1
|
Zhang Q, Liu W, Zhao H, Zhang Z, Qin H, Luo F, Niu Q. Developmental perfluorooctane sulfonate exposure inhibits long-term potentiation by affecting AMPA receptor trafficking. Toxicology 2018; 412:55-62. [PMID: 30508566 DOI: 10.1016/j.tox.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022]
Abstract
Both animal study and epidemiological survey revealed the associations between defects of cognitive function and the developmental exposure to perfluorooctane sulfonate (PFOS), while the mechanism is not well known. The SD rats were exposed PFOS at 1.7, 5 and 15 mg/L by drinking water from gestation to the adulthood of the pups for evaluating the effects of PFOS exposure on long-term potentiation (LTP) and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors trafficking. Whole-life exposure of PFOS beginning in utero to adulthood significantly inhibited the induction and expression of LTP, and the input/output curve (I/O) and paired-pulse facilitation (PPF) were moderately suppressed, suggesting that PFOS might affect the synaptic transmission and plasticity both in pre- and post-synaptic cells. Meanwhile, PFOS decreased the mRNA levels of AMPA receptor subunits GluA1 and GluA2, and the protein amounts in the membrane, with the total GluA1 and GluA2 protein amounts increased, indicating the internalization of AMPA receptors. Furthermore, tests in the primary hippocampal neurons also support the decreased mRNA levels of GluA1 and GluA2 induced by PFOS. After the pretreatment of AMPA antagonist (NBQX), PFOS decreased the expression of GluA1 and GluA2 and increased internal cellular calcium at much lower levels than that in the neurons without NBQX treatment. The results provide electrophysiological evidence for the impaired cognitive function induced by PFOS exposure and revealed the critical role of AMPA receptor involved.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China; Aquacultural Engineering R&D Center, School of Marine Technology and Environment Institute, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Zhou Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Fang Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
2
|
Gallo A, Vukic D, Michalík D, O’Connell MA, Keegan LP. ADAR RNA editing in human disease; more to it than meets the I. Hum Genet 2017; 136:1265-1278. [DOI: 10.1007/s00439-017-1837-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
|
3
|
Taylor-Wells J, Jones AK. Variations in the Insect GABA Receptor, RDL, and Their Impact on Receptor Pharmacology. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1265.ch001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennina Taylor-Wells
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| | - Andrew K. Jones
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| |
Collapse
|
4
|
Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:3018-28. [PMID: 25245478 DOI: 10.1016/j.bbamcr.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 11/22/2022]
Abstract
Neuronal activity is highly dependent on energy metabolism. Nuclear respiratory factor 2 (NRF-2) tightly couples neuronal activity and energy metabolism by transcriptionally co-regulating all 13 subunits of an important energy-generating enzyme, cytochrome c oxidase (COX), as well as critical subunits of excitatory NMDA receptors. AMPA receptors are another major class of excitatory glutamatergic receptors that mediate most of the fast excitatory synaptic transmission in the brain. They are heterotetrameric proteins composed of various combinations of GluA1-4 subunits, with GluA2 being the most common one. We have previously shown that GluA2 (Gria2) is transcriptionally regulated by nuclear respiratory factor 1 (NRF-1) and specificity protein 4 (Sp4), which also regulate all subunits of COX. However, it was not known if NRF-2 also couples neuronal activity and energy metabolism by regulating subunits of the AMPA receptors. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate the expression of Gria2, but not of Gria1, Gria3, or Gria4 genes in neurons. By regulating the GluA2 subunit of the AMPA receptor, NRF-2 couples energy metabolism and neuronal activity at the transcriptional level through a concurrent and parallel mechanism with NRF-1 and Sp4.
Collapse
|
5
|
Posttranscriptional recoding by RNA editing. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:193-224. [PMID: 22243585 DOI: 10.1016/b978-0-12-386497-0.00006-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The posttranscriptional recoding of nuclear RNA transcripts has emerged as an important regulatory mechanism during eukaryotic gene expression. In particular the deamination of adenosine to inosine (interpreted by the translational machinery as a guanosine) is a frequent event that can recode the meaning of amino acid codons in translated exons, lead to structural changes in the RNA fold, or may affect splice consensus or regulatory sequence sites in noncoding exons or introns and modulate the biogenesis of small RNAs. The molecular mechanism of how the RNA editing machinery and its substrates recognize and interact with each other is not understood well enough to allow for the ab initio delineation of bona fide RNA editing sites. However, progress in the identification of various physiological modification sites and their characterization has given important insights regarding molecular features and events critical for productive RNA editing reactions. In addition, structural studies using components of the RNA editing machinery and together with editing competent substrate molecules have provided information on the chemical mechanism of adenosine deamination within the context of RNA molecules. Here, I give an overview of the process of adenosine deamination RNA editing and describe its relationship to other RNA processing events and its currently established roles in gene regulation.
Collapse
|
6
|
Young A, Machacek DW, Dhara SK, Macleish PR, Benveniste M, Dodla MC, Sturkie CD, Stice SL. Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 2011; 192:793-805. [PMID: 21672611 DOI: 10.1016/j.neuroscience.2011.04.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/24/2022]
Abstract
Human neural progenitor cells differentiated from human embryonic stem cells offer a potential cell source for studying neurodegenerative diseases and for drug screening assays. Previously, we demonstrated that human neural progenitors could be maintained in a proliferative state with the addition of leukemia inhibitory factor and basic fibroblast growth factor. Here we demonstrate that 96 h after removal of basic fibroblast growth factor the neural progenitor cell culture was significantly altered and cell replication halted. Fourteen days after the removal of basic fibroblast growth factor, most cells expressed microtubule-associated protein 2 and TUJ1, markers characterizing a post-mitotic neuronal phenotype as well as neural developmental markers Cdh2 and Gbx2. Real-time PCR was performed to determine the ionotropic receptor subunit expression profile. Differentiated neural progenitors express subunits of glutamatergic, GABAergic, nicotinic, purinergic and transient receptor potential receptors. In addition, sodium and calcium channel subunits were also expressed. Functionally, virtually all the hNP cells tested under whole-cell voltage clamp exhibited delayed rectifier potassium channel currents and some differentiated cells exhibited tetrodotoxin-sensitive, voltage-dependent sodium channel current. Action potentials could also be elicited by currents injection under whole-cell current clamp in a minority of cells. These results indicate that removing basic fibroblast growth factor from the neural progenitor cell cultures leads to a post-mitotic state, and has the capability to produce excitable cells that can generate action potentials, a landmark characteristic of a neuronal phenotype. This is the first report of an efficient and simple means of generating human neuronal cells for ionotropic receptor assays and ultimately for electrically active human neural cell assays for drug discovery.
Collapse
Affiliation(s)
- A Young
- Regenerative Bioscience Center, 425 River Road Room 450, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mahajan SS, Thai KH, Chen K, Ziff E. Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience 2011; 189:305-15. [PMID: 21620933 DOI: 10.1016/j.neuroscience.2011.05.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 02/02/2023]
Abstract
AMPA receptors are glutamate receptors that are tetramers of various combinations of GluR1-4 subunits. AMPA receptors containing GluR1, 3 and 4 are Ca2+ permeable, however, AMPA receptors containing even a single subunit of GluR2 are Ca2+ impermeable. Most AMPA receptors are Ca2+ impermeable due to the presence of GluR2. GluR2 confers special properties on AMPA receptors through the presence of arginine at the pore apex; other subunits (GluR1, 3, 4) contain glutamine at the pore apex and allow Ca2+ influx. Normally, an RNA editing step changes DNA-encoded glutamine to arginine, introduces arginine in the GluR2 pore apex. GluR2 RNA editing is carried out by an RNA-dependent adenosine deaminase (ADAR2). Loss of GluR2 editing leads to the formation of highly excitotoxic AMPA channels [Mahajan and Ziff (2007) Mol Cell Neurosci 35:470-481] and is shown to contribute to loss of motor neurons in amyotrophic lateral sclerosis (ALS). Relatively higher levels of Ca2+-permeable AMPA receptors are found in motor neurons and this has been correlated with lower GluR2 mRNA levels. However, the reason for loss of GluR2 editing is not known. Here we show that exposure of neurons to excitotoxic levels of glutamate leads to specific cleavage of ADAR2 that leads to generation of unedited GluR2. We demonstrate that cleaved ADAR2 leads to a decrease or loss of GluR2 editing, which will further result in high Ca2+ influx and excitotoxic neuronal death.
Collapse
Affiliation(s)
- S S Mahajan
- School of Health Sciences, Hunter College, CUNY, New York, NY 10010, USA.
| | | | | | | |
Collapse
|
8
|
Clarkson C, Juíz JM, Merchán MA. Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablation. J Comp Neurol 2011; 518:4261-76. [PMID: 20878787 DOI: 10.1002/cne.22453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study we analyzed the effects in the inferior colliculus of a unilateral ablation of the auditory cortex in rats. Variations in both calretinin immunoreactivity and protein levels determined by Western blot suggest that such lesions induce changes in the regulation of this calcium-binding protein. Stereological counts of calretinin-immunoreactive neurons in the inferior colliculus 15, 90, and 180 days after the lesion showed a progressive increase in the number of immunoreactive neurons, with a parallel increase in the intensity of staining. Two hundred forty days after the cortical lesion, both the number of immunoreactive neurons and the staining intensity had returned to control values. The effects of the cortical lesion on calretinin regulation are more intense in those inferior colliculus subdivisions more densely innervated by the corticocollicular projection. This finding, along with the time course of calretinin regulation suggests that degeneration of the descending projection is linked to calretinin regulation in the inferior colliculus. We hypothesize, based on the role of calretinin, that the observed increase in immunoreactivity levels seen in the inferior colliculus after lesioning of the auditory cortex may be related to altered excitability in deafferented neurons. Our finding, may reflect adaptive mechanisms to changes in calcium influx and excitability in inferior colliculus neurons induced by lesions of the descending projection from the cortex to the inferior colliculus.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Salamanca, Spain
| | | | | |
Collapse
|
9
|
Abstract
The main type of RNA editing in mammals is the conversion of adenosine to inosine which is translated as if it were guanosine. The enzymes that catalyze this reaction are ADARs (adenosine deaminases that act on RNA), of which there are four in mammals, two of which are catalytically inactive. ADARs edit transcripts that encode proteins expressed mainly in the CNS and editing is crucial to maintain a correctly functioning nervous system. However, the majority of editing has been found in transcripts encoding Alu repeat elements and the biological role of this editing remains a mystery. This chapter describes in detail the different ADAR enzymes and the phenotype of animals that are deficient in their activity. Besides being enzymes, ADARs are also double-stranded RNA-binding proteins, so by binding alone they can interfere with other processes such as RNA interference. Lack of editing by ADARs has been implicated in disorders such as forebrain ischemia and Amyotrophic Lateral Sclerosis (ALS) and this will also be discussed.
Collapse
Affiliation(s)
- Marion Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
10
|
Lee S, Yang G, Yong Y, Liu Y, Zhao L, Xu J, Zhang X, Wan Y, Feng C, Fan Z, Liu Y, Luo J, Ke ZJ. ADAR2-dependent RNA editing of GluR2 is involved in thiamine deficiency-induced alteration of calcium dynamics. Mol Neurodegener 2010; 5:54. [PMID: 21110885 PMCID: PMC3006372 DOI: 10.1186/1750-1326-5-54] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/27/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Thiamine (vitamin B1) deficiency (TD) causes mild impairment of oxidative metabolism and region-selective neuronal loss in the central nervous system (CNS). TD in animals has been used to model aging-associated neurodegeneration in the brain. The mechanisms of TD-induced neuron death are complex, and it is likely multiple mechanisms interplay and contribute to the action of TD. In this study, we demonstrated that TD significantly increased intracellular calcium concentrations [Ca2+]i in cultured cortical neurons. RESULTS TD drastically potentiated AMPA-triggered calcium influx and inhibited pre-mRNA editing of GluR2, a Ca2+-permeable subtype of AMPA receptors. The Ca2+ permeability of GluR2 is regulated by RNA editing at the Q/R site. Edited GluR2 (R) subunits form Ca2+-impermeable channels, whereas unedited GluR2 (Q) channels are permeable to Ca2+ flow. TD inhibited Q/R editing of GluR2 and increased the ratio of unedited GluR2. The Q/R editing of GluR2 is mediated by adenosine deaminase acting on RNA 2 (ADAR2). TD selectively decreased ADAR2 expression and its self-editing ability without affecting ADAR1 in cultured neurons and in the brain tissue. Over-expression of ADAR2 reduced AMPA-mediated rise of [Ca2+]i and protected cortical neurons against TD-induced cytotoxicity, whereas down-regulation of ADAR2 increased AMPA-elicited Ca2+ influx and exacerbated TD-induced death of cortical neurons. CONCLUSIONS Our findings suggest that TD-induced neuronal damage may be mediated by the modulation of ADAR2-dependent RNA Editing of GluR2.
Collapse
Affiliation(s)
- Shuchen Lee
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liyun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- Department of Anesthesiology, Gongli Hospital, Pudong, Shanghai, China
| | - Xiaomin Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjie Wan
- Department of Anesthesiology, Gongli Hospital, Pudong, Shanghai, China
| | - Chun Feng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Internal Medicine, University of Kentucky College of Medicine, 130 Bosomworth Health Science Research Building, 1095 Veterans Drive, Lexington, Kentucky 40536, USA
| | - Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Vieira M, Fernandes J, Burgeiro A, Thomas GM, Huganir RL, Duarte CB, Carvalho AL, Santos AE. Excitotoxicity through Ca2+-permeable AMPA receptors requires Ca2+-dependent JNK activation. Neurobiol Dis 2010; 40:645-55. [PMID: 20708684 DOI: 10.1016/j.nbd.2010.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/10/2010] [Accepted: 08/05/2010] [Indexed: 01/21/2023] Open
Abstract
The GluA4-containing Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (Ca-AMPARs) were previously shown to mediate excitotoxicity through mechanisms involving the activator protein-1 (AP-1), a c-Jun N-terminal kinase (JNK) substrate. To further investigate JNK involvement in excitotoxic pathways coupled to Ca-AMPARs we used HEK293 cells expressing GluA4-containing Ca-AMPARs (HEK-GluA4). Cell death induced by overstimulation of Ca-AMPARs was mediated, at least in part, by JNK. Importantly, JNK activation downstream of these receptors was dependent on the extracellular Ca(2+) concentration. In our quest for a molecular link between Ca-AMPARs and the JNK pathway we found that the JNK interacting protein-1 (JIP-1) interacts with the GluA4 subunit of AMPARs through the N-terminal domain. In vivo, the excitotoxin kainate promoted the association between GluA4 and JIP-1 in the rat hippocampus. Taken together, our results show that the JNK pathway is activated by Ca-AMPARs upon excitotoxic stimulation and suggest that JIP-1 may contribute to the propagation of the excitotoxic signal.
Collapse
Affiliation(s)
- M Vieira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
12
|
The AMPA receptor as a therapeutic target: current perspectives and emerging possibilities. Future Med Chem 2010; 2:877-91. [DOI: 10.4155/fmc.10.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a subtype of the ionotropic glutamate receptors that plays a prominent role in neurotransmission and is widespread throughout the CNS. Because of this, its malfunction can result in a multitude of nervous system diseases. This review looks at compounds that are able to modulate AMPAR function by binding to one of several sites on the receptor that either downregulate its function (competitive, noncompetitive and uncompetitive antagonists) or upregulate its function (positive modulators). It will also give an account of the various diseases that have implicated AMPAR dysfunction and how specific types of AMPAR modulator may be beneficial in their treatment. The AMPAR remains an unexploited but important therapeutic target.
Collapse
|
13
|
Kwak S, Hideyama T, Yamashita T, Aizawa H. AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 2010; 30:182-8. [DOI: 10.1111/j.1440-1789.2009.01090.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H. Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin Ther Targets 2010; 14:369-85. [DOI: 10.1517/14728221003652489] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Biotech paper watch. Biotechnol J 2008. [DOI: 10.1002/biot.200890111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|