1
|
Schmidt M, Martin I, Melzer RR. Just a matter of size? Evaluating allometry and intersexual heterometry in Pagurus bernhardus using ratios and indices (Decapoda, Anomura). Integr Zool 2024; 19:807-823. [PMID: 38123465 DOI: 10.1111/1749-4877.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Heterochely denotes the presence of dissimilarly sized chelipeds on opposite sides of the body, a prevalent occurrence in diverse crustaceans. Conversely, heterometry pertains to the quantifiable disparities in size between these chelipeds. Both chelipeds hold pivotal roles in activities such as foraging, mating, and defense. Consequently, individuals of both genders in heterochelic species exhibit this morphological pattern. Previous studies have identified sexual dimorphism in cheliped size, with males displaying larger major chelipeds compared to females, albeit solely relying on propodus length as a size proxy and focusing solely on the major cheliped. In our study, we meticulously examined 190 specimens of the common European hermit crab Pagurus bernhardus from two collections. We sought to elucidate allometric relationships and assess whether heterometry exhibited sex-based differences when adjusting for body size by using ratios. Our findings revealed that male chelipeds displayed hyperallometric growth relative to females, and all three calculated heterometry indices exhibited significant disparities between the sexes. Consequently, male specimens exhibited larger major and minor chelipeds, even when theoretically matched for body size with females. This phenomenon may be attributed, among other factors, to male-male contests. Should indirect mate selection favor males with larger chelipeds in proportion to their body size, this dynamic could potentiate sexual selection in their favor.
Collapse
Affiliation(s)
- Michel Schmidt
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Faculty of Biology, Biocenter, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, Germany
| | | | - Roland R Melzer
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, Munich, Germany
- Faculty of Biology, Biocenter, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Orr SE, Hedrick NA, Murray KA, Pasupuleti AK, Kovacs JL, Goodisman MAD. Genetic and environmental effects on morphological traits of social phenotypes in wasps. Heredity (Edinb) 2024; 133:126-136. [PMID: 38918612 PMCID: PMC11286790 DOI: 10.1038/s41437-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Many species exhibit distinct phenotypic classes, such as sexes in dioecious species or castes in social species. The evolution of these classes is affected by the genetic architecture governing traits shared between phenotypes. However, estimates of the genetic and environmental factors contributing to phenotypic variation in distinct classes have rarely been examined. We studied the genetic architecture underlying morphological traits in phenotypic classes in the social wasp Vespula maculifrons. Our data revealed patriline effects on a few traits, indicating weak genetic influences on caste phenotypic variation. Interestingly, traits exhibited higher heritability in queens than workers. This result suggests that genetic variation has a stronger influence on trait variation in the queen caste than the worker caste, which is unexpected because queens typically experience direct selection. Moreover, estimates of heritability for traits were correlated between the castes, indicating that variability in trait size was governed by similar genetic architecture in the two castes. However, we failed to find evidence for a significant relationship between caste dimorphism and caste correlation, as would be expected if trait evolution was constrained by intralocus genetic conflict. Our analyses also uncovered variation in the allometric relationships for traits. These analyses suggested that worker traits were proportionally smaller than queen traits for most traits examined. Overall, our data provide evidence for a strong environmental and moderate genetic basis of trait variation among castes. Moreover, our results suggest that selection previously operated on caste phenotype in this species, and phenotypic variation is now governed primarily by environmental differences.
Collapse
Affiliation(s)
- Sarah E Orr
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Nicole A Hedrick
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Kayla A Murray
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Abhinav K Pasupuleti
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Jennifer L Kovacs
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
- Agnes Scott College, Department of Biology, 141 East College Avenue, Decatur, 30030, Georgia
| | - Michael A D Goodisman
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
| |
Collapse
|
3
|
Chong KL, Grahn A, Perl CD, Sumner-Rooney L. Allometry and ecology shape eye size evolution in spiders. Curr Biol 2024; 34:3178-3188.e5. [PMID: 38959880 DOI: 10.1016/j.cub.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals. Spiders have up to four pairs of eyes whose sizes vary dramatically, but their ontogenetic, static, and evolutionary allometry has not yet been studied in a comparative context. We report variable dynamics in eye size across 1,098 individuals in 39 species and 8 families, indicating selective pressures and constraints driving the evolution of different eye pairs and lineages. Supplementing our sampling with a recently published phylogenetically comprehensive dataset, we confirmed these findings across more than 400 species; found that ecological factors such as visual hunting, web building, and circadian activity correlate with eye diameter; and identified significant allometric shifts across spider phylogeny using an unbiased approach, many of which coincide with visual hunting strategies. The modular nature of the spider visual system provides additional degrees of freedom and is apparent in the strong correlations between maximum/minimum investment and interocular variance and three key ecological factors. Our analyses suggest an antagonistic relationship between the anterior and posterior eye pairs. These findings shed light on the relationship between spider visual systems and their diverse ecologies and how spiders exploit their modular visual systems to balance selective pressures and optical and energetic constraints.
Collapse
Affiliation(s)
- Kaylin L Chong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA; Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| | - Angelique Grahn
- Institut für Biologie, Humboldt Universität, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Craig D Perl
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Lauren Sumner-Rooney
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK.
| |
Collapse
|
4
|
Barlow GM, Ledbetter NM. Carpal variability and asymmetry in limb reduced Western lesser sirens (Siren nettingi). J Morphol 2024; 285:e21749. [PMID: 38982668 DOI: 10.1002/jmor.21749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Trait functionality can act as a constraint on morphological development. Traits that become vestigialized can exhibit unstable developmental patterns such as fluctuating asymmetry (FA) and variation in populations. We use clearing and staining along with morphometric analyzes to compare FA and allometry of limbs in Western lesser sirens (Siren nettingi) to Ouachita dusky salamanders (Desmognathus brimleyorum). Our results describe new carpal phenotypes and carpal asymmetry in our sample of S. nettingi. However, we found no significant evidence of limb length asymmetry in S. nettingi. The degree of relative limb asymmetry correlates inversely with body size in both of our samples. This work provides strong evidence of increased mesopodal variation within a population of S. nettingi. Our work provides a basis for further study of a broader range of morphological traits across salamanders.
Collapse
Affiliation(s)
- Gibson M Barlow
- Department of Natural Science, Northwestern Oklahoma State University, Alva, Oklahoma, USA
| | - Nicholus M Ledbetter
- Department of Natural Science, Northwestern Oklahoma State University, Alva, Oklahoma, USA
| |
Collapse
|
5
|
Rohner PT, Hu Y, Moczek AP. Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry. Evol Dev 2024; 26:e12464. [PMID: 38041612 DOI: 10.1111/ede.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Zhang JJ, Xi GS. Estrogen-related receptor functions via the 20-hydroxyecdysone and IIS/TOR signaling pathways to regulate the development and morphology changes of ant Polyrhachis vicina Roger (Hymenoptera, Formicidae). Gen Comp Endocrinol 2023; 344:114373. [PMID: 37657761 DOI: 10.1016/j.ygcen.2023.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Estrogen-related receptor (ERR) is a key regulator of insect growth, development, and metabolic processes in insects; however, the molecular mechanisms underlying its effects are not fully understood. We investigated roles of 20-hydroxyecdysone (20E) and insulin/insulin-like signaling/target of rapamycin (IIS/TOR) signaling pathways in the effects of PvERR on larval development, metamorphosis, and adult growth in ant Polyrhachis vicina Roger. PvFOXO expression levels depended on caste and developmental stage. PvERR RNAi significantly reduced the expression levels of IIS/TOR signaling pathway genes and 20E signaling pathway genes in fourth-instar larvae, pupae, females, and workers and significantly increased the expression levels of IIS/TOR signaling pathway genes PvFOXO and PvAkt in males. PvFOXO RNAi resulted in developmental defects and increased mortality. After PvFOXO RNAi, the expression of PvERR, 20E signaling pathway genes, and IIS/TOR signaling pathway genes decreased significantly in pupae, females, and workers and increased significantly in fourth-instar larvae. Exogenous 20E attenuated expression changes induced by PvFOXO RNAi in a sex- and stage-specific manner. These results indicate that ERR interacts with 20E and IIS/TOR signaling pathways to regulate caste determination, metamorphosis, and male fertility in P. vicina and that correlations between PvERR and PvFOXO are caste- and stage-specific.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Physical Education, Xi'an International Studies University, Shaanxi Province, Xi'an 710128, PR China; Institute of Zoology, College of Life Science, Shaanxi Normal University, Shaanxi Province, Xi'an 710119, PR China.
| | - Geng-Si Xi
- Institute of Zoology, College of Life Science, Shaanxi Normal University, Shaanxi Province, Xi'an 710119, PR China
| |
Collapse
|
7
|
Dharmarathne C, McLean DJ, Herberstein ME, Schneider JM. Intraspecific body size variation and allometry of genitalia in the orb-web spider- Argiope lobata. PeerJ 2023; 11:e16413. [PMID: 38047024 PMCID: PMC10691382 DOI: 10.7717/peerj.16413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
The current consensus is that sexual selection is responsible for the rapid and diverse evolution of genitalia, with several mutually exclusive mechanisms under debate, including non-antagonistic, antagonistic and stabilizing mechanisms. We used the orb-web spider, Argiope lobata (Araneidae), as a study model to quantify the allometric relationship between body size and genitalia, and to test for any impact of genital structures on male mating success or outcome in terms of copulation duration, leg loss or cannibalism. Our data do not support the 'one-size-fits-all' hypothesis that predicts a negative allometric slope between genitalia and body size. Importantly, we measured both male and female genitalia, and there was no sex specific pattern in allometric slopes. Unexpectedly, we found no predictor for reproductive success as indicated by copulation duration, cannibalism, and leg loss.
Collapse
Affiliation(s)
| | - Donald James McLean
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Marie E. Herberstein
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | |
Collapse
|
8
|
Oliveira AC, Homem CCF. Opposing effects of ecdysone signaling regulate neuroblast proliferation to ensure coordination of brain and organism development. Dev Biol 2023; 503:53-67. [PMID: 37549863 DOI: 10.1016/j.ydbio.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Growth regulation must be robust to ensure correct final size, but also adaptative to adjust to less favorable environmental conditions. Developmental coordination between whole-organism and the brain is particularly important, as the brain is a critical organ with little adaptability. Brain growth mainly depends on neural stem cell (NSC) proliferation to generate differentiated neural cells, it is however unclear how organism developmental progression is coordinated with NSCs. Here we demonstrate that the steroid hormone ecdysone plays a multi-step, stage specific role in regulating Drosophila NSCs, the neuroblasts. We used animals that are unable to synthesize ecdysone, to show that the developmental milestone called "critical weight peak", the peak that informs the body has reached minimum viable weight to survive metamorphosis, acts a checkpoint necessary to set neuroblast cell cycle pace during larval neurogenesis. The peaks of ecdysone that occur post-critical weight are no longer required to maintain neuroblast division rate. We additionally show that in a second stage, at the onset of pupariation, ecdysone is instead required to trigger neuroblast's proliferation exit and consequently the end of neurogenesis. We demonstrate that, without this signal from ecdysone, neuroblasts lose their ability to exit proliferation. Interestingly, although these neuroblasts proliferate for a longer period, the number of differentiated neurons is smaller compared to wild-type brains, suggesting a role for ecdysone in neuron maintenance. Our study provides insights into how neural stem cells coordinate their division rate with the pace of body growth, identifying a novel coordination mechanism between animal development and NSC proliferation.
Collapse
Affiliation(s)
- Andreia C Oliveira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Catarina C F Homem
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Weber JN, Kojima W, Boisseau RP, Niimi T, Morita S, Shigenobu S, Gotoh H, Araya K, Lin CP, Thomas-Bulle C, Allen CE, Tong W, Lavine LC, Swanson BO, Emlen DJ. Evolution of horn length and lifting strength in the Japanese rhinoceros beetle Trypoxylus dichotomus. Curr Biol 2023; 33:4285-4297.e5. [PMID: 37734374 DOI: 10.1016/j.cub.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.
Collapse
Affiliation(s)
- Jesse N Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Wataru Kojima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Romain P Boisseau
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Hiroki Gotoh
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oya, Suruga Ward, Shizuoka, Japan
| | - Kunio Araya
- Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city Fukuoka 819-0395, Japan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, No.88 Sec. 4, Tingzhou Rd, Taipei 11677, Taiwan
| | - Camille Thomas-Bulle
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA; Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Cerisse E Allen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Wenfei Tong
- Cornell Laboratory of Ornithology, Ithaca, NY 14850, USA
| | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Brook O Swanson
- Department of Biology, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258-0102, USA
| | - Douglas J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
10
|
Wilcox AS, Vea IM, Frankino WA, Shingleton AW. Genetic variation of morphological scaling in Drosophila melanogaster. Heredity (Edinb) 2023; 130:302-311. [PMID: 36878946 PMCID: PMC10162999 DOI: 10.1038/s41437-023-00603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Morphological scaling relationships between the sizes of individual traits and the body captures the characteristic shape of a species, and their evolution is the primary mechanism of morphological diversification. However, we have almost no knowledge of the genetic variation of scaling, which is critical if we are to understand how scaling evolves. Here we explore the genetics of population scaling relationships (scaling relationships fit to multiple genetically-distinct individuals in a population) by describing the distribution of individual scaling relationships (genotype-specific scaling relationships that are unseen or cryptic). These individual scaling relationships harbor the genetic variation in the developmental mechanisms that regulate trait growth relative to body growth, and theoretical studies suggest that their distribution dictates how the population scaling relationship will respond to selection. Using variation in nutrition to generate size variation within 197 isogenic lineages of Drosophila melanogaster, we reveal extensive variation in the slopes of the wing-body and leg-body individual scaling relationships among genotypes. This variation reflects variation in the nutritionally-induced size plasticity of the wing, leg, and body. Surprisingly, we find that variation in the slope of individual scaling relationships primarily results from variation in nutritionally-induced plasticity of body size, not leg or wing size. These data allow us to predict how different selection regimes affect scaling in Drosophila, and is the first step in identifying the genetic targets of such selection. More generally, our approach provides a framework for understanding the genetic variation of scaling, an important prerequisite to explaining how selection changes scaling and morphology.
Collapse
Affiliation(s)
- Austin S Wilcox
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA
| | - Isabelle M Vea
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA
| | - W Anthony Frankino
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois Chicago, 840 W Taylor St, Chicago, IL, 60607, USA.
| |
Collapse
|
11
|
Currea JP, Sondhi Y, Kawahara AY, Theobald J. Measuring compound eye optics with microscope and microCT images. Commun Biol 2023; 6:246. [PMID: 36882636 PMCID: PMC9992655 DOI: 10.1038/s42003-023-04575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.
Collapse
Affiliation(s)
- John Paul Currea
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
| | - Yash Sondhi
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
12
|
Ludoški J, Francuski L, Gojković N, Matić B, Milankov V. Sexual size and shape dimorphism, and allometric scaling in the pupal and adult traits of Eristalis tenax. Ecol Evol 2023; 13:e9907. [PMID: 36937060 PMCID: PMC10015363 DOI: 10.1002/ece3.9907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The patterns and amount of variation in size, shape, and/or life history traits between females and males are fundamentally important to gain the comprehensive understanding of the evolution of phenotypic diversity. In addition, the covariation of phenotypic traits can significantly contribute to morphological diversification and sexual dimorphism (SD). Using linear and geometric morphometrics, 237 Eristalis tenax specimens sampled from five populations were, therefore, comparatively assessed for the variation in sexual size dimorphism (SSD), sexual shape dimorphism (SShD), and life history traits, as well as for trait covariation (ontogenetic and static allometry). Pupal body, adult wing, and body mass traits were analyzed. Female-biased SSD was observed for pupal length, width, and centroid size, adult wing centroid size, mass, wing loading, and wing area. Conversely, pupal length/width ratio, developmental time, and mass were not found to be sexually dimorphic. Next, wing SShD, but not pupal body SShD was revealed, while allometry was found to be an important "determinant of SD" at the adult stage, with only a minor impact at the pupal stage. By comparing the patterns of covariance (based on allometric slope and intercept) between respective body mass and morphometric traits of pupae and adults, greater variation in allometric slopes was found in adult traits, while static allometries of the two stages significantly differed, as well. Finally, the results indicate that changes in the allometric intercept could be an important source of intraspecific variation and SD in drone fly adults.
Collapse
Affiliation(s)
- Jasmina Ludoški
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Ljubinka Francuski
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
- Protix BVDongenThe Netherlands
| | - Nemanja Gojković
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Bojana Matić
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Vesna Milankov
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
13
|
Canal Domenech B, Fricke C. Recovery from heat-induced infertility-A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol Evol 2022; 12:e9563. [PMID: 36466140 PMCID: PMC9712812 DOI: 10.1002/ece3.9563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature-induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat-stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post-mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub-lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes.
Collapse
Affiliation(s)
- Berta Canal Domenech
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Muenster Graduate School of Evolution University of Muenster Muenster Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
- Institute for Zoology Halle-Wittenberg University Halle (Saale) Germany
| |
Collapse
|
14
|
Ghosh AC, Hu Y, Tattikota SG, Liu Y, Comjean A, Perrimon N. Modeling exercise using optogenetically contractible Drosophila larvae. BMC Genomics 2022; 23:623. [PMID: 36042416 PMCID: PMC9425970 DOI: 10.1186/s12864-022-08845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The pathophysiological effects of a number of metabolic and age-related disorders can be prevented to some extent by exercise and increased physical activity. However, the molecular mechanisms that contribute to the beneficial effects of muscle activity remain poorly explored. Availability of a fast, inexpensive, and genetically tractable model system for muscle activity and exercise will allow the rapid identification and characterization of molecular mechanisms that mediate the beneficial effects of exercise. Here, we report the development and characterization of an optogenetically-inducible muscle contraction (OMC) model in Drosophila larvae that we used to study acute exercise-like physiological responses. To characterize muscle-specific transcriptional responses to acute exercise, we performed bulk mRNA-sequencing, revealing striking similarities between acute exercise-induced genes in flies and those previously identified in humans. Our larval muscle contraction model opens a path for rapid identification and characterization of exercise-induced factors.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Vasseur F, Westgeest AJ, Vile D, Violle C. Solving the grand challenge of phenotypic integration: allometry across scales. Genetica 2022; 150:161-169. [PMID: 35857239 PMCID: PMC9355930 DOI: 10.1007/s10709-022-00158-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.
Collapse
Affiliation(s)
- François Vasseur
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | | | - Denis Vile
- LEPSE, University Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
16
|
Kudla AM, Miranda X, Nijhout HF. The roles of growth regulation and appendage patterning genes in the morphogenesis of treehopper pronota. Proc Biol Sci 2022; 289:20212682. [PMID: 35673859 PMCID: PMC9174728 DOI: 10.1098/rspb.2021.2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treehoppers of the insect family Membracidae have evolved enlarged and elaborate pronotal structures, which is hypothesized to involve co-opted expression of genes that are shared with the wings. Here, we investigate the similarity between the pronotum and wings in relation to growth. Our study reveals that the ontogenetic allometry of the pronotum is similar to that of wings in Membracidae, but not the outgroup. Using transcriptomics, we identify genes related to translation and protein synthesis, which are mutually upregulated. These genes are implicated in the eIF2, eIF4/p70S6K and mTOR pathways, and have known roles in regulating cell growth and proliferation. We find that species-specific differential growth patterning of the pronotum begins as early as the third instar, which suggests that expression of appendage patterning genes occurs long before the metamorphic molt. We propose that a network related to growth and size determination is the more likely mechanism shared with wings. However, regulators upstream of the shared genes in pronotum and wings need to be elucidated to substantiate whether co-option has occurred. Finally, we believe it will be helpful to distinguish the mechanisms leading to pronotal size from those regulating pronotal shape as we make sense of this spectacular evolutionary innovation.
Collapse
Affiliation(s)
- Anna M. Kudla
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ximena Miranda
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
17
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, González-Tokman D. Contamination effects on sexual selection in wild dung beetles. J Evol Biol 2022; 35:905-918. [PMID: 35647730 DOI: 10.1111/jeb.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico.,CONACYT, Mexico City, Mexico
| |
Collapse
|
18
|
Csősz S, Báthori F, Molet M, Majoros G, Rádai Z. From Parasitized to Healthy-Looking Ants (Hymenoptera: Formicidae): Morphological Reconstruction Using Algorithmic Processing. Life (Basel) 2022; 12:life12050625. [PMID: 35629292 PMCID: PMC9145562 DOI: 10.3390/life12050625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Parasites cause predictable alternative phenotypes of host individuals. Investigating these parasitogenic phenotypes may be essential in cases where parasitism is common or taxa is described based on a parasitized individual. Ignoring them could lead to erroneous conclusions in biodiversity-focused research, taxonomy, evolution, and ecology. However, to date, integrating alternative phenotypes into a set of wild-type individuals in morphometric analysis poses extraordinary challenges to experts. This paper presents an approach for reconstructing the putative healthy morphology of parasitized ants using algorithmic processing. Our concept enables the integration of alternative parasitogenic phenotypes in morphometric analyses. Methods: We tested the applicability of our strategy in a large pool of Cestoda-infected and healthy individuals of three Temnothorax ant species (T. nylanderi, T. sordidulus, and T. unifasciatus). We assessed the stability and convergence of morphological changes caused by parasitism across species. We used an artificial neural network-based multiclass classifier model to predict species based on morphological trait values and the presence of parasite infection. Results: Infection causes predictable morphological changes in each species, although these changes proved to be species-specific. Therefore, integrating alternative parasitogenic phenotypes in morphometric analyses can be achieved at the species level, and a prior species hypothesis is required. Conclusion: Despite the above limitation, the concept is appropriate. Beyond parasitogenic phenotypes, our approach can also integrate morphometric data of an array of alternative phenotypes (subcastes in social insects, alternative morphs in polyphenic species, and alternative sexes in sexually dimorphic species) whose integrability had not been resolved before.
Collapse
Affiliation(s)
- Sándor Csősz
- Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
- MTA-ELTE-MTM Ecology Research Group, Eötvös Loránd University, 1053 Budapest, Hungary
- Correspondence:
| | - Ferenc Báthori
- Evolutionary Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
| | - Mathieu Molet
- Institute of Ecology and Environmental Sciences-Paris (iEES-Paris), Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRAE, IRD, F-75005 Paris, France;
| | - Gábor Majoros
- Department of Parasitology and Zoology, Faculty of Veterinary Sciences, Szent István University, István u. 2., 1078 Budapest, Hungary;
| | - Zoltán Rádai
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, 2163 Vácrátót, Hungary;
| |
Collapse
|
19
|
Voje KL, Bell MA, Stuart YE. Evolution of static allometry and constraint on evolutionary allometry in a fossil stickleback. J Evol Biol 2022; 35:423-438. [PMID: 35073436 PMCID: PMC9303703 DOI: 10.1111/jeb.13984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Allometric scaling describes the relationship of trait size to body size within and among taxa. The slope of the population-level regression of trait size against body size (i.e. static allometry) is typically invariant among closely related populations and species. Such invariance is commonly interpreted to reflect a combination of developmental and selective constraints that delimit a phenotypic space into which evolution could proceed most easily. Thus, understanding how allometric relationships do eventually evolve is important to understanding phenotypic diversification. In a lineage of fossil Threespine Stickleback (Gasterosteus doryssus), we investigated the evolvability of static allometric slopes for nine traits (five armour and four non-armour) that evolved significant trait differences across 10 samples over 8500 years. The armour traits showed weak static allometric relationships and a mismatch between those slopes and observed evolution. This suggests that observed evolution in these traits was not constrained by relationships with body size, perhaps because prior, repeated adaptation to freshwater habitats by Threespine Stickleback had generated strong selection to break constraint. In contrast, for non-armour traits, we found stronger allometric relationships. Those allometric slopes did evolve on short time scales. However, those changes were small and fluctuating and the slopes remained strong predictors of the evolutionary trajectory of trait means over time (i.e. evolutionary allometry), supporting the hypothesis of allometry as constraint.
Collapse
Affiliation(s)
| | - Michael A. Bell
- University of California Museum of PaleontologyBerkeleyCaliforniaUSA
| | - Yoel E. Stuart
- Department of BiologyLoyola University ChicagoChicagoIllinoisUSA
| |
Collapse
|
20
|
Szabó LJ, Vajda C, Szalay PÉ, Kis O, Miskolczi M, Dévai G. Change of morphometric and allometric patterns on wings of banded demoiselle (Calopteryx splendens) males in case of ecologically different watercourse types. ACTA ZOOL ACAD SCI H 2022. [DOI: 10.17109/azh.68.1.99.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the nature, larvae living in watercourses are exposed to a complex system of environmental influences. It is known that different watercourse types (creeks, brooks, streams, little rivers and medial rivers) provide different conditions for larval development (water depth, flow rate, temperature, oxygen content, substrate type, nutrient supply, etc.). These conditions can vary significantly between watercourse types, but be very similar within types. In this work, we examined the body sizes and wing morphometric characteristics of males of Calopteryx splendens reared from different watercourse types (brook, stream, creek, little river, medial river). Although there were no significant differences in body size among watercourse types, we found significant differences in the wing features. We found the most differences between the individuals reared from streams and creeks and between the individuals reared from stream and medial river. Our results show that the individuals reared from different watercourse types were clearly separated on the two wings. The results also suggest that there are significant differences in the number and pattern of allometric features on the wings of individuals reared from different watercourse types.
Collapse
|
21
|
Currea JP, Frazer R, Wasserman SM, Theobald J. Acuity and summation strategies differ in vinegar and desert fruit flies. iScience 2022; 25:103637. [PMID: 35028530 PMCID: PMC8741510 DOI: 10.1016/j.isci.2021.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022] Open
Abstract
An animal's vision depends on terrain features that limit the amount and distribution of available light. Approximately 10,000 years ago, vinegar flies (Drosophila melanogaster) transitioned from a single plant specialist into a cosmopolitan generalist. Much earlier, desert flies (D. mojavensis) colonized the New World, specializing on rotting cactuses in southwest North America. Their desert habitats are characteristically flat, bright, and barren, implying environmental differences in light availability. Here, we demonstrate differences in eye morphology and visual motion perception under three ambient light levels. Reducing ambient light from 35 to 18 cd/m2 causes sensitivity loss in desert but not vinegar flies. However, at 3 cd/m2, desert flies sacrifice spatial and temporal acuity more severely than vinegar flies to maintain contrast sensitivity. These visual differences help vinegar flies navigate under variably lit habitats around the world and desert flies brave the harsh desert while accommodating their crepuscular lifestyle.
Collapse
Affiliation(s)
- John P. Currea
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Rachel Frazer
- Division of Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Sara M. Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
22
|
Hamilton CA, Winiger N, Rubin JJ, Breinholt J, Rougerie R, Kitching IJ, Barber JR, Kawahara AY. Hidden phylogenomic signal helps elucidate arsenurine silkmoth phylogeny and the evolution of body size and wing shape trade-offs. Syst Biol 2021; 71:859-874. [PMID: 34791485 DOI: 10.1093/sysbio/syab090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
One of the key objectives in biological research is understanding how evolutionary processes have produced Earth's diversity. A critical step towards revealing these processes is an investigation of evolutionary tradeoffs - that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference - a region of a tree that possesses short branches and no "support" for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing shape. Namely, body size tends to decrease with increasing hindwing length but increases as forewing shape becomes more complex. Additionally, the type of hindwing (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of forewing shape. We outline possible selective forces driving the complex hindwing shapes that make Arsenurinae, and silkmoths as a whole, so charismatic.
Collapse
Affiliation(s)
- Chris A Hamilton
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID, 83844 USA
| | - Nathalie Winiger
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Wildlife Ecology and Management, Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
| | - Juliette J Rubin
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA
| | - Jesse Breinholt
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Division of Bioinformatics, Intermountain Healthcare, Precision Genomics, St. George, UT 84790 USA
| | - Rodolphe Rougerie
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Ian J Kitching
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jesse R Barber
- Department of Biological Sciences, Boise State University, Boise, ID, 83725 USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
23
|
Liu J, He XZ, Zheng XL, Zhang Y, Wang Q. Pupal Cues Increase Sperm Production but Not Testis Size in an Insect. INSECTS 2021; 12:679. [PMID: 34442245 PMCID: PMC8396453 DOI: 10.3390/insects12080679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Theoretic and empirical studies show that social surroundings experienced by male insects during their larval or adult stage can influence their testicular investment in diverse ways. Although insect pupae do not feed and crawl, they can communicate using sex-specific and/or non-sex specific cues. Yet, it is unknown, in any insect, whether and how male pupae can fine-tune their resource allocation to sperm production and testis size in response to socio-sexual environments. We investigated this question using a moth, Ephestia kuehniella, which produces fertile eupyrene sperm and unfertile apyrene sperm. We held male pupae individually or in groups with different sex ratios, and dissected adults upon eclosion, measured their testis size, and counted both types of sperm. We demonstrated that after exposure to conspecific pupal cues regardless of sex, male pupae increased production of eupyrenes and apyrenes at the same rate but kept testis size unchanged. We suggest that testis size is fixed after pupation because most morphological traits are formed during the larval stage, allowing little room for pupae to adjust testis size. Like adults, male pupae with fully grown testes have sufficient resources to produce more sperm of both types according to the perceived increase in sperm competition risk.
Collapse
Affiliation(s)
- Junyan Liu
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| | - Xiong Z. He
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.-L.Z.); (Y.Z.)
| | - Yujing Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.-L.Z.); (Y.Z.)
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| |
Collapse
|
24
|
McDonald JMC, Nabili P, Thorsen L, Jeon S, Shingleton AW. Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster. EvoDevo 2021; 12:6. [PMID: 33990225 PMCID: PMC8120840 DOI: 10.1186/s13227-021-00175-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others' research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. RESULTS The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males. CONCLUSION Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall Ithaca, NY, 14853, USA
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Pegah Nabili
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Lily Thorsen
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Sohee Jeon
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA.
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
25
|
Bertram SM, Yaremchuk DD, Reifer ML, Villarreal A, Muzzatti MJ, Kolluru GR. Tests of the positive and functional allometry hypotheses for sexually selected traits in the Jamaican field cricket. Behav Processes 2021; 188:104413. [PMID: 33957236 DOI: 10.1016/j.beproc.2021.104413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Sexually selected traits, including threat signals, have been shown to scale steeply positively with body size because their exaggeration maximizes honest signalling. However, the functional allometry hypothesis makes the opposite prediction for some weapons: because the biomechanics of force applied in their use may favor relatively smaller size, sexually selected weapons may exhibit negative allometry. Tests of these ideas in insects have largely focused on holometabolous species, whose adult body size is entirely dependent on nutrients acquired during the larval stage. In contrast, hemimetabolous insects may exhibit different patterns of allometry development because they forage throughout development, between successive moults. Here, we tested complementary and competing predictions made by the positive and functional allometry hypotheses, regarding intrasexually selected trait allometry in a hemimetabolous insect, the Jamaican field cricket (Gryllus assimilis). As expected, head width (a dominance and/or combat trait) was more positively allometric than non-sexually selected traits. In contrast, and consistent with the functional allometry hypothesis, mouthparts (weapons) were either isometric or negatively allometric. We also tested whether trait allometry responded to rearing diet by raising males on either a high protein diet or a high carbohydrate diet; we predicted stronger positive allometry under the high protein diet. However, diet did not influence allometry in the predicted manner. Overall, our results support the functional allometry hypothesis regarding sexually selected trait allometry and raise intriguing possibilities for integrating these ideas with recent paradigms for classifying intrasexually selected traits.
Collapse
Affiliation(s)
- Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | - Danya D Yaremchuk
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Mykell L Reifer
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Amy Villarreal
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Matthew J Muzzatti
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Gita R Kolluru
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, 93407, United States
| |
Collapse
|
26
|
Helm BR, Baldwin MA, Rinehart JP, Yocum GD, Greenlee KJ, Bowsher JH. Body and Wing Allometries Reveal Flight-Fecundity Tradeoff in Response to Larval Provisioning in Osmia lignaria (Hymenoptera: Megachilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6296186. [PMID: 34113998 PMCID: PMC8192885 DOI: 10.1093/jisesa/ieab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/10/2023]
Abstract
Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Maxwell A Baldwin
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102USA
| | - George D Yocum
- Insect Genetics and Biochemistry, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58102USA
| |
Collapse
|
27
|
Toubiana W, Armisén D, Viala S, Decaras A, Khila A. The growth factor BMP11 is required for the development and evolution of a male exaggerated weapon and its associated fighting behavior in a water strider. PLoS Biol 2021; 19:e3001157. [PMID: 33974625 PMCID: PMC8112723 DOI: 10.1371/journal.pbio.3001157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Exaggerated sexually selected traits, often carried by males, are characterized by the evolution of hyperallometry, resulting in their disproportionate growth relative to the rest of the body among individuals of the same population. While the evolution of allometry has attracted much attention for centuries, our understanding of the developmental genetic mechanisms underlying its emergence remains fragmented. Here we conduct comparative transcriptomics of the legs followed by an RNA interference (RNAi) screen to identify genes that play a role in the hyperallometric growth of the third legs in the males of the water strider Microvelia longipes. We demonstrate that a broadly expressed growth factor, Bone Morphogenetic Protein 11 (BMP11, also known as Growth Differentiation Factor 11), regulates leg allometries through increasing the allometric slope and mean body size in males. In contrast, BMP11 RNAi reduced mean body size but did not affect slope either in the females of M. longipes or in the males and females of other closely related Microvelia species. Furthermore, our data show that a tissue-specific factor, Ultrabithorax (Ubx), increases intercept without affecting mean body size. This indicates a genetic correlation between mean body size and variation in allometric slope, but not intercept. Strikingly, males treated with BMP11 RNAi exhibited a severe reduction in fighting frequency compared to both controls and Ubx RNAi-treated males. Therefore, male body size, the exaggerated weapon, and the intense fighting behavior associated with it are genetically correlated in M. longipes. Our results support a possible role of pleiotropy in the evolution of allometric slope.
Collapse
Affiliation(s)
- William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Amélie Decaras
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
28
|
Maletti S, Niehuis O, Mayer C, Sann M, Klopfstein S, Nottebrock G, Baur H, Peters RS. Phylogeny, taxonomics, and ovipositor length variation of the
Pteromalus albipennis
species group (Hymenoptera: Chalcidoidea: Pteromalidae: Pteromalinae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sina Maletti
- Department of Invertebrates Natural History Museum Bern Bern Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology, (Zoology) Albert Ludwig University Freiburg Freiburg Germany
| | - Christoph Mayer
- Center for Molecular Biodiversity Research Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Manuela Sann
- Department of Evolutionary Biology and Ecology, Institute of Biology, (Zoology) Albert Ludwig University Freiburg Freiburg Germany
| | | | - Gaby Nottebrock
- Arthropoda Department Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Hannes Baur
- Department of Invertebrates Natural History Museum Bern Bern Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Ralph S. Peters
- Arthropoda Department Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| |
Collapse
|
29
|
Csősz S, Seifert B, Mikó I, Boudinot BE, Borowiec ML, Fisher BL, Prebus M, Puniamoorthy J, Rakotonirina J, Rasoamanana N, Schultz R, Trietsch C, Ulmer JM, Elek Z. Insect morphometry is reproducible under average investigation standards. Ecol Evol 2021; 11:547-559. [PMID: 33437450 PMCID: PMC7790639 DOI: 10.1002/ece3.7075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 11/11/2022] Open
Abstract
Morphometric research is being applied to a growing number and variety of organisms. Discoveries achieved via morphometric approaches are often considered highly transferable, in contrast to the tacit and idiosyncratic interpretation of discrete character states. The reliability of morphometric workflows in insect systematics has never been a subject of focused research, but such studies are sorely needed. In this paper, we assess the reproducibility of morphometric studies of ants where the mode of data collection is a shared routine.We compared datasets generated by eleven independent gaugers, that is, collaborators, who measured 21 continuous morphometric traits on the same pool of individuals according to the same protocol. The gaugers possessed a wide range of morphometric skills, had varying expertise among insect groups, and differed in their facility with measuring equipment. We used intraclass correlation coefficients (ICC) to calculate repeatability and reproducibility values (i.e., intra- and intergauger agreements), and we performed a multivariate permutational multivariate analysis of variance (PERMANOVA) using the Morosita index of dissimilarity with 9,999 iterations.The calculated average measure of intraclass correlation coefficients of different gaugers ranged from R = 0.784 to R = 0.9897 and a significant correlation was found between the repeatability and the morphometric skills of gaugers (p = 0.016). There was no significant association with the magnification of the equipment in the case of these rather small ants. The intergauger agreement, that is the reproducibility, varied between R = 0.872 and R = 0.471 (mean R = 0.690), but all gaugers arrived at the same two-species conclusion. A PERMANOVA test revealed no significant gauger effect on species identity (R 2 = 0.69, p = 0.58).Our findings show that morphometric studies are reproducible when observers follow the standard protocol; hence, morphometric findings are widely transferable and will remain a valuable data source for alpha taxonomy.
Collapse
Affiliation(s)
- Sándor Csősz
- MTA‐ELTE‐MTM Ecology Research GroupBudapestHungary
- Evolutionary Ecology Research GroupCentre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
| | | | - István Mikó
- Department of Biological SciencesUniversity of New HampshireDurhamNHUSA
| | | | - Marek L. Borowiec
- Department of Entomology, Plant Pathology and NematologyUniversity of IdahoIDUSA
| | - Brian L. Fisher
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCAUSA
| | - Matthew Prebus
- Department of Entomology, Plant Pathology and NematologyUniversity of IdahoIDUSA
| | | | - Jean‐Claude Rakotonirina
- Madagascar Biodiversity CenterAntananarivoMadagascar
- Département d'EntomologieUniversité d'AntananarivoAntananarivoMadagascar
| | | | - Roland Schultz
- Senckenberg Museum of Natural History GörlitzGörlitzGermany
| | | | | | - Zoltán Elek
- MTA‐ELTE‐MTM Ecology Research GroupBudapestHungary
| |
Collapse
|
30
|
Medeiros R, Oliveira CD, Souto D, Rangely J, Fabré NN. Growth stanza in fish life history using otoliths shape: the protandric Centropomus case (Carangaria: Centropomidae). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Morphoanatomical or physiological changes coupled with changes in body size are known as allometric relationships. The objective of this study was to identify the points of growth changes in Centropomus based on otolith morphometry and morphogeometry. For this purpose, 455 individuals of C. undecimalis and 176 of C. parallelus were collected from artisanal fishermen of the coast of the state of Alagoas, Brazil. The sagittal otoliths were measured for length, height, perimeter, area and weighed. The potential and polyphasic models were fitted between total fish length and otolith length. The morphotypes otoliths wen describe by form Fourier descriptors and shape indices. The polyphasic model detected three growth phases. The first stanza for C. undecimalis was at 46.8 cm and the second at 75.9 cm. For C. parallelus, it was at 18.8 cm and at 41.2 cm. Each stanza has a specific otoliths morphotype in both species. The otoliths of C. undecimalis and C. parallelus exhibited ontogenetic allometric changes in their growth pattern with two stanzas changing points. The stanzas corresponded to specific lengths reached by individuals over their life cycles, such as their size at maturity and length at sexual reversion.
Collapse
|
31
|
Different diets can affect attractiveness of Drosophila melanogaster males via changes in wing morphology. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Melin A, Altwegg R, Manning JC, Colville JF. Allometric relationships shape foreleg evolution of long-legged oil bees (Melittidae: Rediviva). Evolution 2020; 75:437-449. [PMID: 33314060 DOI: 10.1111/evo.14144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
Exaggerated traits of pollinators have fascinated biologists for centuries. To understand their evolution, and their role in coevolutionary relationships, an essential first step is to understand how traits scale allometrically with body size, which may reveal underlying developmental constraints. Few pollination studies have examined how traits can adaptively diverge despite allometric constraints. Here, we present a comparative study of narrow-sense static and evolutionary allometry on foreleg length and body size of oil-collecting bees. Concurrently, we assess the relationship between scaling parameters and spur lengths of oil-secreting host flowers. Across species and populations, we found low variation in static slopes (nearly all <1), possibly related to stabilizing selection, but the static intercept varied substantially generating an evolutionary allometry steeper than static allometry. Variation in static intercepts was explained by changes in body size (∼28% species; ∼68% populations) and spur length (remaining variance: ∼36% species; ∼94% populations). The intercept-spur length relationship on the arithmetic scale was positive but forelegs did not track spur length perfectly in a one-to-one relationship. Overall, our study provides new insights on how phenotypic evolution in the forelegs of oil-collecting bees is related to the variability of the allometric intercept and adaptation to host plants.
Collapse
Affiliation(s)
- Annalie Melin
- Compton Herbarium, South African National Biodiversity Institute, Claremont, South Africa.,African Centre for Coastal Palaeoscience, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - Res Altwegg
- Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - John C Manning
- Compton Herbarium, South African National Biodiversity Institute, Claremont, South Africa.,Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Jonathan F Colville
- Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Morphology Reveals the Unexpected Cryptic Diversity in Ceratophyllus gallinae (Schrank, 1803) Infested Cyanistes caeruleus Linnaeus, 1758 Nest Boxes. Acta Parasitol 2020; 65:874-881. [PMID: 32514838 PMCID: PMC7679356 DOI: 10.1007/s11686-020-00239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Purpose The main aim of our study was to examine morphological differentiation between and within sex of hen fleas—Ceratophyllus gallinae (Schrank, 1803) population collected from Eurasian blue tit (Cyanistes caeruleus Linnaeus, 1758), inhabiting nest boxes and to determine the morphological parameters differentiating this population. Methods A total of 296 fleas were collected (148 females and 148 males), determined to species and sex, then the following characters were measured in each of the examined fleas: body length, body width, length of head, width of head, length of comb, height of comb, length of tarsus, length of thorax and length of abdomen. Results The comparison of body size showed the presence of two groups among female and male life forms of the hen flea, which mostly differed in length of abdomen, whereas the length of head and tarsus III were less variable. Conclusion Till now, the only certain information is the presence of two adult life forms of C. gallinae. The genesis of their creation is still unknown and we are not able to identify the mechanism responsible for the morphological differentiation of fleas collected from the same host. In order to find answer to this question, future research in the field of molecular taxonomy is required.
Collapse
|
34
|
de Oliveira TCT, Monteiro AB, Faria LDB. Can multitrophic interactions shape morphometry, allometry, and fluctuating asymmetry of seed-feeding insects? PLoS One 2020; 15:e0241913. [PMID: 33175854 PMCID: PMC7657534 DOI: 10.1371/journal.pone.0241913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Body size is commonly associated with biological features such as reproductive capacity, competition, and resource acquisition. Many studies have tried to understand how these isolated factors can affect the body pattern of individuals. However, little is known about how interactions among species in multitrophic communities determine the body shape of individuals exploiting the same resource. Here, we evaluate the effect of fruit infestation, parasitism rate, and seed biomass on size, allometric and asymmetric patterns of morphological structures of insects that exploit the same resource. To test it, we measured 750 individuals associated with the plant Senegalia tenuifolia (Fabaceae), previously collected over three consecutive years. Negative allometry was maintained for all species, suggesting that with increasing body size the body structure did not grow proportionally. Despite this, some variations in allometric slopes suggest that interactions in a multitrophic food web can shape the development of these species. Also, we observed a higher confidence interval at higher categories of infestation and parasitism rate, suggesting a great variability in the allometric scaling. We did not observe fluctuating asymmetry for any category or species, but we found some changes in morphological structures, depending on the variables tested. These findings show that both allometry and morphological trait measurements are the most indicated in studies focused on interactions and morphometry. Finally, we show that, except for the fluctuating asymmetry, each species and morphological structure respond differently to interactions, even if the individuals play the same functional role within the food web.
Collapse
Affiliation(s)
| | | | - Lucas Del Bianco Faria
- Department of Ecology and Conservation, Institute of Natural Science, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
35
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
36
|
Del Sol JF, Hongo Y, Boisseau RP, Berman GH, Allen CE, Emlen DJ. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae)†. Evolution 2020; 75:394-413. [PMID: 33009663 DOI: 10.1111/evo.14101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Exaggerated weapons of sexual selection often diverge more rapidly and dramatically than other body parts, suggesting that relevant agents of selection may be discernible in contemporary populations. We examined the ecology, reproductive behavior, and strength of sexual selection on horn length in five recently diverged rhinoceros beetle (Trypoxylus dichotomus) populations that differ in relative horn size. Males with longer horns were better at winning fights in all locations, but the link between winning fights and mating success differed such that selection favored large males with long horns at the two long-horned populations, but was relaxed or nonexistent at the populations with relatively shorter horns. Observations of local habitat conditions and breeding ecology point to shifts in the relative abundance of feeding territories as the most likely cause of population differences in selection on male weapon size in this species. Comparisons of ecological conditions and selection strength across populations offer critical first steps toward meaningfully linking mating system dynamics, selection patterns, and diversity in sexually selected traits.
Collapse
Affiliation(s)
- Jillian F Del Sol
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Yoshihito Hongo
- Department of Life Sciences, Ritsumeikan University, Kyoto, 603-8577, Japan
| | - Romain P Boisseau
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Gabriella H Berman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Cerisse E Allen
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Douglas J Emlen
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
37
|
Rebrina F, Anichini M, Reinhold K, Lehmann GUC. Allometric scaling in two bushcricket species (Orthoptera: Tettigoniidae) suggests sexual selection on song-generating structures. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractIn acoustically communicating bushcrickets (Orthoptera: Tettigoniidae), most signal properties are influenced by the dimensions of the stridulatory apparatus, which in turn reflects body size and condition of the signaller. Females can assess male quality based on acoustic signals, suggesting that male stridulatory structures may be under sexual selection. We investigated scaling relationships between stridulatory structures, body size and body mass in males of the bushcricket Poecilimon veluchianus veluchianus, in comparison to the congeneric Poecilimon ampliatus. Stridulatory structures in P. v. veluchianus exhibited strong left–right correlation and coupling with body size and mass, indicating stabilizing selection for functional integration. In addition, sound-generating (the width of stridulatory teeth) and sound-radiating (mirror area on the right tegmen) structures scaled hyperallometrically to tegmen area, suggesting that both are under sexual selection. Finally, interspecies comparison revealed a steeper slope in tegmen area and stridulatory file length in relation to body size in P. ampliatus than in P. v. veluchianus, implying stronger sexual selection in the former, smaller species. Our study emphasizes the significance of a comparative allometric approach in elucidating evolutionary patterns of sound-generating and -radiating structures.
Collapse
Affiliation(s)
- Fran Rebrina
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
| | - Marianna Anichini
- Humboldt University Berlin, Department of Biology, Evolutionary Ecology, Berlin, Germany
| | - Klaus Reinhold
- Bielefeld University, Faculty of Biology, Evolutionary Biology, Bielefeld, Germany
| | - Gerlind U C Lehmann
- Humboldt University Berlin, Department of Biology, Evolutionary Ecology, Berlin, Germany
| |
Collapse
|
38
|
Williams KB, Bischof J, Lee FJ, Miller KA, LaPalme JV, Wolfe BE, Levin M. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech Dev 2020; 163:103614. [DOI: 10.1016/j.mod.2020.103614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
39
|
Upadhyay A, Peterson AJ, Kim MJ, O'Connor MB. Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. eLife 2020; 9:e51710. [PMID: 32633716 PMCID: PMC7371420 DOI: 10.7554/elife.51710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/04/2020] [Indexed: 01/05/2023] Open
Abstract
Organ growth and size are finely tuned by intrinsic and extrinsic signaling molecules. In Drosophila, the BMP family member Dpp is produced in a limited set of imaginal disc cells and functions as a classic morphogen to regulate pattern and growth by diffusing throughout imaginal discs. However, the role of TGFβ/Activin-like ligands in disc growth control remains ill-defined. Here, we demonstrate that Myoglianin (Myo), an Activin family member, and a close homolog of mammalian Myostatin (Mstn), is a muscle-derived extrinsic factor that uses canonical dSmad2-mediated signaling to regulate wing size. We propose that Myo is a myokine that helps mediate an allometric relationship between muscles and their associated appendages.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| |
Collapse
|
40
|
Assessing the influence of allometry on sexual and non-sexual traits: An example in Cicindelidia trifasciata (Coleoptera: Cicindelinae) using geometric morphometrics. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Ecological Drivers and Sex-Based Variation in Body Size and Shape in the Queensland Fruit Fly, Bactrocera tryoni (Diptera: Tephritidae). INSECTS 2020; 11:insects11060390. [PMID: 32586012 PMCID: PMC7348979 DOI: 10.3390/insects11060390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/05/2022]
Abstract
The Queensland fruit fly (Bactrocera tryoni; Q-fly) is an Australian endemic horticultural pest species, which has caused enormous economic losses. It has the potential to expand its range to currently Q-fly-free areas and poses a serious threat to the Australian horticultural industry. A large number of studies have investigated the correlation between environmental factors and Q-fly development, reproduction, and expansion. However, it is still not clear how Q-fly morphological traits vary with the environment. Our study focused on three morphological traits (body size, wing shape, and fluctuating asymmetry) in Q-fly samples collected from 1955 to 1965. We assessed how these traits vary by sex, and in response to latitude, environmental variables, and geographic distance. First, we found sexual dimorphism in body size and wing shape, but not in fluctuating asymmetry. Females had a larger body size but shorter and wider wings than males, which may be due to reproductive and/or locomotion differences between females and males. Secondly, the body size of Q-flies varied with latitude, which conforms to Bergmann’s rule. Finally, we found Q-fly wing shape was more closely related to temperature rather than aridity, and low temperature and high aridity may lead to high asymmetry in Q-fly populations.
Collapse
|
42
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Benítez HA, Sukhodolskaya RA, Órdenes-Clavería R, Avtaeva TA, Kushalieva SA, Saveliev AA. Measuring the Inter and Intraspecific Sexual Shape Dimorphism and Body Shape Variation in Generalist Ground Beetles in Russia. INSECTS 2020; 11:insects11060361. [PMID: 32531974 PMCID: PMC7349662 DOI: 10.3390/insects11060361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Ground beetles in multiple species vary greatly in the expression of the shape on sexual traits, resulting in a sexual shape dimorphism as a consequence of sexual selection differences. The present research focuses on the study of inter and intrasexual sexual shape dimorphism of two generalist genera of ground beetles Pterostichus and Carabus. Geometric morphometric methods were applied to five generalist species of ground beetles Carabus exaratus, C. granulatus, Pterostichus melanarius, P. niger, and P. oblongopunctatus and several multivariate analyses were applied for two different traits, abdomen and elytra. Three of the five species analyzed showed high levels of sex-based shape dimorphism. However, the most generalist species, P. melanarius and P. oblongopunctatus, did not evidence shape-based sexual dimorphism differentiation in both of the analyzed traits, as statistically confirmed based on the permutation of pairwise comparison of the Mahalanobis distances of a sex–species classifier. It is generally known that environmental stress in natural populations can affect the fitness expression, principally related to sexual fecundity, being that this pattern is more evident in non-generalist species. In our results, the contrary pattern was found, with the absence of sexual shape dimorphism for two of the three generalist species analyzed. On the other hand, the interspecies shape variation was clearly identified using principal component analysis of both of the analyzed traits. Finally, this research is the first to analyze the relationship between sexual shape dimorphism in Russian ground beetles, evidencing the lack of understanding of the mechanism underlying the sexual dimorphism, especially in species living in extreme environments.
Collapse
Affiliation(s)
- Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile;
- Correspondence: ; Tel.: +56-978895630
| | - Raisa A. Sukhodolskaya
- Institute of Ecology and Mineral Resource Management Academy of Sciences of Tatarstan Republic, Tatarstan, Kazan 420000, Russia;
| | - Rodrigo Órdenes-Clavería
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Tamara A. Avtaeva
- Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, Grozny 364014, Russia;
| | - Shapaat A. Kushalieva
- Department of Biology and Methods of Teaching (Head), Chechen State Pedagogical University, Grozny 364014, Russia;
| | - Anatoly A. Saveliev
- Department of Ecosystem Modeling, Kazan (Volga Region) Federal University, Kazan 420000, Russia;
| |
Collapse
|
44
|
Cook DF, Voss SC, Finch JTD, Rader RC, Cook JM, Spurr CJ. The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. INSECTS 2020; 11:E341. [PMID: 32498457 PMCID: PMC7349676 DOI: 10.3390/insects11060341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Australian horticulture relies heavily on the introduced managed honey bee, Apis mellifera Linnaeus 1758 (Hymenoptera: Apidae), to pollinate crops. Given the risks associated with reliance upon a single species, it would be prudent to identify other taxa that could be managed to provide crop pollination services. We reviewed the literature relating to the distribution, efficiency and management potential of a number of flies (Diptera) known to visit pollinator-dependent crops in Australia and worldwide. Applying this information, we identified the taxa most suitable to play a greater role as managed pollinators in Australian crops. Of the taxa reviewed, flower visitation by representatives from the dipteran families Calliphoridae, Rhiniidae and Syrphidae was frequently reported in the literature. While data available are limited, there was clear evidence of pollination by these flies in a range of crops. A review of fly morphology, foraging behaviour and physiology revealed considerable potential for their development as managed pollinators, either alone or to augment honey bee services. Considering existing pollination evidence, along with the distribution, morphology, behaviour and life history traits of introduced and endemic species, 11 calliphorid, two rhiniid and seven syrphid species were identified as candidates with high potential for use in Australian managed pollination services. Research directions for the comprehensive assessment of the pollination abilities of the identified taxa to facilitate their development as a pollination service are described. This triage approach to identifying species with high potential to become significant managed pollinators at local or regional levels is clearly widely applicable to other countries and taxa.
Collapse
Affiliation(s)
- David F Cook
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Sasha C Voss
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Jonathan T D Finch
- Plants Animals and Interactions, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (J.T.D.F.); (J.M.C.)
| | - Romina C Rader
- School of Environmental and Rural Science, University of New England, Madgewick Drive, Armidale, NSW 2351, Australia;
| | - James M Cook
- Plants Animals and Interactions, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (J.T.D.F.); (J.M.C.)
| | - Cameron J Spurr
- SeedPurity Pty Ltd., 2 Derwent Avenue, Margate, Tasmania 7054, Australia;
| |
Collapse
|
45
|
Rohner PT. Evolution of multivariate wing allometry in schizophoran flies (Diptera: Schizophora). J Evol Biol 2020; 33:831-841. [PMID: 32145126 PMCID: PMC7318208 DOI: 10.1111/jeb.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/12/2023]
Abstract
The proximate and ultimate mechanisms underlying scaling relationships as well as their evolutionary consequences remain an enigmatic issue in evolutionary biology. Here, I investigate the evolution of wing allometries in the Schizophora, a group of higher Diptera that radiated about 65 million years ago, by studying static allometries in five species using multivariate approaches. Despite the vast ecological diversity observed in contemporary members of the Schizophora and independent evolutionary histories throughout most of the Cenozoic, size-related changes represent a major contributor to overall variation in wing shape, both within and among species. Static allometries differ between species and sexes, yet multivariate allometries are correlated across species, suggesting a shared developmental programme underlying size-dependent phenotypic plasticity. Static allometries within species also correlate with evolutionary divergence across 33 different families (belonging to 11 of 13 superfamilies) of the Schizophora. This again points towards a general developmental, genetic or evolutionary mechanism that canalizes or maintains the covariation between shape and size in spite of rapid ecological and morphological diversification during the Cenozoic. I discuss the putative roles of developmental constraints and natural selection in the evolution of wing allometry in the Schizophora.
Collapse
|
46
|
Serio C, Raia P, Meloro C. Locomotory Adaptations in 3D Humerus Geometry of Xenarthra: Testing for Convergence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
47
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Papp D, Mizser S, Nagy L, Vidic A, Simon E, Tóthmérész B. Changes in Morphometric Traits of Ground Beetles Along Urbanization Gradients. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5700578. [PMID: 31925424 PMCID: PMC6954386 DOI: 10.1093/jisesa/iez127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Urbanization has a significant impact on abiotic and biotic factors in nature. We examined the morphometric characters of four carabid species (Abax parallelepipedus, Carabus scheidleri, Carabus violaceus, and Pterostichus oblongopunctatus) along urbanization gradients in and around the cities of Vienna (Austria) and Debrecen (Hungary). We found significant differences among urban, suburban, and rural areas in the parameters of antennomers, the maxillary palpus, the labial palpus, and the length of the tibia and the elytra of the carabids studied. We also found significant differences between males and females based on the parameters of antennomers, the maxillary palpus, the labial palpus, the femur, and the elytra. An interaction between urbanization and sex was found in the case of antennomers, the maxillary palpus, the labial palpus, the femur, and the elytra. Our findings suggested that in the cases of species from Carabini tribus the parameters of antennomers, the maxillary palpus, and the elytra could be useful for assessing the effects of urbanization because these morphometric characters responded sensitively to the environmental stress, whereas the most useful parameters are those of antennomers and the tibia for the species of Pterostichini tribus. Our findings also revealed that females are more sensitive to environmental stress than males.
Collapse
Affiliation(s)
- Dalma Papp
- Department of Ecology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Szabolcs Mizser
- MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Leila Nagy
- Department of Ecology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Andreas Vidic
- Department für Naturschutzbiologie, Vegetations- und Landschaftsökologie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Edina Simon
- Department of Ecology, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
- Corresponding author, e-mail:
| | - Béla Tóthmérész
- MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, Debrecen H-4032, Hungary
| |
Collapse
|
49
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
50
|
Moss-Taylor L, Upadhyay A, Pan X, Kim MJ, O'Connor MB. Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics 2019; 213:1447-1464. [PMID: 31585954 PMCID: PMC6893369 DOI: 10.1534/genetics.119.302394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/29/2019] [Indexed: 01/17/2023] Open
Abstract
Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinβ (Actβ), a member of the TGF-β superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actβ mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actβ control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actβ is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actβ is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.
Collapse
Affiliation(s)
- Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|