1
|
Nobumoto T, Yamasaki S, Hamada A, Higaki M, Ito N, Obayashi F, Ishida Y, Hamana T, Shintani T, Tani R, Koizumi K, Yanamoto S, Hayashido Y. Clinical significance and biological role of claudin-1 in oral squamous cell carcinoma cells. Oral Surg Oral Med Oral Pathol Oral Radiol 2024:S2212-4403(24)00456-5. [PMID: 39294092 DOI: 10.1016/j.oooo.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Claudin (CLD), a major component of tight junctions, is a four-transmembrane protein, and 24 subtypes have been reported in humans. CLD expression is highly tissue-specific; CLD1 has been reported to be expressed in the skin and mucosa. There have been few reports on CLD1 expression and its function in oral cancer. MATERIALS AND METHODS This retrospective study immunohistochemically evaluated CLD1 expression as prognostic predictors in 84 participants with oral squamous cell carcinoma (OSCC). Participants were classified as positive or negative based on staining intensity; the clinicopathologic characteristics and survival rates of the two groups were compared. To clarify the biological role of CLD1 in OSCC cells, we examined the effects of CLD1 overexpression on the invasion and proliferation of the OSCC cell line, SCCKN. RESULTS We observed the immunohistochemical CLD1 expression in the cell membranes of OSCC cells. The disease-free survival rate was significantly lower in patients with CLD1-positive OSCC than in patients with CLD1-negative OSCC (P < .05). In vitro studies showed that cell proliferative capacity, motility, proteolytic activity, and invasive growth were promoted in CLD1-overexpressing SCCKN cells compared to those in control SCCKN cells. CONCLUSION CLD1 may be a useful and potential prognostic factor for OSCC treatment.
Collapse
Affiliation(s)
- Tadayoshi Nobumoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Mirai Higaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Nanako Ito
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Fumitaka Obayashi
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Ishida
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Hamana
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Ryouji Tani
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Hayashido
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
3
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Agbemavor WSK, Buys EM. Dynamic Interactions between Diarrhoeagenic Enteroaggregative Escherichia coli and Presumptive Probiotic Bacteria: Implications for Gastrointestinal Health. Microorganisms 2023; 11:2942. [PMID: 38138086 PMCID: PMC10745617 DOI: 10.3390/microorganisms11122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This study delves into the temporal dynamics of bacterial interactions in the gastrointestinal tract, focusing on how probiotic strains and pathogenic bacteria influence each other and human health. This research explores adhesion, competitive exclusion, displacement, and inhibition of selected diarrhoeagenic Escherichia coli (D-EAEC) and potential probiotic strains under various conditions. Key findings reveal that adhesion is time-dependent, with both D-EAEC K2 and probiotic L. plantarum FS2 showing increased adhesion over time. Surprisingly, L. plantarum FS2 outperformed D-EAEC K2 in adhesion and exhibited competitive exclusion and displacement, with inhibition of adhesion surpassing competitive exclusion. This highlights probiotics' potential to slow pathogen attachment when not in competition. Pre-infecting with L. plantarum FS2 before pathogenic infection effectively inhibited adhesion, indicating probiotics' ability to prevent pathogen attachment. Additionally, adhesion correlated strongly with interleukin-8 (IL-8) secretion, linking it to the host's inflammatory response. Conversely, IL-8 secretion negatively correlated with trans-epithelial electrical resistance (TEER), suggesting a connection between tight junction disruption and increased inflammation. These insights offer valuable knowledge about the temporal dynamics of gut bacteria interactions and highlight probiotics' potential in competitive exclusion and inhibiting pathogenic bacteria, contributing to strategies for maintaining gastrointestinal health and preventing infections.
Collapse
Affiliation(s)
- Wisdom Selorm Kofi Agbemavor
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon, Accra P.O. Box LG 80, Ghana
| | - Elna Maria Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Kim S, Park S, Moon EH, Kim GJ, Choi J. Hypoxia disrupt tight junctions and promote metastasis of oral squamous cell carcinoma via loss of par3. Cancer Cell Int 2023; 23:79. [PMID: 37095487 PMCID: PMC10123966 DOI: 10.1186/s12935-023-02924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a highly malignant tumor that is frequently associated with lymph node metastasis, resulting in poor prognosis and survival in patients. In the tumor microenvironment, hypoxia plays an important role in regulating cellular responses such as progressive and rapid growth and metastasis. In these processes, tumor cells autonomously undergo diverse transitions and acquire functions. However, hypoxia-induced transition of OSCC and the involvement of hypoxia in OSCC metastasis remain unclear. Therefore, in this study, we aimed to elucidate the mechanism of hypoxia-induced OSCC metastasis and particularly, its impact on tight junctions (TJs). METHODS The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was detected in tumor tissues and adjacent normal tissues from 29 patients with OSCC using reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC). The migration and invasion abilities of OSCC cell lines treated with small interfering (si)RNA targeting HIF-1α or cultured in hypoxic conditions were analyzed using Transwell assays. The effect of HIF-1α expression on in vivo tumor metastasis of OSCC cells was evaluated using lung metastasis model. RESULTS HIF-1α was overexpressed in patients with OSCC. OSCC metastasis was correlated with HIF-1α expression in OSCC tissues. Hypoxia increased the migration and invasion abilities of OSCC cell lines by regulating the expression and localization of partitioning-defective protein 3 (Par3) and TJs. Furthermore, HIF-1α silencing effectively decreased the invasion and migration abilities of OSCC cell lines and restored TJ expression and localization via Par3. The expression of HIF-1α was positively regulated the OSCC metastasis in vivo. CONCLUSIONS Hypoxia promotes OSCC metastasis by regulating the expression and localization of Par3 and TJ proteins. HIF-1α positively correlates to OSCC metastasis. Lastly, HIF-1α expression could regulate the expression of Par3 and TJs in OSCC. This finding may aid in elucidating the molecular mechanisms of OSCC metastasis and progression and developing new diagnostic and therapeutic approaches for OSCC metastasis.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung- si, Gangwon-do, 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung- si, Gangwon-do, 25457, Republic of Korea
| | - Eun-Hye Moon
- Institute of Lee Gil Ya Cancer and Diabetes, Gachon University, Incheon, 21999, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung- si, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
6
|
Ectopic localization of CYP11B1 and CYP11B2-expressing cells in the normal human adrenal gland. PLoS One 2022; 17:e0279682. [PMID: 36584094 PMCID: PMC9803228 DOI: 10.1371/journal.pone.0279682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
The sharp line of demarcation between zona glomerulosa (ZG) and zona fasciculata (ZF) has been recently challenged suggesting that this interface is no longer a compartment boundary. We have used immunohistochemical analyses to study the steroid 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) pattern of expression and investigate the remodeling of the adrenal cortex in relation to aging. We analyzed human adrenal glands prepared from 47 kidney donors. No aldosterone-producing micronodules (APMs) were detectable in the younger donors aged between 22-39 but the functional ZG depicted by positive CYP11B2 staining demonstrated a lack of continuity. In contrast, the development of APMs was found in samples from individuals aged 40-70. Importantly, the progressive replacement of CYP11B2-expressing cells in the histological ZG by CYP11B1-expressing cells highlights the remodeling capacity of the adrenal cortex. In 70% of our samples, immunofluorescence studies revealed the presence of isolated or clusters of CYP11B2 positive cells in the ZF and zona reticularis. Our data emphasize that mineralocorticoid- and glucocorticoid-producing cells are distributed throughout the cortex and the medulla making the determination of the functional status of a cell or group of cells a unique tool in deciphering the changes occurring in adrenal gland particularly during aging. They also suggest that, in humans, steroidogenic cell phenotype defined by function is a stable feature and thus, the functional zonation might be not solely maintained by cell lineage conversion/migration.
Collapse
|
7
|
Huang Y, Wang C, Tian X, Mao Y, Hou B, Sun Y, Gu X, Ma Z. Pioglitazone Attenuates Experimental Colitis-Associated Hyperalgesia through Improving the Intestinal Barrier Dysfunction. Inflammation 2021; 43:568-578. [PMID: 31989391 PMCID: PMC7170986 DOI: 10.1007/s10753-019-01138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impaired intestinal mucosal integrity during colitis involves the peroxisome proliferator-activated receptor-γ (PPARγ), an important anti-inflammatory factor in intestinal mucosa homoeostasis, which is a potential target in colitis. Recurrent chronic pain is a vital pathogenetic feature of colitis. Nevertheless, potential functions of PPARγ in the colitis-associated hyperalgesia remain unclear. This study aimed to investigate biological roles of pioglitazone in relieving colitis-associated pain hypersensitivity by a PPARγ tight junction protein-dependent mechanism during the course of dextran sodium sulfate (DSS)-induced intestinal inflammation. The DSS-induced colitis model was generated in C57BL/6 mice. Changes in colitis induced the injury of intestinal mucosal barrier and hyperalgesia after a 6-day treatment of pioglitazone (25 mg/kg, IP injection) were assessed through immunofluorescent, hematoxylin and eosin (H&E) staining, western blot analysis, and determination of paw withdrawal mechanical threshold. A significant reduction of paw withdrawal mechanical threshold occurred after DSS treatment. Follow-up data showed that systematic administration of PPARγ agonist pioglitazone ameliorated the DSS-induced colitis and the development of colitis-associated hyperalgesia by repairing the intestinal mucosal barrier. The tight junction proteins ZO-1 and Claudin-5 were upregulated by PPARγ signaling, which in turn promoted the improvement of intestinal barrier function. Moreover, pioglitazone inhibited phosphorylation of ERK and NF-κB in the colon and decreased the levels of inflammatory cytokines in both colon spine tissues. Furthermore, systemically pioglitazone treatment inhibited the activation of microglia and astrocytes, as well as DSS-induced phosphorylation of NR2B subunit in spinal cord, which was correspondingly consistent with the pain behavior. Pioglitazone ameliorates DSS-induced colitis and attenuates colitis-associated mechanical hyperalgesia, with improving integrity of the intestinal mucosal barrier by directly upregulating tight junction proteins. The PPARγ-tight junction protein signaling might be a potential therapeutic target for the treatment of colitis-associated chronic pain.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Chenchen Wang
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xinyu Tian
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yanting Mao
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Bailin Hou
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yu'e Sun
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| |
Collapse
|
8
|
Yano T, Tsukita K, Kanoh H, Nakayama S, Kashihara H, Mizuno T, Tanaka H, Matsui T, Goto Y, Komatsubara A, Aoki K, Takahashi R, Tamura A, Tsukita S. A microtubule-LUZP1 association around tight junction promotes epithelial cell apical constriction. EMBO J 2021; 40:e104712. [PMID: 33346378 PMCID: PMC7809799 DOI: 10.15252/embj.2020104712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological ScienceGraduate School of MedicineOsaka UniversityOsakaJapan
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Kazuto Tsukita
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hatsuho Kanoh
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shogo Nakayama
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Hiroka Kashihara
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Tomoaki Mizuno
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Hiroo Tanaka
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of PharmacologySchool of MedicineTeikyo UniversityTokyoJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| | - Takeshi Matsui
- Laboratory for Skin HomeostasisResearch Center for Allergy and ImmunologyRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yuhei Goto
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Akira Komatsubara
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS)National Institutes of Natural SciencesAichiJapan
- National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Department of Basic BiologyFaculty of Life ScienceSOKENDAI (Graduate University for Advanced Studies)AichiJapan
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Department of PharmacologySchool of MedicineTeikyo UniversityTokyoJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell BiologyGraduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
- Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
| |
Collapse
|
9
|
Ge P, Ma H, Li Y, Ni A, Isa AM, Wang P, Bian S, Shi L, Zong Y, Wang Y, Jiang L, Hagos H, Yuan J, Sun Y, Chen J. Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon ( Columba livia). Genes (Basel) 2020; 12:genes12010039. [PMID: 33396684 PMCID: PMC7824448 DOI: 10.3390/genes12010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-628-160-05
| |
Collapse
|
10
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
12
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|