1
|
Diaz BL, Bandeira-Melo C. Parasitic infections: A new frontier for PGD 2 functions. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100078. [PMID: 38826690 PMCID: PMC11140190 DOI: 10.1016/j.crimmu.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024] Open
Abstract
Prostaglandin (PG)D2 is produced and/or triggered by different parasites to modulate the course of the infection. These findings position PGD2 as a therapeutic target and suggest potential beneficial effects of repositioned drugs that target its synthesis or receptor engagement. However, recent in vivo data may suggest a more nuanced role and warrants further investigation of the role of PGD2 during the full course and complexity of parasitic infections.
Collapse
Affiliation(s)
- Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
2
|
Mavroudakis L, Lanekoff I. Identification and Imaging of Prostaglandin Isomers Utilizing MS 3 Product Ions and Silver Cationization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2341-2349. [PMID: 37587718 PMCID: PMC10557378 DOI: 10.1021/jasms.3c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Prostaglandins (PGs) are important lipid mediators involved in physiological processes, such as inflammation and pregnancy. The pleiotropic effects of the PG isomers and their differential expression from cell types impose the necessity for studying individual isomers locally in tissue to understand the molecular mechanisms. Currently, mass spectrometry (MS)-based analytical workflows for determining the PG isomers typically require homogenization of the sample and a separation method, which results in a loss of spatial information. Here, we describe a method exploiting the cationization of PGs with silver ions for enhanced sensitivity and tandem MS to distinguish the biologically relevant PG isomers PGE2, PGD2, and Δ12-PGD2. The developed method utilizes characteristic product ions in MS3 for training prediction models and is compatible with direct infusion approaches. We discuss insights into the fragmentation pathways of Ag+ cationized PGs during collision-induced dissociation and demonstrate the high accuracy and robustness of the model to predict isomeric compositions of PGs. The developed method is applied to mass spectrometry imaging (MSI) of mouse uterus implantation sites using silver-doped pneumatically assisted nanospray desorption electrospray ionization and indicates localization to the antimesometrial pole and the luminal epithelium of all isomers with different abundances. Overall, we demonstrate, for the first time, isomeric imaging of major PG isomers with a simple method that is compatible with liquid-based extraction MSI methods.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry−BMC, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
3
|
Hamaguchi A, Fukuda H, Fujiwara K, Harada T, Fukushima K, Shuto S, Fujino H. Individual resolvin E family members work distinctly and in a coordinated manner in the resolution of inflammation. Prostaglandins Other Lipid Mediat 2023; 168:106759. [PMID: 37327943 DOI: 10.1016/j.prostaglandins.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Three main E-type resolvins (RvEs): RvE1, RvE2, and RvE3, have roles in the resolution of inflammation as anti-inflammatory activities. To investigate the roles of each RvE in the resolution of inflammation, timing of interleukin (IL)- 10 release and IL-10 receptor expressions, and phagocytosis evoked by each RvE in differentiated human monocytes, macrophage-like U937 cells were examined. Here, we show that RvEs enhance the expression of IL-10, and IL-10 receptor-mediated signaling pathways and IL-10-mediated-signaling-independent resolution of inflammatory effects by activating the phagocytotic function. Thus, RvE2 mainly evoked an IL-10-mediated anti-inflammatory function, whereas RvE3 principally activated phagocytotic activity of macrophages, which may be involved in tissue repair. On the other hand, RvE1 showed both functions, although not prominent but rather acting as a relief mediator that takes over the RvE2 function and passes over to the RvE3 function. Therefore, each RvE may act as an important role/stage-specific mediator in a coordinated manner with other RvEs in the processes of the resolution of inflammation.
Collapse
Affiliation(s)
- Ayaka Hamaguchi
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hayato Fukuda
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koichi Fujiwara
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomofumi Harada
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
4
|
Fujino H. The Biased Activities of Prostanoids and Their Receptors: Review and Beyond. Biol Pharm Bull 2022; 45:684-690. [PMID: 35650096 DOI: 10.1248/bpb.b21-01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of β-arrestin, a new concept/viewpoint has arisen in G-protein coupled receptor (GPCR)-mediated signaling. The Lock and Key concept of GPCR was previously recognized as basically a single- or mono-originated pathway activated from a single receptor. However, the new concept/viewpoint allows for many- or more-than-one-originated pathways activated from a single receptor; namely, biased activities. It is well-recognized that prostanoids exhibit preferences for their corresponding cognate receptors, while promiscuous cross-reactivities have also been reported among endogenous prostanoids and their receptor family. However, of particular interest, such cross-reactivities have led to reports of their physiologically significant roles. Thus, this review discusses and considers that the endogenous prostanoids are not showing random cross-reactivities but what are showing important physiological and pathological activities as biased ligands. Moreover, why and how the biased activities are evoked by endogenous structurally similar prostanoid ligands are discussed. Furthermore, when the biased activities of endogenous prostanoids first arose is also discussed and considered. These biased activities of endogenous prostanoids are also discussed from the perspective that they may provide many benefits and/or disadvantages for all living things, any-where on this planet, who/which are utilizing, had utilized, and will utilize the prostanoids and their receptor system, as a marked driving force for evolution.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
5
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
6
|
Okura I, Hasuoka N, Senoo K, Suganami A, Fukushima K, Regan JW, Mashimo M, Murayama T, Tamura Y, Fujino H. The differential functional coupling of phosphodiesterase 4 to human DP and EP2 prostanoid receptors stimulated with PGD 2 or PGE 2. Pharmacol Rep 2021; 73:946-953. [PMID: 33786738 DOI: 10.1007/s43440-021-00247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human DP and EP2 receptors are two of the most homologically related receptors coupling with Gαs-protein, which stimulate adenylyl cyclase to produce cAMP. Indeed, both receptors are considered to be generated by tandem duplication. It has been reported that other highly homologous and closely related β1- and β2-adrenergic receptors interact distinctly with and differentially regulate cAMP-specific phosphodiesterase (PDE) 4 recruitment. METHODS First, we focused on the cAMP degradation pathways of DP and EP2 receptors stimulated by prostaglandin (PG) D2 or PGE2 using HEK cells stably expressing either human DP receptors or EP2 receptors. Then, distances between ligands and amino acids of the receptors were evaluated by molecular dynamics (MD) analysis. RESULTS We found that PGD2/EP2 receptors exerted a greater effect on PDE4 activity than PGE2/EP2 receptors. Moreover, by MD analysis, either the PGD2 or EP2 receptor was moved and the distance was shortened between them. According to the results, DP receptors retain reactivity for PGE2, but EP2 receptors may be activated only by PGE2, at least in terms of cAMP formation, through the differential functional coupling of PDE4 probably with β-arrestin. CONCLUSION Since DP receptors and EP2 receptors are considered to be duplicated genes, DP receptors may still be in a rapid evolutionary stage as a duplicated copy of EP2 receptors and have not yet sufficient selectivity for their cognate ligand, PGD2.
Collapse
Affiliation(s)
- Iori Okura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Nanae Hasuoka
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kanaho Senoo
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0311, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences and Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|