1
|
Zuo Z. The successive emergence of ERVL-MaLRs in primates. Virus Evol 2023; 9:vead072. [PMID: 38131004 PMCID: PMC10735291 DOI: 10.1093/ve/vead072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Although the ERVL-mammalian-apparent LTR retrotransposons (MaLRs) are the fourth largest family of transposable elements in the human genome, their evolutionary history and relationship have not been thoroughly studied. In this study, through RepeatMasker annotations of some representative species and construction of phylogenetic tree by sequence similarity, all primate-specific MaLR members are found to descend from MLT1A1 retrotransposon. Comparative genomic analysis, transposition-in-transposition inference, and sequence feature comparisons consistently show that each MaLR member evolved from its predecessor successively and had a limited activity period during primate evolution. Accordingly, a novel MaLR member was discovered as successor of MSTB1 in Tarsiiformes. At last, the identification of candidate precursor and intermediate THE1A elements provides further evidence for the previously proposed arms race model between ZNF430/ZNF100 and THE1B/THE1A. Taken together, this study sheds light on the evolutionary history of MaLRs and can serve as a foundation for future research on their interactions with zinc finger genes, gene regulation, and human health implications.
Collapse
Affiliation(s)
- Zheng Zuo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Bartish IV, Bonnefoi S, Aïnouche A, Bruelheide H, Bartish M, Prinzing A. Fewer chromosomes, more co-occurring species within plant lineages: A likely effect of local survival and colonization. AMERICAN JOURNAL OF BOTANY 2023; 110:e16139. [PMID: 36758168 DOI: 10.1002/ajb2.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Plant lineages differ markedly in species richness globally, regionally, and locally. Differences in whole-genome characteristics (WGCs) such as monoploid chromosome number, genome size, and ploidy level may explain differences in global species richness through speciation or global extinction. However, it is unknown whether WGCs drive species richness within lineages also in a recent, postglacial regional flora or in local plant communities through local extinction or colonization and regional species turnover. METHODS We tested for relationships between WGCs and richness of angiosperm families across the Netherlands/Germany/Czechia as a region, and within 193,449 local vegetation plots. RESULTS Families that are species-rich across the region have lower ploidy levels and small monoploid chromosomes numbers or both (interaction terms), but the relationships disappear after accounting for continental and local richness of families. Families that are species-rich within occupied localities have small numbers of polyploidy and monoploid chromosome numbers or both, independent of their own regional richness and the local richness of all other locally co-occurring species in the plots. Relationships between WGCs and family species-richness persisted after accounting for niche characteristics and life histories. CONCLUSIONS Families that have few chromosomes, either monoploid or holoploid, succeed in maintaining many species in local communities and across a continent and, as indirect consequence of both, across a region. We suggest evolutionary mechanisms to explain how small chromosome numbers and ploidy levels might decrease rates of local extinction and increase rates of colonization. The genome of a macroevolutionary lineage may ultimately control whether its species can ecologically coexist.
Collapse
Affiliation(s)
- Igor V Bartish
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences, CZ-25243 Pruhonice 1, Czech Republic
| | - Salomé Bonnefoi
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Abdelkader Aïnouche
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Helge Bruelheide
- Institute of Biology/Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Mark Bartish
- Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Andreas Prinzing
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
3
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
4
|
Choe SH, Park SJ, Cho HM, Park HR, Lee JR, Kim YH, Huh JW. A single mutation in the ACTR8 gene associated with lineage-specific expression in primates. BMC Evol Biol 2020; 20:66. [PMID: 32503430 PMCID: PMC7275561 DOI: 10.1186/s12862-020-01620-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis). In the present study, we sought to determine the molecular mechanism of AluSz6 exonization of the ACTR8 gene and investigate its evolutionary and functional consequences in the crab-eating monkey. Results We performed RT-PCR and genomic PCR to analyze AluSz6 exonization in the ACTR8 gene and the expression of the AluSz6-exonized transcript in nine primate samples, including prosimians, New world monkeys, Old world monkeys, and hominoids. AluSz6 integration was estimated to have occurred before the divergence of simians and prosimians. The Alu-exonized transcript obtained by AS was lineage-specific and expressed only in Old world monkeys and apes, and humans. This lineage-specific expression was caused by a single G duplication in AluSz6, which provides a new canonical 5′ splicing site. We further identified other alternative transcripts that were unaffected by the AluSz6 insertion. Finally, we observed that the alternative transcripts were transcribed into new isoforms with C-terminus deletion, and in silico analysis showed that these isoforms do not have a destructive function. Conclusions The single G duplication in the TE sequence is the source of TE exonization and AS, and this mutation may suffer a different fate of ACTR8 gene expression during primate evolution.
Collapse
Affiliation(s)
- Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Hye-Ri Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| |
Collapse
|
5
|
Faber-Hammond JJ, Bezault E, Lunt DH, Joyce DA, Renn SCP. The Genomic Substrate for Adaptive Radiation: Copy Number Variation across 12 Tribes of African Cichlid Species. Genome Biol Evol 2020; 11:2856-2874. [PMID: 31504491 DOI: 10.1093/gbe/evz185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The initial sequencing of five cichlid genomes revealed an accumulation of genetic variation, including extensive copy number variation in cichlid lineages particularly those that have undergone dramatic evolutionary radiation. Gene duplication has the potential to generate substantial molecular substrate for the origin of evolutionary novelty. We use array-based comparative heterologous genomic hybridization to identify copy number variation events (CNVEs) for 168 samples representing 53 cichlid species including the 5 species for which full genome sequence is available. We identify an average of 50-100 CNVEs per individual. For those species represented by multiple samples, we identify 150-200 total CNVEs suggesting a substantial amount of intraspecific variation. For these species, only ∼10% of the detected CNVEs are fixed. Hierarchical clustering of species according to CNVE data recapitulates phylogenetic relationships fairly well at both the tribe and radiation level. Although CNVEs are detected on all linkage groups, they tend to cluster in "hotspots" and are likely to contain and be flanked by transposable elements. Furthermore, we show that CNVEs impact functional categories of genes with potential roles in adaptive phenotypes that could reasonably promote divergence and speciation in the cichlid clade. These data contribute to a more complete understanding of the molecular basis for adaptive natural selection, speciation, and evolutionary radiation.
Collapse
Affiliation(s)
| | - Etienne Bezault
- BOREA Research Unit, MNHN, CNRS 7208, Sorbonne Université, IRD 207, UCN, UA, Paris, France
| | - David H Lunt
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Domino A Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland OR 97202
| |
Collapse
|
6
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
7
|
Möller M, Schotanus K, Soyer JL, Haueisen J, Happ K, Stralucke M, Happel P, Smith KM, Connolly LR, Freitag M, Stukenbrock EH. Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS Genet 2019; 15:e1008093. [PMID: 31009462 PMCID: PMC6510446 DOI: 10.1371/journal.pgen.1008093] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/10/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023] Open
Abstract
Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.
Collapse
Affiliation(s)
- Mareike Möller
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Jessica L. Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Janine Haueisen
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kathrin Happ
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Maja Stralucke
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristina M. Smith
- Department of Biology, Oregon State University—Cascades, Bend, OR, United States of America
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
8
|
Banuelos M, Sindi S. Modeling transposable element dynamics with fragmentation equations. Math Biosci 2018; 302:46-66. [DOI: 10.1016/j.mbs.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
|
9
|
Identification of mutations in HEXA and HEXB in Sandhoff and Tay-Sachs diseases: a new large deletion caused by Alu elements in HEXA. Hum Genome Var 2018; 5:18003. [PMID: 31428437 PMCID: PMC6694291 DOI: 10.1038/hgv.2018.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
GM2 gangliosides are a group of lysosomal lipid storage disorders that are due to mutations in HEXA, HEXB and GM2A. In our study, 10 patients with these diseases were enrolled, and Sanger sequencing was performed for the HEXA and HEXB genes. The results revealed one known splice site mutation (c.346+1G>A, IVS2+1G>A) and three novel mutations (a large deletion involving exons 6–10; one nucleotide deletion, c.622delG [p.D208Ifsx15]; and a missense mutation, c.919G>A [p.E307K]) in HEXA. In HEXB, one known mutation (c.1597C>T [p.R533C]) and one variant of uncertain significance (c.619A>G [p.I207V]) were identified. Five patients had c.1597C>T in HEXB, indicating a common mutation in south Iran. In this study, a unique large deletion in HEXA was identified as a homozygous state. To predict the cause of the large deletion in HEXA, RepeatMasker was used to investigate the Alu elements. In addition, to identify the breakpoint of this deletion, PCR was performed around these elements. Using Repeat masker, different Alu elements were identified across HEXA, mainly in intron 5 and intron 10 adjacent to the deleted exons. PCR around the Alu elements and Sanger sequencing revealed the start point of a large deletion in AluSz6 in the intron 6 and the end of its breakpoint 73 nucleotides downstream of AluJo in intron 10. Our study showed that HEXA is an Alu-rich gene that predisposes individuals to disease-associated large deletions due to these elements.
Collapse
|
10
|
Ottesen EW, Seo J, Singh NN, Singh RN. A Multilayered Control of the Human Survival Motor Neuron Gene Expression by Alu Elements. Front Microbiol 2017; 8:2252. [PMID: 29187847 PMCID: PMC5694776 DOI: 10.3389/fmicb.2017.02252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Daskalova E, Baev V, Rusinov V, Minkov I. 3'UTR-located ALU Elements: Donors of Potetial miRNA Target Sites and Mediators of Network miRNA-based Regulatory Interactions. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent research data reveal complex, network-based interactions between mobile elements and regulatory systems of eukaryotic cells. In this article, we focus on regulatory interactions between Alu elements and micro RNAs (miRNAs). Our results show that the majority of the Alu sequences inserted in 3'UTRs of analyzed human genes carry strong potential target sites for at least 53 different miRNAs. Thus, 3'UTR-located Alu elements may play the role of mobile regulatory modules that supply binding sites for miRNA regulation. Their abundance and ability to distribute a set of certain miRNA target sites may have an important role in establishment, extension, network organization, and, as we suppose – in the regulation and environment-dependent activation/inactivation of some elements of the miRNA regulatory system, as well as for a larger scale RNA-based regulatory interactions. The Alu-miRNA connection may be crucial especially for the primate/human evolution.
Collapse
Affiliation(s)
- Evelina Daskalova
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Ventsislav Rusinov
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Ivan Minkov
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Si H, Cao Y, Zhu H, Li D, Lv Z, Sheng Q, Nie Z. Transposable Element Bm1645 is a Source of BmAGO2-associated Small RNAs that affect its expression in Bombyx mori. BMC Genomics 2017; 18:201. [PMID: 28231766 PMCID: PMC5324241 DOI: 10.1186/s12864-017-3598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Background A transposable element (TE) is a DNA fragment that can change its position within a genome. Transposable elements play important roles in maintaining the stability and diversity of organisms by transposition. Recent studies have shown that approximately half of the genes in Bombyx mori are TEs. Results We systematically identified and analyzed the BmAGO2-associated TEs, which exceed 100 in the B. mori genome. Additionally, we also mapped the small RNAs associated with BmAGO2 in B.mori. The transposon Bm1645 is the most abundant TE associated with BmAGO2, and Bm1645-derived small RNAs represent a small RNA pool. We determined the expression patterns of several Bm1645-derived small RNAs by northern blotting, and the results showed there was differential expression of multiple small RNAs in normal and BmNPV-infected BmN cells and silkworms from various developmental stages. We confirmed that four TE-siRNAs could bind to BmAGO2 using EMSA and also validated the recognition sites of these four TE-siRNAs in Bm1645 by dual-luciferase reporter assays. Furthermore, qRT-PCR analysis revealed the overexpression of the four TE-siRNAs could downregulate the expression of Bm1645 in BmN cells, and the transcription of Bm1645 was upregulated by the downregulation of BmAGO2. Conclusions Our results suggest Bm1645 functions as a source of small RNAs pool and this pool can produce many BmAGO2-associated small RNAs that regulate TE’s expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3598-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongqiang Si
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Yunjie Cao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Honglin Zhu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Dan Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Bouttier M, Laperriere D, Memari B, Mangiapane J, Fiore A, Mitchell E, Verway M, Behr MA, Sladek R, Barreiro LB, Mader S, White JH. Alu repeats as transcriptional regulatory platforms in macrophage responses to M. tuberculosis infection. Nucleic Acids Res 2016; 44:10571-10587. [PMID: 27604870 PMCID: PMC5159539 DOI: 10.1093/nar/gkw782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
To understand the epigenetic regulation of transcriptional response of macrophages during early-stage M. tuberculosis (Mtb) infection, we performed ChIPseq analysis of H3K4 monomethylation (H3K4me1), a marker of poised or active enhancers. De novo H3K4me1 peaks in infected cells were associated with genes implicated in host defenses and apoptosis. Our analysis revealed that 40% of de novo regions contained human/primate-specific Alu transposable elements, enriched in the AluJ and S subtypes. These contained several transcription factor binding sites, including those for members of the MEF2 and ATF families, and LXR and RAR nuclear receptors, all of which have been implicated in macrophage differentiation, survival, and responses to stress and infection. Combining bioinformatics, molecular genetics, and biochemical approaches, we linked genes adjacent to H3K4me1-associated Alu repeats to macrophage metabolic responses against Mtb infection. In particular, we show that LXRα signaling, which reduced Mtb viability 18-fold by altering cholesterol metabolism and enhancing macrophage apoptosis, can be initiated at response elements present in Alu repeats. These studies decipher the mechanism of early macrophage transcriptional responses to Mtb, highlighting the role of Alu element transposition in shaping human transcription programs during innate immunity.
Collapse
Affiliation(s)
- Manuella Bouttier
- Department of Physiology, Montréal, Québec, Canada .,McGill University, Montréal, Québec, Canada
| | - David Laperriere
- Département de Biochimie, Montréal, Québec, Canada.,Institut de Recherche en Immunologie et Cancérologie (IRIC), Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada
| | - Babak Memari
- Department of Physiology, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Joseph Mangiapane
- Department of Physiology, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Amanda Fiore
- Department of Physiology, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Eric Mitchell
- Department of Physiology, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Mark Verway
- Department of Physiology, Montréal, Québec, Canada.,McGill University, Montréal, Québec, Canada
| | - Marcel A Behr
- McGill University, Montréal, Québec, Canada.,Division of Infectious Diseases and Medical Microbiology, Montréal, Québec, Canada.,McGill International TB Centre, Montréal, Québec, Canada
| | - Robert Sladek
- McGill University, Montréal, Québec, Canada.,School of Computer Science, Montréal, Québec, Canada.,Genome Quebec Innovation Centre, Montréal, Québec, Canada
| | - Luis B Barreiro
- Université de Montréal, Montréal, Québec, Canada.,Department of Pediatrics, Montréal, Québec, Canada
| | - Sylvie Mader
- Département de Biochimie, Montréal, Québec, Canada.,Institut de Recherche en Immunologie et Cancérologie (IRIC), Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada
| | - John H White
- Department of Physiology, Montréal, Québec, Canada .,McGill University, Montréal, Québec, Canada.,Department of Medecine, Montréal, Québec, Canada
| |
Collapse
|
14
|
Hu L, Uzhameckis D, Hedborg F, Blomberg J. Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation. APMIS 2016; 124:140-9. [PMID: 26818268 DOI: 10.1111/apm.12494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
We studied HERV expression in cell lines after hypoxia, mitogenic stimulation, and demethylation, to better understand if hypoxia may play a role in ERV activation also within the nervous system, as represented by neuroblastoma cell lines. The level of RNA of four human ERV groups (HERVs) (HERVE, I/T, H, and W), and three housekeeping genes, of different cell lines including A549, COS-1, Namalwa, RD-L and Vero-E6, as well as human neuroblastoma cell lines SH-SY5Y, SK-N-DZ, and SK-N-AS were studied using reverse transcription and real-time quantitative PCR (QPCR). During the course of recovery from hypoxia a pronounced and selective activation of RNA expression of HERVW-like sequences, but not of HERVE, I/T, H, and three housekeeping genes, was found in the neuroblastoma cell lines, most pronounced in SK-N-DZ. In the SK-N-DZ cell line, we also tested the expression of HERVs after chemical treatments. HERVW-like sequences were selectively upregulated by 5-azacytidine, a demethylating agent. Some HERVW loci seem especially responsive to hypoxia and demethylation. HERV expression in neuroblastoma cells is selectively and profoundly influenced by some physiological and chemical stimuli.
Collapse
Affiliation(s)
- Lijuan Hu
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dmitrijs Uzhameckis
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Fredrik Hedborg
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Lee HE, Ayarpadikannan S, Kim HS. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst 2015; 90:245-57. [DOI: 10.1266/ggs.15-00016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| | - Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| |
Collapse
|
16
|
Gim JA, Ha HS, Ahn K, Kim DS, Kim HS. Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements. Genomics Inform 2014; 12:261-7. [PMID: 25705168 PMCID: PMC4330264 DOI: 10.5808/gi.2014.12.4.261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/29/2014] [Accepted: 10/28/2014] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Hong-Seok Ha
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kung Ahn
- TBI, Theragen BiO Institute, TheragenEtex, Suwon 443-270, Korea
| | - Dae-Soo Kim
- Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
17
|
Sabino FC, Ribeiro AO, Tufik S, Torres LB, Oliveira JA, Mello LEAM, Cavalcante JS, Pedrazzoli M. Evolutionary history of the PER3 variable number of tandem repeats (VNTR): idiosyncratic aspect of primate molecular circadian clock. PLoS One 2014; 9:e107198. [PMID: 25222750 PMCID: PMC4164614 DOI: 10.1371/journal.pone.0107198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022] Open
Abstract
The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR) locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.
Collapse
Affiliation(s)
- Flávia Cal Sabino
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Laila Brito Torres
- Evandro Chagas Institute/Primate National Center (IEC-CENP) – Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - José Américo Oliveira
- Division of Anatomy, Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | | | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, Brazil
- * E-mail:
| | - Mario Pedrazzoli
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Kalendar R, Schulman AH. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 2014; 1115:233-55. [PMID: 24415478 DOI: 10.1007/978-1-62703-767-9_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retrotransposons are a major component of virtually all eukaryotic genomes, which makes them useful as molecular markers. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. To detect polymorphisms for retrotransposon insertions, marker systems generally rely on PCR amplification between the retrotransposon termini and some component of flanking genomic DNA. The main methods of IRAP, REMAP, RBIP, and SSAP all detect the polymorphic sites at which the retrotransposon DNA is integrated into the genome. Marker systems exploiting these methods can be easily developed and are inexpensively deployed in the absence of extensive genome sequence data. Here, we describe protocols for the IRAP, REMAP, and iPBS techniques, including methods for PCR amplification with a single primer or with two primers, and agarose gel electrophoresis of the product using optimal electrophoresis buffers; we also describe iPBS techniques for the rapid isolation of retrotransposon termini and full-length elements.
Collapse
Affiliation(s)
- Ruslan Kalendar
- MTT/BI Plant Genomics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
19
|
McLain AT, Carman GW, Fullerton ML, Beckstrom TO, Gensler W, Meyer TJ, Faulk C, Batzer MA. Analysis of western lowland gorilla (Gorilla gorilla gorilla) specific Alu repeats. Mob DNA 2013; 4:26. [PMID: 24262036 PMCID: PMC4177385 DOI: 10.1186/1759-8753-4-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Research into great ape genomes has revealed widely divergent activity levels over time for Alu elements. However, the diversity of this mobile element family in the genome of the western lowland gorilla has previously been uncharacterized. Alu elements are primate-specific short interspersed elements that have been used as phylogenetic and population genetic markers for more than two decades. Alu elements are present at high copy number in the genomes of all primates surveyed thus far. The AluY subfamily and its derivatives have been recognized as the evolutionarily youngest Alu subfamily in the Old World primate lineage. Results Here we use a combination of computational and wet-bench laboratory methods to assess and catalog AluY subfamily activity level and composition in the western lowland gorilla genome (gorGor3.1). A total of 1,075 independent AluY insertions were identified and computationally divided into 10 subfamilies, with the largest number of gorilla-specific elements assigned to the canonical AluY subfamily. Conclusions The retrotransposition activity level appears to be significantly lower than that seen in the human and chimpanzee lineages, while higher than that seen in orangutan genomes, indicative of differential Alu amplification in the western lowland gorilla lineage as compared to other Homininae.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Evolutionary rate of human tissue-specific genes are related with transposable element insertions. Genetica 2013; 140:513-23. [PMID: 23337972 DOI: 10.1007/s10709-013-9700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/12/2013] [Indexed: 01/05/2023]
Abstract
The influence of transposable elements (TEs) on genome evolution has been widely studied. However, it remains unclear whether TE insertions also impact on evolutionary rate of human genes. In this study, we have compared the differences in TEs and evolutionary rates between human tissue-specific genes. Our results showed that various functional categories of human tissue-specific genes contained different TE numbers and divergent values of Ka/Ks, with human nucleic acid binding transcription factor activity genes having the fewest TE density and Ka/Ks value. Interestingly, we also found that human tissue-specific genes with TEs have also undergone faster evolution than those without TEs. Therefore, TEs have significant impact on the evolutionary rates of human tissue-specific genes. Furthermore, local genomic properties such as gene length, GC content and recombination rate may reflect a true transpositional bias for the particular TEs. Our results may provide important insights for further elucidating the evolution of human tissue-specific genes.
Collapse
|
21
|
Mullins CS, Linnebacher M. Human endogenous retroviruses and cancer: Causality and therapeutic possibilities. World J Gastroenterol 2012; 18:6027-35. [PMID: 23155332 PMCID: PMC3496880 DOI: 10.3748/wjg.v18.i42.6027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023] Open
Abstract
A substantial part of the human genome is derived from transposable elements; remnants of ancient retroviral infections. Conservative estimates set the percentage of human endogenous retroviruses (HERVs) in the genome at 8%. For the most part, the interplay between mutations, epigenetic mechanisms and posttranscriptional regulations silence HERVs in somatic cells. We first highlight mechanisms by which activation of members of several HERV families may be associated with tumor development before discussing the arising chances for both diagnosis and therapy. It has been shown that at least in some cases, tumor cells expressing HERV open reading frames (ORFs) thus gain tumor-promoting functions. However, since these proteins are not expressed in healthy tissues, they become prime target structures. Of potential pharmacological interest are the prevention of HERV transposition, the inhibition of HERV-encoded protein expression and the interference with these proteins’ activities. Evidence from recent studies unequivocally proves that HERV ORFs represent a very interesting source of novel tumor-specific antigens with even the potential to surpass entity boundaries. The development of new tumor (immune-) therapies is a very active field and true tumor-specific targets are of outstanding interest since they minimize the risk of autoimmunity and could reduce side effects. Finally, we postulate on main future research streams in order to stimulate discussion on this hot topic.
Collapse
|
22
|
Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33. [PMID: 23170223 PMCID: PMC3501640 DOI: 10.1002/ece3.400] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Science and Biotechnology, Faculty of Science and Engineering, Murdoch University Perth, W.A., 6150, Australia
| | | |
Collapse
|
23
|
Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2012; 2:119. [PMID: 22993722 PMCID: PMC3440604 DOI: 10.3389/fcimb.2012.00119] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
| | | |
Collapse
|
24
|
Redi CA, Capanna E. Genome size evolution: sizing mammalian genomes. Cytogenet Genome Res 2012; 137:97-112. [PMID: 22627028 DOI: 10.1159/000338820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any hypotheses on GS evolution in mammals.
Collapse
Affiliation(s)
- C A Redi
- Fondazione IRCCS Policlinico San Matteo, Dipartimento di Biologia e Biotecnologie Lazzaro Spallanzani, Pavia, Italia.
| | | |
Collapse
|
25
|
Cai Y, Zhou Q, Yu C, Wang X, Hu S, Yu J, Yu X. Transposable-element associated small RNAs in Bombyx mori genome. PLoS One 2012; 7:e36599. [PMID: 22662121 PMCID: PMC3359762 DOI: 10.1371/journal.pone.0036599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE)-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs.
Collapse
Affiliation(s)
- Yimei Cai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JY); (XY)
| | - Xiaomin Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JY); (XY)
| |
Collapse
|
26
|
Ashida H, Asai K, Hamada M. Shape-based alignment of genomic landscapes in multi-scale resolution. Nucleic Acids Res 2012; 40:6435-48. [PMID: 22561376 PMCID: PMC3413149 DOI: 10.1093/nar/gks354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Due to dramatic advances in DNA technology, quantitative measures of annotation data can now be obtained in continuous coordinates across the entire genome, allowing various heterogeneous ‘genomic landscapes’ to emerge. Although much effort has been devoted to comparing DNA sequences, not much attention has been given to comparing these large quantities of data comprehensively. In this article, we introduce a method for rapidly detecting local regions that show high correlations between genomic landscapes. We overcame the size problem for genome-wide data by converting the data into series of symbols and then carrying out sequence alignment. We also decomposed the oscillation of the landscape data into different frequency bands before analysis, since the real genomic landscape is a mixture of embedded and confounded biological processes working at different scales in the cell nucleus. To verify the usefulness and generality of our method, we applied our approach to well investigated landscapes from the human genome, including several histone modifications. Furthermore, by applying our method to over 20 genomic landscapes in human and 12 in mouse, we found that DNA replication timing and the density of Alu insertions are highly correlated genome-wide in both species, even though the Alu elements have amplified independently in the two genomes. To our knowledge, this is the first method to align genomic landscapes at multiple scales according to their shape.
Collapse
Affiliation(s)
- Hiroki Ashida
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan.
| | | | | |
Collapse
|
27
|
Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers. Mob DNA 2012; 3:8. [PMID: 22541534 PMCID: PMC3357318 DOI: 10.1186/1759-8753-3-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/30/2012] [Indexed: 01/25/2023] Open
Abstract
Background Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Results Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. Conclusions This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion.
Collapse
|
28
|
Ebersole T, Kim JH, Samoshkin A, Kouprina N, Pavlicek A, White RJ, Larionov V. tRNA genes protect a reporter gene from epigenetic silencing in mouse cells. Cell Cycle 2011; 10:2779-91. [PMID: 21822054 PMCID: PMC3219543 DOI: 10.4161/cc.10.16.17092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 12/17/2022] Open
Abstract
It is a well-established fact that the tRNA genes in yeast can function as chromatin barrier elements. However, so far there is no experimental evidence that tRNA and other Pol III-transcribed genes exhibit barrier activity in mammals. This study utilizes a recently developed reporter gene assay to test a set of Pol III-transcribed genes and gene clusters with variable promoter and intergenic regions for their ability to prevent heterochromatin-mediated reporter gene silencing in mouse cells. The results show that functional copies of mouse tRNA genes are effective barrier elements. The number of tRNA genes as well as their orientation influence barrier function. Furthermore, the DNA sequence composition of intervening and flanking regions affects barrier activity of tRNA genes. Barrier activity was maintained for much longer time when the intervening and flanking regions of tRNA genes were replaced by AT-rich sequences, suggesting a negative role of DNA methylation in the establishment of a functional barrier. Thus, our results suggest that tRNA genes are essential elements in establishment and maintenance of chromatin domain architecture in mammalian cells.
Collapse
Affiliation(s)
- Thomas Ebersole
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Jung-Hyun Kim
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Alexander Samoshkin
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Natalay Kouprina
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| | - Adam Pavlicek
- Computational Biology; Oncology Research Unit; Pfizer Global Research and Development; San Diego, CA USA
| | | | - Vladimir Larionov
- Laboratory of Molecular Pharmacology; National Cancer Institute; Bethesda, MD; USA
| |
Collapse
|
29
|
Different transcription activity of HERV-K LTR-containing and LTR-lacking genes of the KIAA1245/NBPF gene subfamily. Genetica 2011; 139:733-41. [PMID: 21544646 DOI: 10.1007/s10709-011-9577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) located near or within genes might affect their expression. We used the KIAA1245/NBPF human gene subfamily in an attempt to assess the regulatory potential of HERV LTRs. The subfamily includes five closely related paralogous genes: three of them contain an LTR in the second intron, and two genes lack it. Earlier we reported that the second and third exons of only LTR-containing genes of this subfamily could be detected in mature mRNAs of various cell lines and human tissues. The corresponding parts of mRNA of LTR-lacking genes analyzed in our study were absent from EST libraries, but other fragments of their mRNAs were available in EST databases. For a more unbiased view on the correlation between gene transcription and the intronic LTRs, in the present work we analyzed non-spliced pre-mRNA thus avoiding splicing effects. Based on RT-PCR analysis, we demonstrated that the KIAA1245/NBPF LTR-lacking gene AL592309/NBPF3 was transcriptionally active, but the LTR-containing genes showed significantly higher transcription levels. The data are in agreement with the suggestion that HERV-K LTRs within the second intron of the KIAA1245/NBPF subfamily genes might affect their transcriptional activity. However, it still remains to be investigated whether the revealed effect is due just to the LTR insertion or other factors are responsible for the difference.
Collapse
|
30
|
|
31
|
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
32
|
Singh V, Mishra RK. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 2010; 11:609. [PMID: 21184688 PMCID: PMC3024322 DOI: 10.1186/1471-2105-11-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background - The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects. Results - We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of Mycobacterium tuberculosis for IS 6100 insertion polymorphism. Conclusions - RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.
Collapse
Affiliation(s)
- Vipin Singh
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
33
|
Williams BA, Kay RF, Christopher Kirk E, Ross CF. Darwinius masillae is a strepsirrhine—a reply to Franzen et al. (2009). J Hum Evol 2010; 59:567-73; discussion 574-9. [DOI: 10.1016/j.jhevol.2010.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 10/21/2009] [Accepted: 11/02/2009] [Indexed: 10/19/2022]
|
34
|
Kalendar R, Antonius K, Smýkal P, Schulman AH. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1419-1430. [PMID: 20623102 DOI: 10.1007/s00122-010-1398-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.
Collapse
Affiliation(s)
- Ruslan Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 2010; 11:R59. [PMID: 20525173 PMCID: PMC2911107 DOI: 10.1186/gb-2010-11-6-r59] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/27/2010] [Accepted: 06/02/2010] [Indexed: 01/29/2023] Open
Abstract
Background Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals.
Collapse
|
36
|
Mallet LV, Becq J, Deschavanne P. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 2010; 11:171. [PMID: 20226043 PMCID: PMC2848249 DOI: 10.1186/1471-2164-11-171] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/12/2010] [Indexed: 12/14/2022] Open
Abstract
Background Numerous cases of horizontal transfers (HTs) have been described for eukaryote genomes, but in contrast to prokaryote genomes, no whole genome evaluation of HTs has been carried out. This is mainly due to a lack of parametric methods specially designed to take the intrinsic heterogeneity of eukaryote genomes into account. We applied a simple and tested method based on local variations of genomic signatures to analyze the genome of the pathogenic fungus Aspergillus fumigatus. Results We detected 189 atypical regions containing 214 genes, accounting for about 1 Mb of DNA sequences. However, the fraction of atypical DNA detected was smaller than the average amount detected in the same conditions in prokaryote genomes (3.1% vs 5.6%). It appeared that about one third of these regions contained no annotated genes, a proportion far greater than in prokaryote genomes. When analyzing the origin of these HTs by comparing their signatures to a home made database of species signatures, 3 groups of donor species emerged: bacteria (40%), fungi (25%), and viruses (22%). It is to be noticed that though inter-domain exchanges are confirmed, we only put in evidence very few exchanges between eukaryotic kingdoms. Conclusions In conclusion, we demonstrated that HTs are not negligible in eukaryote genomes, bearing in mind that in our stringent conditions this amount is a floor value, though of a lesser extent than in prokaryote genomes. The biological mechanisms underlying those transfers remain to be elucidated as well as the biological functions of the transferred genes.
Collapse
Affiliation(s)
- Ludovic V Mallet
- Molécules thérapeutiques in silico (MTI), INSERM UMR-M 973, Université Paris Diderot-Paris 7, Bât Lamarck, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
37
|
Abstract
Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage.
Collapse
|
38
|
Abstract
A career of following unplanned observations has serendipitously led to a deep appreciation of the capacity that bacterial cells have for restructuring their genomes in a biologically responsive manner. Routine characterization of spontaneous mutations in the gal operon guided the discovery that bacteria transpose DNA segments into new genome sites. A failed project to fuse lambda sequences to a lacZ reporter ultimately made it possible to demonstrate how readily Escherichia coli generated rearrangements necessary for in vivo cloning of chromosomal fragments into phage genomes. Thinking about the molecular mechanism of IS1 and phage Mu transposition unexpectedly clarified how transposable elements mediate large-scale rearrangements of the bacterial genome. Following up on lab lore about long delays needed to obtain Mu-mediated lacZ protein fusions revealed a striking connection between physiological stress and activation of DNA rearrangement functions. Examining the fate of Mudlac DNA in sectored colonies showed that these same functions are subject to developmental control, like controlling elements in maize. All these experiences confirmed Barbara McClintock's view that cells frequently respond to stimuli by restructuring their genomes and provided novel insights into the natural genetic engineering processes involved in evolution.
Collapse
|
39
|
Mason CE, Shu FJ, Wang C, Session RM, Kallen RG, Sidell N, Yu T, Liu MH, Cheung E, Kallen CB. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements. Nucleic Acids Res 2010; 38:2355-68. [PMID: 20047966 PMCID: PMC2853111 DOI: 10.1093/nar/gkp1188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10–20% nucleotide deviation from the canonical ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Human Genetics and the Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res 2009; 38:1515-30. [PMID: 20008508 PMCID: PMC2836564 DOI: 10.1093/nar/gkp1134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.
Collapse
Affiliation(s)
- Asaf Levy
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Wang XF, Jin X, Wang X, Liu J, Feng J, Yang Q, Mu W, Shi X, Lu Z. Effects of L1-ORF2 fragments on green fluorescent protein gene expression. Genet Mol Biol 2009; 32:688-96. [PMID: 21637438 PMCID: PMC3036906 DOI: 10.1590/s1415-47572009005000068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/15/2009] [Indexed: 11/22/2022] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (L1) is 6 kb long, although most L1s in mammalian and other eukaryotic cells are truncated. L1 contains two open reading frames, ORF1 and ORF2, that code for an RNA-binding protein and a protein with endonuclease and reverse transcriptase activities, respectively. In this work, we examined the effects of full length L1-ORF2 and ORF2 fragments on green fluorescent protein gene (GFP) expression when inserted into the pEGFP-C1 vector downstream of GFP. All of the ORF2 fragments in sense orientation inhibited GFP expression more than when in antisense orientation, which suggests that small ORF2 fragments contribute to the distinct inhibitory effects of this ORF on gene expression. These results provide the first evidence that different 280-bp fragments have distinct effects on the termination of gene transcription, and that when inserted in the antisense direction, fragment 280-9 (the 3' end fragment of ORF2) induces premature termination of transcription that is consistent with the effect of ORF2.
Collapse
Affiliation(s)
- Xiu-Fang Wang
- Hebei Key Lab of Laboratory Animal, Department of Genetics, Hebei Medical University, Shijiazhuang, Hebei Province China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Ma X, Li-Ling J, Huang Q, Chen X, Hou L, Ma F. Systematic analysis of alternative promoters correlated with alternative splicing in human genes. Genomics 2009; 93:420-5. [PMID: 19442634 DOI: 10.1016/j.ygeno.2009.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Interactions between various events are essential for complex and delicate transcriptional regulation. To delineate the features and potential roles of alternative promoters (APs) correlated with alternative splicing (AS), we have systematically analyzed 9908 putative alternative promoters (PAPs) from 3797 human genes. Our results showed that approximately 65% of AS events are associated with PAPs. Intriguingly, PAPs per human AS gene only averaged 2.6 for our dataset, which was significantly lower than previously reported. This seems to imply that the human genome contains a small pool of appropriable PAPs for AS genes. Exploration of the characteristics of PAPs such as CpG islands, TATA boxes, GC-content, transcription factor binding sites (TFBSs) and repetitive elements suggested that, respectively, 87% and 90% of PAPs of human AS genes are CpG- and TATA box-poor. The GC-content is significantly higher in the downstream of transcription start sites (TSSs) than upstream (58% vs. 53%), and there is a strong negative correlation between the GC-content and the number of PAPs. These suggested that GC-content around the TSSs plays an important role in the regulation of AS. Moreover, different APs contain distinct densities of repetitive elements and TFBSs, indicating that such sequences have an intrinsic role in the divergent regulation of PAPs and AS. Substantial difference was also found between human AS genes in terms of PAP numbers. A close connection between PAPs and AS may play a critical role in the choice of APs and regulation of AS genes. Furthermore, the distribution of AS genes on different human chromosomes also influences the numbers of PAPs and isoforms of AS genes. Our results may provide important clues for further studies on regulatory network of transcription-related events.
Collapse
Affiliation(s)
- Xiaojuan Ma
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | |
Collapse
|
44
|
Wiens M, Grebenjuk VA, Schröder HC, Müller IM, Müller WEG. Identification and isolation of a retrotransposon from the freshwater sponge Lubomirskia baicalensis: implication in rapid evolution of endemic sponges. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 47:207-234. [PMID: 19198779 DOI: 10.1007/978-3-540-88552-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transposons are mobile genetic elements that are found in all major branches of life. Similarities to retroviruses concerning genome structure and transposition mechanism suggest a familial relationship. Transposons are important evolutionary drivers that trigger genetic changes such as genomic rearrangement, alteration of gene expression, and gene duplication. And, indeed, now more than ever the effect of transposons on genome evolution represents a dynamic field of research. Since sponges (phylum Porifera) are the phylogenetically oldest still extant metazoan taxon, the study of poriferan mobile elements contributes to the understanding of the generation of phenotypic diversity and speciation at the base of the metazoan tree of life. This work describes the analyses of the first poriferan mobile genetic element so far identified, the long terminal repeats- retrotransposon Baikalum-1 of Lubomirskia baicalensis (Demospongiae; Ceractinomorpha). Baikalum-1 embraces a continuous open reading frame, putatively coding for a polyprotein that consists of nucleo capsid, protease, reverse transcriptase, RNase H, and integrase, all proteins/ enzymes characteristic of retrotransposons. Baikalum-1 was discovered in all freshwater sponge species endemic to Lake Baikal, as well as in cosmopolitan sponge species that inhabit a Lake Baikal-feeding rivulet. However, the same cosmopolitan species sampled from lakes and rivers (Siberian and European) with no direct contact to Lake Baikal did not contain this particular mobile genetic element. Thus, Baikalum-1 is probably the result of an evolutionarily ancient retroviral infection that spread exclusively amongst Baikalian sponge species. In addition, the retro-transposon is found in the vicinity of the silicatein-A1 gene. Silicateins are cathepsin-like proteins that catalyze the synthesis of poriferan siliceous skeletal elements (spicules). In L. baicalensis, the silicatein-A1 gene is flanked by two palindroms, probably remnants of transposons that might be responsible for the emergence of four different silicatein genes, uniquely present in freshwater but not marine sponges. Adaptation of sponges to the freshwater habitat (with its significantly higher silica content compared to the marine milieu) required the ability to evolve rapidly, which could be conferred by high transpositional activity, accompanied by duplication and diversification of the ancestral silicatein gene of marine species.
Collapse
Affiliation(s)
- Matthias Wiens
- Abteilung Angewandte Molekularbiologie Universität, Institut für Physiologische Chemie, Duesbergweg 6, Mainz D-55099, Germany
| | | | | | | | | |
Collapse
|
45
|
Manetti ME, Rossi M, Nakabashi M, Grandbastien MA, Van Sluys MA. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Mol Genet Genomics 2008; 281:261-71. [PMID: 19093134 DOI: 10.1007/s00438-008-0408-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Eukaryotic genome expansion/retraction caused by LTR-retrotransposon activity is dependent on the expression of full length copies to trigger efficient transposition and recombination-driven events. The Tnt1 family of retrotransposons has served as a model to evaluate the diversity among closely related elements within Solanaceae species and found that members of the family vary mainly in their U3 region of the long terminal repeats (LTRs). Recovery of a full length genomic copy of Retrosol was performed through a PCR-based approach from wild potato, Solanum oplocense. Further characterization focusing on both LTR sequences of the amplified copy allowed estimating an approximate insertion time at 2 million years ago thus supporting the occurrence of transposition cycles after genus divergence. Copy number of Tnt1-like elements in Solanum species were determined through genomic quantitative PCR whereby results sustain that Retrosol in Solanum species is a low copy number retrotransposon (1-4 copies) while Retrolyc1 has an intermediate copy number (38 copies) in S. peruvianum. Comparative analysis of retrotransposon content revealed no correlation between genome size or ploidy level and Retrosol copy number. The tetraploid cultivated potato with a cellular genome size of 1,715 Mbp harbours similar copy number per monoploid genome than other diploid Solanum species (613-884 Mbp). Conversely, S. peruvianum genome (1,125 Mbp) has a higher copy number. These results point towards a lineage specific dynamic flux regarding the history of amplification/activity of Tnt1-like elements in the genome of Solanum species.
Collapse
Affiliation(s)
- M E Manetti
- GaTE Lab, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, IBUSP, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | | | | | | | | |
Collapse
|
46
|
Piskurek O, Nishihara H, Okada N. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene 2008; 441:111-8. [PMID: 19118606 DOI: 10.1016/j.gene.2008.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 02/01/2023]
Abstract
Transposable elements have been characterized in a number of vertebrates, including whole genomes of mammals, birds, and fishes. The Anolis carolinensis draft assembly provides the first opportunity to study retroposons in a reptilian genome. Here, we identified and reconstructed a number of retroposons based on database searches: Five Sauria short interspersed element (SINE) subfamilies, 5S-Sauria SINE chimeras, Anolis Bov-B long interspersed element (LINE), Anolis SINE 2, Anolis LINE 2, Anolis LINE 1, Anolis CR 1, and a chromodomain-containing Ty3/Gypsy LTR element. We focused on two SINE families (Anolis Sauria SINE and Anolis SINE 2) and their partner LINE families (Anolis Bov-B LINE and Anolis LINE 2). We demonstrate that each SINE/LINE pair is distributed similarly and predict that the retrotransposition of evolutionarily younger Sauria SINE members is via younger Bov-B LINE members while a correlation also exists between their respective evolutionarily older SINE/LINE members. The evolutionarily youngest Sauria SINE sequences evolved as part of novel rolling-circle transposons. The evolutionary time frame when Bov-B LINEs and Sauria SINEs were less active in their retrotransposition is characterized by a high retrotransposition burst of Anolis SINE 2 and Anolis LINE 2 elements. We also characterized the first full-length chromoviral LTR element in amniotes (Amn-ichi). This newly identified chromovirus is widespread in the Anolis genome and has been very well preserved, indicating that it is still active. Transposable elements in the Anolis genome account for approximately 20% of the total DNA sequence, whereas the proportion is more than double that in many mammalian genomes in which such elements have important biological functions. Nevertheless, 20% transposable element coverage is sufficient to predict that Anolis retroposons and other mobile elements also may have biologically and evolutionarily relevant functions. The new SINEs and LINEs and other ubiquitous genomic elements characterized in the Anolis genome will prove very useful for studies in comparative genomics, phylogenetics, and functional genetics.
Collapse
Affiliation(s)
- Oliver Piskurek
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B21 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
47
|
Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 2008; 4:e1000237. [PMID: 18949041 PMCID: PMC2567098 DOI: 10.1371/journal.pgen.1000237] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/23/2008] [Indexed: 12/21/2022] Open
Abstract
Non-homologous end joining (NHEJ) is the major mechanism of double-strand break repair (DSBR) in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs). Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler DNA, prevents nuclear processing of DSBs that could result in deleterious repair. Changes to DNA sequence are the major source of variation in evolution. Those changes often arise from damage to DNA that is repaired in a way that fails to restore the original sequence. One type of DNA damage is a chromosomal double-strand break. Such breaks are mostly studied experimentally in model systems, because naturally occurring chromosomal breaks are hard to follow. Here, we used an evolutionary approach to study the repair of naturally occurring chromosomal breaks. Throughout evolutionary history, fragments of the mitochondrial genome, known as numts (nuclear sequences of mitochondrial origin), have been inserted into the nuclear genome. Numts are passively captured into random chromosomal breaks, leaving sequence traces in genomes. Humans and chimpanzees share a recent common ancestor and their genomes share high sequence similarity; therefore, their species-specific numts can be used to follow both some of the break structure and repair mechanisms. Comparing naturally occurring break and repair patterns with experimental repair patterns identified similarities but also highlighted a clear difference. Experimental breaks usually involve deletions, while deletions were significantly less frequent in the numt based repair system. We propose that extra-chromosomal DNA sequences, like numts, play a role in maintaining genome integrity by protecting naturally occurring chromosomal breaks from further deleterious processing.
Collapse
|
48
|
Majewski T, Lee S, Jeong J, Yoon DS, Kram A, Kim MS, Tuziak T, Bondaruk J, Lee S, Park WS, Tang KS, Chung W, Shen L, Ahmed SS, Johnston DA, Grossman HB, Dinney CP, Zhou JH, Harris RA, Snyder C, Filipek S, Narod SA, Watson P, Lynch HT, Gazdar A, Bar-Eli M, Wu XF, McConkey DJ, Baggerly K, Issa JP, Benedict WF, Scherer SE, Czerniak B. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. J Transl Med 2008; 88:694-721. [PMID: 18458673 PMCID: PMC2849658 DOI: 10.1038/labinvest.2008.27] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified novel target genes, termed forerunner (FR) genes, involved in early phases of cancer development.
Collapse
Affiliation(s)
- Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takabatake T, Ishihara H, Ohmachi Y, Tanaka I, Nakamura MM, Fujikawa K, Hirouchi T, Kakinuma S, Shimada Y, Oghiso Y, Tanaka K. Microarray-based global mapping of integration sites for the retrotransposon, intracisternal A-particle, in the mouse genome. Nucleic Acids Res 2008; 36:e59. [PMID: 18450814 PMCID: PMC2425471 DOI: 10.1093/nar/gkn235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian genomes contain numerous evolutionary harbored mobile elements, a part of which are still active and may cause genomic instability. Their movement and positional diversity occasionally result in phenotypic changes and variation by causing altered expression or disruption of neighboring host genes. Here, we describe a novel microarray-based method by which dispersed genomic locations of a type of retrotransposon in a mammalian genome can be identified. Using this method, we mapped the DNA elements for a mouse retrotransposon, intracisternal A-particle (IAP), within genomes of C3H/He and C57BL/6J inbred mouse strains; consequently we detected hundreds of probable IAP cDNA-integrated genomic regions, in which a considerable number of strain-specific putative insertions were included. In addition, by comparing genomic DNAs from radiation-induced myeloid leukemia cells and its reference normal tissue, we detected three genomic regions around which an IAP element was integrated. These results demonstrate the first successful genome-wide mapping of a retrotransposon type in a mammalian genome.
Collapse
Affiliation(s)
- Takashi Takabatake
- Department of Radiobiology, Institute for Environmental Sciences, 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Retroposons, such as short interspersed elements (SINEs) and long interspersed elements (LINEs), are the major constituents of higher vertebrate genomes. Although there are many examples of retroposons' acquiring function, none has been implicated in the morphological innovations specific to a certain taxonomic group. We previously characterized a SINE family, AmnSINE1, members of which constitute a part of conserved noncoding elements (CNEs) in mammalian genomes. We proposed that this family acquired genomic functionality or was exapted after retropositioning in a mammalian ancestor. Here we identified 53 new AmnSINE1 loci and refined 124 total loci, two of which were further analyzed. Using a mouse enhancer assay, we demonstrate that one SINE locus, AS071, 178 kbp from the gene FGF8 (fibroblast growth factor 8), is an enhancer that recapitulates FGF8 expression in two regions of the developing forebrain, namely the diencephalon and the hypothalamus. Our gain-of-function analysis revealed that FGF8 expression in the diencephalon controls patterning of thalamic nuclei, which act as a relay center of the neocortex, suggesting a role for FGF8 in mammalian-specific forebrain patterning. Furthermore, we demonstrated that the locus, AS021, 392 kbp from the gene SATB2, controls gene expression in the lateral telencephalon, which is thought to be a signaling center during development. These results suggest important roles for SINEs in the development of the mammalian neuronal network, a part of which was initiated with the exaptation of AmnSINE1 in a common mammalian ancestor.
Collapse
|