sciences, California State University, Monterey Bay, Seaside, CA 93955
| | - Mingyuan Zhang
- Department of Animal Science
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | | | - Sahar Al Seesi
- Smith College Department of Computer Science, Northampton, MA 01063
- Department of Computer Science
| | | | | | | | - Rachel O'Neill
- Department of Molecular and Cell Biology, and University of Connecticut, Storrs, CT, 06269
| | | | | | | | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China, and
| | - Zongliang Carl Jiang
- Department of Animal Science
- School of Animal Science, Louisiana State University, Baton Rouge, LA 70803
| | | |
Collapse
|