1
|
Olajide JS, Olopade B, Cai J. Functional Intricacy and Symmetry of Long Non-Coding RNAs in Parasitic Infections. Front Cell Infect Microbiol 2021; 11:751523. [PMID: 34692567 PMCID: PMC8531492 DOI: 10.3389/fcimb.2021.751523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
RNAs are a class of molecules and the majority in eukaryotes are arbitrarily termed non- coding transcripts which are broadly classified as short and long non-coding RNAs. Recently, knowledge of the identification and functions of long non-coding RNAs have continued to accumulate and they are being recognized as important molecules that regulate parasite-host interface, parasite differentiation, host responses, and disease progression. Herein, we present and integrate the functions of host and parasite long non-coding RNAs during infections within the context of epigenetic re-programming and molecular crosstalk in the course of host-parasite interactions. Also, the modular range of parasite and host long non-coding RNAs in coordinated parasite developmental changes and host immune dynamic landscapes are discussed. We equally canvass the prospects of long non-coding RNAs in disease diagnosis and prognosis. Hindsight and suggestions are offered with the aim that it will bolster our understanding for future works on host and parasite long non-coding RNAs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Institute of Veterinary Research Chinese Academy of Agricultural Sciences, Lanzhou, China.,Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bolatito Olopade
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Institute of Veterinary Research Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
2
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
3
|
Benz C, Lo W, Fathallah N, Connor-Guscott A, Benns HJ, Urbaniak MD. Dynamic regulation of the Trypanosoma brucei transferrin receptor in response to iron starvation is mediated via the 3'UTR. PLoS One 2018; 13:e0206332. [PMID: 30596656 PMCID: PMC6312234 DOI: 10.1371/journal.pone.0206332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/14/2018] [Indexed: 12/04/2022] Open
Abstract
The bloodstream form of the parasite Trypanosoma brucei obtains iron from its mammalian host by receptor-mediated endocytosis of host transferrin through its own unique transferrin receptor (TbTfR). Expression of TbTfR rapidly increases upon iron starvation by post-transcriptional regulation through a currently undefined mechanism that is distinct from the mammalian iron response system. We have created reporter cell lines by fusing the TbTfR 3’UTR or a control Aldolase 3’UTR to reporter genes encoding GFP or firefly Luciferase, and inserted the fusions into a bloodstream form cell line at a tagged ribosomal RNA locus. Fusion of the TbTfR 3’UTR is sufficient to significantly repress the expression of the reporter proteins under normal growth conditions. Under iron starvation conditions we observed upregulation of the mRNA and protein level of the TbTfR 3’UTR fusions only, with a magnitude and timing consistent with that reported for upregulation of the TbTfR. We conclude that the dynamic regulation of the T. brucei transferrin receptor in response to iron starvation is mediated via its 3’UTR, and that the effect is independent of genomic location.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Winston Lo
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Nadin Fathallah
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Ashley Connor-Guscott
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Henry J. Benns
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Michael D. Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Hartel AJW, Glogger M, Jones NG, Abuillan W, Batram C, Hermann A, Fenz SF, Tanaka M, Engstler M. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nat Commun 2016; 7:12870. [PMID: 27641538 PMCID: PMC5031801 DOI: 10.1038/ncomms12870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.
Collapse
Affiliation(s)
- Andreas J. W. Hartel
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Marius Glogger
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Nicola G. Jones
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Christopher Batram
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Anne Hermann
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Susanne F. Fenz
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
- Institute for Integrated Cell-Material Science (WPI iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Markus Engstler
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
5
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Damerow M, Graalfs F, Güther MLS, Mehlert A, Izquierdo L, Ferguson MAJ. A Gene of the β3-Glycosyltransferase Family Encodes N-Acetylglucosaminyltransferase II Function in Trypanosoma brucei. J Biol Chem 2016; 291:13834-45. [PMID: 27189951 PMCID: PMC4919465 DOI: 10.1074/jbc.m116.733246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1-3 and Manα1-6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328-9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1-6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1-3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1-2 glycosidic linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Frauke Graalfs
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - M Lucia S Güther
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Angela Mehlert
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luis Izquierdo
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Michael A J Ferguson
- From the Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
7
|
Patel N, Pirani KA, Zhu T, Cheung-See-Kit M, Lee S, Chen DG, Zufferey R. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei. J Eukaryot Microbiol 2016; 63:598-609. [PMID: 26909872 DOI: 10.1111/jeu.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/30/2016] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
Abstract
Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence.
Collapse
Affiliation(s)
- Nipul Patel
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439
| | - Karim A Pirani
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, 66506
| | - Tongtong Zhu
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439
| | - Melanie Cheung-See-Kit
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439
| | - Sungsu Lee
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439
| | - Daniel G Chen
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439
| | - Rachel Zufferey
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, New York, 11439.,Department of Biochemistry, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
8
|
Rashmi M, Swati D. In silico drug re-purposing against African sleeping sickness using GlcNAc-PI de-N-acetylase as an experimental target. Comput Biol Chem 2015; 59 Pt A:87-94. [PMID: 26476127 DOI: 10.1016/j.compbiolchem.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Trypanosoma brucei is a protozoan that causes African sleeping sickness in humans. Many glycoconjugate compounds are present on the entire cell surface of Trypanosoma brucei to control the infectivity and survival of this pathogen. These gycoconjugates are anchored to the plasma membrane with the help of glycosyl phosphatidyl inositol (GPI) anchors. This type of anchor is much more common in protozoans than in other eukaryotes. The second step of glycosyl phosphatidyl inositol (GPI) anchor biosynthesis is catalyzed by an enzyme, which is GlcNAc-PI de-N-acetylase. GlcNAc-PI de-N-acetylase has a conserved GPI domain, which is responsible for the functionality of this enzyme. In this study, the three-dimensional structure of the target is modelled by I-TASSER and the ligand is modelled by PRODRG server. It is found that the predicted active site residues of the GPI domain are ultra-conserved for the Trypanosomatidae family. The predicted active site residues are His41, Pro42, Asp43, Asp44, Met47, Phe48, Ser74, Arg80, His103, Val144, Ser145, His147 and His150. Two hydrogen bond acceptors and four hydrogen bond donors are found in the modelled pharmacophore. All compounds of the Drugbank database and twenty three known inhibitors have been considered for structure based virtual screening. This work is focused on approved drugs because they are already tested for safety and effectiveness in humans. After the structure-based virtual screening, seventeen approved drugs and two inhibitors are found, which interact with the ligand on the basis of the designed pharmacophore. The docking has been performed for the resultant seventeen approved drugs and two known inhibitors. Two approved drugs have negative binding energy and their pKa values are similar to the selected known inhibitors. The result of this study suggests that the approved drugs Ethambutol (DB00330) and Metaraminol (DB00610) may prove useful in the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- Mayank Rashmi
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi 221005, India.
| | - D Swati
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi 221005, India; Department of Physics, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Izquierdo L, Acosta-Serrano A, Mehlert A, Ferguson MA. Identification of a glycosylphosphatidylinositol anchor-modifying β1-3 galactosyltransferase in Trypanosoma brucei. Glycobiology 2014; 25:438-47. [PMID: 25467966 PMCID: PMC4339879 DOI: 10.1093/glycob/cwu131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African sleeping sickness and the cattle disease nagana. Trypanosoma brucei is dependent on glycoproteins for its survival and infectivity throughout its life cycle. Here we report the functional characterization of TbGT3, a glycosyltransferase expressed in the bloodstream and procyclic form of the parasite. Bloodstream and procyclic form TbGT3 conditional null mutants were created and both exhibited normal growth under permissive and nonpermissive conditions. Under nonpermissive conditions, the normal glycosylation of the major glycoprotein of bloodstream form T. brucei, the variant surface glycoprotein and the absence of major alterations in lectin binding to other glycoproteins suggested that the major function of TbGT3 occurs in the procyclic form of the parasite. Consistent with this, the major surface glycoprotein of the procyclic form, procyclin, exhibited a marked reduction in molecular weight due to changes in glycosylphosphatidylinositol (GPI) anchor side chains. Structural analysis of the mutant procyclin GPI anchors indicated that TbGT3 encodes a UDP-Gal: β-GlcNAc-GPI β1-3 Gal transferase. Despite the alterations in GPI anchor side chains, TbGT3 conditional null mutants remained infectious to tsetse flies under nonpermissive conditions.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Alvaro Acosta-Serrano
- Department of Parasitology Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Mehlert
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Aj Ferguson
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Manna PT, Boehm C, Leung KF, Natesan SK, Field MC. Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol 2014; 30:251-8. [PMID: 24731931 PMCID: PMC4007029 DOI: 10.1016/j.pt.2014.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored.
Collapse
Affiliation(s)
- Paul T Manna
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Cordula Boehm
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Senthil Kumar Natesan
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
11
|
Lilley AC, Major L, Young S, Stark MJR, Smith TK. The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form Trypanosoma brucei. Mol Microbiol 2014; 92:453-70. [PMID: 24533860 PMCID: PMC4114554 DOI: 10.1111/mmi.12553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP‐DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP‐DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non‐viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell‐cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol‐phosphate synthase is not synthesized from CDP‐DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP‐DAG for the phosphatidylinositol synthases.
Collapse
Affiliation(s)
- Alison C Lilley
- Biomedical Sciences Research Centre, School of Biology, The University of St. Andrews, The North Haugh, St. Andrews, Fife Scotland, KY16 9ST, UK
| | | | | | | | | |
Collapse
|
12
|
Damerow M, Rodrigues JA, Wu D, Güther MLS, Mehlert A, Ferguson MAJ. Identification and functional characterization of a highly divergent N-acetylglucosaminyltransferase I (TbGnTI) in Trypanosoma brucei. J Biol Chem 2014; 289:9328-39. [PMID: 24550396 PMCID: PMC3979372 DOI: 10.1074/jbc.m114.555029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triantennary Man5GlcNAc2, which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom and
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Trypanosomiasis remains one of the most serious constraints to economic development in sub-Saharan Africa and, as a consequence, related research has been subject to strong social and political as well as scientific influences. The epidemics of sleeping sickness that occurred at the turn of the 20th Century focussed research efforts on what became known as 'the colonial disease'. This focus is thought to have produced 'vertical' health services aimed at this one disease, while neglecting other important health issues. Given the scale of these epidemics, and the fact that the disease is fatal if left untreated, it is unsurprising that sleeping sickness dominated colonial medicine. Indeed, recent evidence indicates that, if anything, the colonial authorities greatly under-estimated the mortality attributable to sleeping sickness. Differences in approach to disease control between Francophone and Anglophone Africa, which in the past have been considered ideological, on examination prove to be logical, reflecting the underlying epidemiological divergence of East and West Africa. These epidemiological differences are ancient in origin, pre-dating the colonial period, and continue to the present day. Recent research has produced control solutions, for the African trypanosomiases of humans and livestock, that are effective, affordable and sustainable by small-holder farmers. Whether these simple solutions are allowed to fulfil their promise and become fully integrated into agricultural practice remains to be seen. After more than 100 years of effort, trypanosomiasis control remains a controversial topic, subject to the tides of fashion and politics.
Collapse
Affiliation(s)
- I Maudlin
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin EH25 9RG, UK.
| |
Collapse
|
14
|
Pérez JC, Kumamoto CA, Johnson AD. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol 2013; 11:e1001510. [PMID: 23526879 PMCID: PMC3601966 DOI: 10.1371/journal.pbio.1001510] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
The identification of regulators, circuits, and target genes employed by the fungus Candida albicans to thrive in disparate niches in a mammalian host reveals interconnection between commensal and pathogenic lifestyles. Systemic, life-threatening infections in humans are often caused by bacterial or fungal species that normally inhabit a different locale in our body, particularly mucosal surfaces. A hallmark of these opportunistic pathogens, therefore, is their ability to thrive in disparate niches within the host. In this work, we investigate the transcriptional circuitry and gene repertoire that enable the human opportunistic fungal pathogen Candida albicans to proliferate in two different niches. By screening a library of transcription regulator deletion strains in mouse models of intestinal colonization and systemic infection, we identified eight transcription regulators that play roles in at least one of these models. Using genome-wide chromatin immunoprecipitation, we uncovered a network comprising ∼800 target genes and a tightly knit transcriptional regulatory circuit at its core. The network is enriched with genes upregulated in C. albicans cells growing in the host. Our findings indicate that many aspects of commensalism and pathogenicity are intertwined and that the ability of this microorganism to colonize multiple niches relies on a large, integrated circuit. Our skin and mouth, as well as our genital and gastrointestinal tracts, are laden with microorganisms belonging to all three domains of life (bacteria, archaea, and eukaryotes). Much of the time these commensal microorganisms are not only harmless but provide advantages to us. However, when the host's defenses are compromised, some members of the normal flora, such as the fungus C. albicans, can cross the host's protective barriers and colonize virtually every internal organ causing life-threatening conditions. The environment found in the bloodstream and internal organs is presumably distinct from the mucosal surfaces where our flora typically resides. Whether opportunistic pathogens such as C. albicans rely on common or separate gene repertoires to thrive in each of these locales is largely unknown. To address this question we carried out genetic screens in mouse models that recapitulate niches where C. albicans thrives and used genome-wide experimental approaches to uncover the genes required to proliferate in each environment. In fact, the ability of C. albicans to colonize disparate niches within a mammalian host relies on a large, integrated circuit. Our observations suggest that at least some key gene circuits are not dedicated to one niche or another. Rather, thriving in various locales of the host seems to involve the complex regulation of multiple processes, which may allow C. albicans to adjust to different environments.
Collapse
Affiliation(s)
- J Christian Pérez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America.
| | | | | |
Collapse
|
15
|
Izquierdo L, Güther MLS, Ferguson MAJ. Creation and characterization of glycosyltransferase mutants of Trypanosoma brucei. Methods Mol Biol 2013; 1022:249-75. [PMID: 23765667 DOI: 10.1007/978-1-62703-465-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The survival strategies of protozoan parasites frequently involve the participation of glycoconjugates. Trypanosoma brucei expresses complex glycoproteins throughout its life cycle and a review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Here we describe a functional characterization workflow in which we create glycosyltransferase null or conditional null mutants in both the bloodstream and procyclic life-cycle forms of the parasite. Subsequently, we characterize the biochemical phenotype of the mutant strains generated and assign precise functions to the genes involved in glycoconjugate biosynthesis and processing in T. brucei. In this way, a comprehensive picture of -T. brucei glycosylation associated genes, their specificities and their relationship to similar genes in other organisms can be obtained.
Collapse
Affiliation(s)
- Luis Izquierdo
- Barcelona Centre for International Health Research, (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, Spain
| | | | | |
Collapse
|
16
|
Haque SJ, Majumdar T, Barik S. Redox-assisted protein folding systems in eukaryotic parasites. Antioxid Redox Signal 2012; 17:674-83. [PMID: 22122448 PMCID: PMC3373220 DOI: 10.1089/ars.2011.4433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The cysteine (Cys) residues of proteins play two fundamentally important roles. They serve as sites of post-translational redox modifications as well as influence the conformation of the protein through the formation of disulfide bonds. RECENT ADVANCES Redox-related and redox-associated protein folding in protozoan parasites has been found to be a major mode of regulation, affecting myriad aspects of the parasitic life cycle, host-parasite interactions, and the disease pathology. Available genome sequences of various parasites have begun to complement the classical biochemical and enzymological studies of these processes. In this article, we summarize the reversible Cys disulfide (S-S) bond formation in various classes of strategically important parasitic proteins, and its structural consequence and functional relevance. CRITICAL ISSUES Molecular mechanisms of folding remain under-studied and often disconnected from functional relevance. FUTURE DIRECTIONS The clinical benefit of redox research will require a comprehensive characterization of the various isoforms and paralogs of the redox enzymes and their concerted effect on the structure and function of the specific parasitic client proteins.
Collapse
Affiliation(s)
- Saikh Jaharul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
17
|
Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, Afzal S, Kelner A, Hui R, Ferguson MAJ. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol Microbiol 2012; 85:513-34. [PMID: 22676716 PMCID: PMC3465800 DOI: 10.1111/j.1365-2958.2012.08124.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.
Collapse
Affiliation(s)
- Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abdelwahab NZ, Crossman AT, Sullivan L, Ferguson MAJ, Urbaniak MD. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness. Chem Biol Drug Des 2012; 79:270-8. [PMID: 22222041 PMCID: PMC3473218 DOI: 10.1111/j.1747-0285.2011.01300.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC50 values 0.1–1.5 mm, and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC50 = 19 ± 0.5 μm.
Collapse
Affiliation(s)
- Nuha Z Abdelwahab
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
19
|
Izquierdo L, Mehlert A, Ferguson MAJ. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Glycobiology 2012; 22:696-703. [PMID: 22241825 PMCID: PMC3311286 DOI: 10.1093/glycob/cws003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
20
|
Lumb JH, Leung KF, DuBois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J Cell Sci 2011; 124:3771-83. [PMID: 22100919 PMCID: PMC3225266 DOI: 10.1242/jcs.079178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 01/31/2023] Open
Abstract
Early endosomal cargo is typically targeted to either a degradative or recycling pathway. Despite established functions for the retromer and ESCRT complexes at late endosomes/multivesicular bodies, the mechanisms integrating and coordinating these functions remain largely unknown. Rab family GTPases are key membrane trafficking organizers and could contribute. Here, in the unicellular organism Trypanosoma brucei, we demonstrate that Rab28 locates to the endosomal pathway and partially colocalizes with Vps23, an ESCRT I component. Rab28 is required for turnover of endocytosed proteins and for lysosomal delivery of protein cargo. Using RNA interference we find that in Rab28-depleted cells, protein levels of ESCRT I (Vps23/28) and retromer (Vps26) are also decreased, suggesting that Rab28 is an important regulator of these factors. We suggest that Rab28 coordinates the activity of retromer-dependent trafficking and ESCRT-mediated degradative pathways.
Collapse
Affiliation(s)
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Kelly N. DuBois
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
21
|
Van Nieuwenhove LC, Rogé S, Balharbi F, Dieltjens T, Laurent T, Guisez Y, Büscher P, Lejon V. Identification of peptide mimotopes of Trypanosoma brucei gambiense variant surface glycoproteins. PLoS Negl Trop Dis 2011; 5:e1189. [PMID: 21695105 PMCID: PMC3114753 DOI: 10.1371/journal.pntd.0001189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/15/2011] [Indexed: 01/28/2023] Open
Abstract
Background The current antibody detection tests for the diagnosis of gambiense human African trypanosomiasis (HAT) are based on native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. These native VSGs are difficult to produce, and contain non-specific epitopes that may cause cross-reactions. We aimed to identify mimotopic peptides for epitopes of T.b. gambiense VSGs that, when produced synthetically, can replace the native proteins in antibody detection tests. Methodology/Principal Findings PhD.-12 and PhD.-C7C phage display peptide libraries were screened with mouse monoclonal antibodies against the predominant VSGs LiTat 1.3 and LiTat 1.5 of T.b. gambiense. Thirty seven different peptide sequences corresponding to a linear LiTat 1.5 VSG epitope and 17 sequences corresponding to a discontinuous LiTat 1.3 VSG epitope were identified. Seventeen of 22 synthetic peptides inhibited the binding of their homologous monoclonal to VSG LiTat 1.5 or LiTat 1.3. Binding of these monoclonal antibodies to respectively six and three synthetic mimotopic peptides of LiTat 1.5 and LiTat 1.3 was significantly inhibited by HAT sera (p<0.05). Conclusions/Significance We successfully identified peptides that mimic epitopes on the native trypanosomal VSGs LiTat 1.5 and LiTat 1.3. These mimotopes might have potential for the diagnosis of human African trypanosomiasis but require further evaluation and testing with a large panel of HAT positive and negative sera. The control of human African trypanosomiasis or sleeping sickness, a deadly disease in sub-Saharan Africa, mainly depends on a correct diagnosis and treatment. The aim of our study was to identify mimotopic peptides (mimotopes) that may replace the native proteins in antibody detection tests for sleeping sickness and hereby improve the diagnostic sensitivity and specificity. We selected peptide expressing phages from the PhD.-12 and PhD.-C7C phage display libraries with mouse monoclonal antibodies specific to variant surface glycoprotein (VSG) LiTat 1.3 or LiTat 1.5 of Trypanosoma brucei gambiense. The peptide coding genes of the selected phages were sequenced and the corresponding peptides were synthesised. Several of the synthetic peptides were confirmed as mimotopes for VSG LiTat 1.3 or LiTat 1.5 since they were able to inhibit the binding of their homologous monoclonal to the corresponding VSG. These peptides were biotinylated and their diagnostic potential was assessed with human sera. We successfully demonstrated that human sleeping sickness sera recognise some of the mimotopes of VSG LiTat 1.3 and LiTat 1.5, indicating the diagnostic potential of such peptides.
Collapse
|
22
|
Major LL, Smith TK. Screening the MayBridge Rule of 3 Fragment Library for Compounds That Interact with the Trypanosoma brucei myo-Inositol-3-Phosphate Synthase and/or Show Trypanocidal Activity. Mol Biol Int 2011; 2011:389364. [PMID: 22091402 PMCID: PMC3199943 DOI: 10.4061/2011/389364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 11/25/2022] Open
Abstract
Inositol-3-phosphate synthase (INO1) has previously been genetically validated as a drug target against Trypanosoma brucei, the causative agent of African sleeping sickness. Chemical intervention of this essential enzyme could lead to new therapeutic agents. Unfortunately, no potent inhibitors of INO1 from any organism have been reported, so a screen for potential novel inhibitors of T. brucei INO1was undertaken. Detection of inhibition of T. brucei INO1 is problematic due to the nature of the reaction. Direct detection requires differentiation between glucose-6-phosphate and inositol-3-phosphate. Coupled enzyme assays could give false positives as potentially they could inhibit the coupling enzyme. Thus, an alternative approach of differential scanning fluorimetry to identify compounds that interact with T. brucei INO1 was employed to screen ~670 compounds from the MayBridge Rule of 3 Fragment Library.
This approach identified 38 compounds, which significantly altered the Tm of TbINO1. Four compounds showed trypanocidal activity with ED50s in the tens of micromolar range, with 2 having a selectivity index in excess of 250.
The trypanocidal and general cytotoxicity activities of all of the compounds in the library are also reported, with the best having ED50S of ~20 μM against T. brucei.
Collapse
Affiliation(s)
- Louise L Major
- Biomolecular Science, The North Haugh, The University of St. Andrews, Fife, Scotland, KY16 9ST, UK
| | | |
Collapse
|
23
|
Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:985-97. [PMID: 21531872 DOI: 10.1128/ec.05025-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.
Collapse
|
24
|
Mariño K, Güther MLS, Wernimont AK, Amani M, Hui R, Ferguson MAJ. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase. Glycobiology 2010; 20:1619-30. [PMID: 20724435 PMCID: PMC3270307 DOI: 10.1093/glycob/cwq115] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T.brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4′-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T.brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T.brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme.
Collapse
Affiliation(s)
- Karina Mariño
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Durrant JD, Urbaniak MD, Ferguson MAJ, McCammon JA. Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4'-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness. J Med Chem 2010; 53:5025-32. [PMID: 20527952 PMCID: PMC2895357 DOI: 10.1021/jm100456a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4′-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose metabolism, is one promising T. brucei drug target. We here use the relaxed complex scheme, an advanced computer-docking methodology that accounts for full protein flexibility, to identify inhibitors of TbGalE. An initial hit rate of 62% was obtained at 100 μM, ultimately leading to the identification of 14 low-micromolar inhibitors. Thirteen of these inhibitors belong to a distinct series with a conserved binding motif that may prove useful in future drug design and optimization.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
26
|
From the endometrium physiology to a comprehensive strategy for the discovery of ovarian cancer biomarkers. Oncol Rev 2010. [DOI: 10.1007/s12156-010-0035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
27
|
GDP-mannose pyrophosphorylase is essential in the bloodstream form of Trypanosoma brucei. Biochem J 2010; 425:603-14. [PMID: 19919534 DOI: 10.1042/bj20090896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A putative GDP-Man PP (guanidine diphosphomannose pyrophosphorylase) gene from Trypanosoma brucei (TbGDP-Man PP) was identified in the genome and subsequently cloned, sequenced and recombinantly expressed, and shown to be a catalytically active dimer. Kinetic analysis revealed a Vmax of 0.34 mumol/min per mg of protein and Km values of 67 muM and 12 muM for GTP and mannose 1-phosphate respectively. Further kinetic studies showed GDP-Man was a potent product feedback inhibitor. RNAi (RNA interference) of the cytosolic TbGDP-Man PP showed that mRNA levels were reduced to ~20% of wild-type levels, causing the cells to die after 3-4 days, demonstrating that TbGDP-Man PP is essential in the bloodstream form of T. brucei and thus a potential drug target. The RNAi-induced parasites have a greatly reduced capability to form GDP-Man, leading ultimately to a reduction in their ability to synthesize their essential GPI (glycosylphosphatidylinositol) anchors. The RNAi-induced parasites also showed aberrant N-glycosylation of their major cell-surface glycoprotein, variant surface glycoprotein, with loss of the high-mannose Man9GlcNAc2 N-glycosylation at Asn428 and formation of complex N-glycans at Asn263.
Collapse
|
28
|
Nitric oxide hinders antibody clearance from the surface of Trypanoplasma borreli and increases susceptibility to complement-mediated lysis. Mol Immunol 2009; 46:3188-97. [DOI: 10.1016/j.molimm.2009.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/22/2022]
|
29
|
Hong Y, Kinoshita T. Trypanosome glycosylphosphatidylinositol biosynthesis. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:197-204. [PMID: 19724691 DOI: 10.3347/kjp.2009.47.3.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/23/2022]
Abstract
Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domestic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidylinositol (GPI)-anchored proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway. Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome GPI biosynthesis.
Collapse
Affiliation(s)
- Yeonchul Hong
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea.
| | | |
Collapse
|
30
|
Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 2009; 7:493-503. [PMID: 19503065 DOI: 10.1038/nrmicro2145] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complex relationships between infectious organisms and their hosts often reflect the continuing struggle of the pathogen to proliferate and spread to new hosts, and the need of the infected individual to control and potentially eradicate the infecting population. This has led, in the case of mammals and the pathogens that infect them, to an 'arms race', in which the highly adapted mammalian immune system has evolved to control the proliferation of infectious organisms and the pathogens have developed correspondingly complex genetic systems to evade this immune response. We review how bacterial, protozoan and fungal pathogens from distant evolutionary lineages have evolved surprisingly similar mechanisms of antigenic variation to avoid eradication by the host immune system and can therefore maintain persistent infections and ensure their transmission to new hosts.
Collapse
|
31
|
Smith TK, Young BL, Denton H, Hughes DL, Wagner GK. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett 2009; 19:1749-52. [PMID: 19217283 PMCID: PMC3744937 DOI: 10.1016/j.bmcl.2009.01.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 11/20/2022]
Abstract
Drug-like molecules with activity against Trypanosoma brucei are urgently required as potential therapeutics for the treatment of African sleeping sickness. Starting from known inhibitors of other glycosyltransferases, we have developed the first small molecular inhibitors of dolicholphosphate mannose synthase (DPMS), a mannosyltransferase critically involved in glycoconjugate biosynthesis in T. brucei. We show that these DPMS inhibitors prevent the biosynthesis of glycosylphosphatidylinositol (GPI) anchors, and possess trypanocidal activity against live trypanosomes.
Collapse
Affiliation(s)
- Terry K. Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, Scotland, UK
| | - Benjamin L. Young
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | - Helen Denton
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, Scotland, UK
| | - David L. Hughes
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | - Gerd K. Wagner
- Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| |
Collapse
|
32
|
Chapter 12 Inhibitors of GPI Biosynthesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Dagenais TR, Demick KP, Bangs JD, Forest KT, Paulnock DM, Mansfield JM. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions. Infect Immun 2009; 77:141-51. [PMID: 18936180 PMCID: PMC2612290 DOI: 10.1128/iai.00729-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/13/2008] [Accepted: 10/13/2008] [Indexed: 11/20/2022] Open
Abstract
Variable subregions within the variant surface glycoprotein (VSG) coat displayed by African trypanosomes are predicted sites for T- and B-cell recognition. Hypervariable subregion 1 (HV-1) is localized to an internal amphipathic alpha helix in VSG monomers and may have evolved due to selective pressure by host T-cell responses to epitopes within this subregion. The prediction of T-cell receptor-reactive sites and major histocompatibility complex class II binding motifs within the HV-1 subregion, coupled with the conservation of amino acid residues in other regions of the molecule sufficient to maintain secondary and tertiary VSG structure, prompted us to test the hypothesis that Th cells may preferentially recognize HV-1 subregion peptides. Thus, we examined the fine specificity of VSG-specific T-cell lines, T-cell hybridomas, and Th cells activated during infection. Our results demonstrate that T-cell epitopes are distributed throughout the N-terminal domain of VSG but are not clustered exclusively within HV-1 or other hypervariable subregions. In contrast, T-cell-reactive sites were not detected within the relatively conserved C-terminal domain of VSG. Overall, this study is the first to dissect the fine specificity of T-cell responses to the trypanosome VSG and suggests that evolution of a conserved HV-1 region may be unrelated to selective pressures exerted by host T-cell responses. This study also demonstrates that T cells do not recognize the relatively invariant C-terminal region of the VSG molecule during infection, suggesting that it could serve as a potential subunit vaccine to provide variant cross-specific immunity for African trypanosomiasis.
Collapse
Affiliation(s)
- Taylor R Dagenais
- Department of Bacteriology, Microbial Sciences Building, 1550 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
34
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase has unusual substrate specificity and protects the parasite from stress. EUKARYOTIC CELL 2008; 8:230-40. [PMID: 19114500 DOI: 10.1128/ec.00361-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this paper, we describe the range of N-linked glycan structures produced by wild-type and glucosidase II null mutant bloodstream form Trypanosoma brucei parasites and the creation and characterization of a bloodstream form Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase null mutant. These analyses highlight peculiarities of the Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase, including an unusually wide substrate specificity, ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) glycans, and an unusually high efficiency in vivo, quantitatively glucosylating the Asn263 N-glycan of variant surface glycoprotein (VSG) 221 and 75% of all non-VSG N glycosylation sites. We also show that although Trypanosoma brucei UDP-glucose:glycoprotein glucosyltransferase is not essential for parasite growth at 37 degrees C, it is essential for parasite growth and survival at 40 degrees C. The null mutant was also shown to be hypersensitive to the effects of the N glycosylation inhibitor tunicamycin. Further analysis of bloodstream form Trypanosoma brucei under normal conditions and stress conditions suggests that it does not have a classical unfolded protein response triggered by sensing unfolded proteins in the endoplasmic reticulum. Rather, judging by its uniform Grp78/BiP levels, it appears to have an unregulated and constitutively active endoplasmic reticulum protein folding system. We suggest that the latter may be particularly appropriate for this organism, which has an extremely high flux of glycoproteins through its secretory pathway.
Collapse
|
36
|
Izquierdo L, Nakanishi M, Mehlert A, Machray G, Barton GJ, Ferguson MAJ. Identification of a glycosylphosphatidylinositol anchor-modifying beta1-3 N-acetylglucosaminyl transferase in Trypanosoma brucei. Mol Microbiol 2008; 71:478-91. [PMID: 19040631 DOI: 10.1111/j.1365-2958.2008.06542.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosoma brucei expresses complex glycoproteins throughout its life cycle. A review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Of these, five have been experimentally related to specific genes and a further nine can be associated with candidate genes. The remaining linkages have no obvious candidate glycosyltransferase genes; however, the T. brucei genome contains a family of 21 putative UDP sugar-dependent glycosyltransferases of unknown function. One representative, TbGT8, was used to establish a functional characterization workflow. Bloodstream and procyclic-form TbGT8 null mutants were created and both exhibited normal growth. The major surface glycoprotein of the procyclic form, the procyclin, exhibited a marked reduction in molecular weight due to changes in the procyclin glycosylphosphatidylinositol (GPI) anchor side-chains. Structural analysis of the mutant procyclin GPI anchors indicated that TbGT8 encodes a UDP-GlcNAc: beta-Gal-GPI beta1-3 GlcNAc transferase. This is only the second GPI-modifying glycosyltransferase to have been identified from any organism. The glycosylation of the major glycoprotein of bloodstream-form T. brucei, the variant surface glycoprotein, was unaffected in the TbGT8 mutant. However, changes in the lectin binding of other glycoproteins suggest that TbGT8 influences the processing of the poly N-acetyllactosamine-containing asparagine-linked glycans of this life cycle stage.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Control of African trypanosomiasis caused by the protozoan parasite Trypanosoma brucei is an important issue in medicine, veterinary medicine, and agricultural economy. Because vaccine development is unlikely, development of safer and more effective chemotherapeutics is critical. The biosynthetic pathway of glycosylphosphatidylinositol (GPI), which acts as membrane anchors of coat proteins, variant surface glycoproteins, and transferrin receptors, is a validated target of drug development. An article in this issue reports the first chemically synthesized inhibitor of the third mannosyltransferase from the GPI pathway, stimulating further investigation toward practical and useful compounds.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Urbaniak MD, Yashunsky DV, Crossman A, Nikolaev AV, Ferguson MAJ. Probing enzymes late in the trypanosomal glycosylphosphatidylinositol biosynthetic pathway with synthetic glycosylphosphatidylinositol analogues. ACS Chem Biol 2008; 3:625-34. [PMID: 18928250 DOI: 10.1021/cb800143w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are abundant in the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness in humans and the related disease Nagana in cattle, and disruption of GPI biosynthesis is genetically and chemically validated as a drug target. Here, we examine the ability of enzymes of the trypanosomal GPI biosynthetic pathway to recognize and process a series of synthetic dimannosyl-glucosaminylphosphatidylinositol analogues containing systematic modifications on the mannose residues. The data reveal which portions of the natural substrate are important for recognition, explain why mannosylation occurs prior to inositol acylation in the trypanosomal pathway, and identify the first inhibitor of the third alpha-mannosyltransferase of the GPI biosynthetic pathway.
Collapse
Affiliation(s)
- Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Dmitry V. Yashunsky
- Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Arthur Crossman
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Andrei V. Nikolaev
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
39
|
Urbaniak MD, Crossman A, Ferguson MAJ. ProbingTrypanosoma bruceiGlycosylphosphatidylinositol Biosynthesis Using Novel Precursor-Analogues. Chem Biol Drug Des 2008; 72:127-32. [DOI: 10.1111/j.1747-0285.2008.00688.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, Overath P. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 2007; 131:505-15. [PMID: 17981118 DOI: 10.1016/j.cell.2007.08.046] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/19/2007] [Accepted: 08/27/2007] [Indexed: 11/30/2022]
Abstract
The unicellular parasite Trypanosoma brucei rapidly removes host-derived immunoglobulin (Ig) from its cell surface, which is dominated by a single type of glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSG). We have determined the mechanism of antibody clearance and found that Ig-VSG immune complexes are passively sorted to the posterior cell pole, where they are endocytosed. The backward movement of immune complexes requires forward cellular motility but is independent of endocytosis and of actin function. We suggest that the hydrodynamic flow acting on swimming trypanosomes causes directional movement of Ig-VSG immune complexes in the plane of the plasma membrane, that is, immunoglobulins attached to VSG function as molecular sails. Protein sorting by hydrodynamic forces helps to protect trypanosomes against complement-mediated immune destruction in culture and possibly in infected mammals but likewise may be of functional significance at the surface of other cell types such as epithelial cells lining blood vessels.
Collapse
Affiliation(s)
- Markus Engstler
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 2007; 65:1547-58. [PMID: 17714442 DOI: 10.1111/j.1365-2958.2007.05895.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The linear plasmid, lp28-1, is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. This plasmid contains the vls antigenic variation locus, which has long been thought to be important for immune evasion. However, the role of the vls locus as a virulence factor during mammalian infection has not been clearly defined. We report the successful removal of the vls locus through telomere resolvase-mediated targeted deletion, and demonstrate the absolute requirement of this lp28-1 component for persistence in the mouse host. Moreover, successful infection of C3H/HeN mice with an lp28-1 plasmid in which the left portion was deleted excludes participation of other lp28-1 non-vls genes in spirochete virulence, persistence and the process of recombinational switching at vlsE. Data are also presented that cast doubt on an immune evasion mechanism whereby VlsE directly masks other surface antigens similar to what has been observed for several other pathogens that undergo recombinational antigenic variation.
Collapse
Affiliation(s)
- Troy Bankhead
- Department of Biochemistry, University of Calgary, Calgary, Alberta T2N 4 N1, Canada
| | | |
Collapse
|
42
|
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 2007; 63:218-28. [PMID: 17229212 DOI: 10.1111/j.1365-2958.2006.05492.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 'two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3' flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins.
Collapse
Affiliation(s)
- Simon Urwyler
- Institut für Zellbiologie, Universität Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
43
|
Urbaniak MD, Turnock DC, Ferguson MAJ. Galactose starvation in a bloodstream form Trypanosoma brucei UDP-glucose 4'-epimerase conditional null mutant. EUKARYOTIC CELL 2007; 5:1906-13. [PMID: 17093269 PMCID: PMC1694802 DOI: 10.1128/ec.00156-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galactose metabolism is essential for the survival of Trypanosoma brucei, the etiological agent of African sleeping sickness. T. brucei hexose transporters are unable to transport galactose, which is instead obtained through the epimerization of UDP-glucose to UDP-galactose catalyzed by UDP-glucose 4'-epimerase (galE). Here, we have characterized the phenotype of a bloodstream form T. brucei galE conditional null mutant under nonpermissive conditions that induced galactose starvation. Cellular levels of UDP-galactose dropped rapidly upon induction of galactose starvation, reaching undetectable levels after 72 h. Analysis of extracted glycoproteins by ricin and tomato lectin blotting showed that terminal beta-d-galactose was virtually eliminated and poly-N-acetyllactosamine structures were substantially reduced. Mass spectrometric analysis of variant surface glycoprotein confirmed complete loss of galactose from the glycosylphosphatidylinositol anchor. After 96 h, cell division ceased, and electron microscopy revealed that the cells had adopted a morphologically distinct stumpy-like form, concurrent with the appearance of aberrant vesicles close to the flagellar pocket. These data demonstrate that the UDP-glucose 4'-epimerase is essential for the production of UDP-galactose required for galactosylation of glycoproteins and that galactosylation of one or more glycoproteins, most likely in the lysosomal/endosomal system, is essential for the survival of bloodstream form T. brucei.
Collapse
Affiliation(s)
- Michael D Urbaniak
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
44
|
VSGdb: a database for trypanosome variant surface glycoproteins, a large and diverse family of coiled coil proteins. BMC Bioinformatics 2007; 8:143. [PMID: 17474977 PMCID: PMC1868767 DOI: 10.1186/1471-2105-8-143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 05/02/2007] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosomes are coated with a variant surface glycoprotein (VSG) that is so densely packed that it physically protects underlying proteins from effectors of the host immune system. Periodically cells expressing a distinct VSG arise in a population and thereby evade immunity. The main structural feature of VSGs are two long α-helices that form a coiled coil, and sets of relatively unstructured loops that are distal to the plasma membrane and contain most or all of the protective epitopes. The primary structure of different VSGs is highly variable, typically displaying only ~20% identity with each other. The genome has nearly 2000 VSG genes, which are located in subtelomeres. Only one VSG gene is expressed at a time, and switching between VSGs primarily involves gene conversion events. The archive of silent VSGs undergoes diversifying evolution rapidly, also involving gene conversion. The VSG family is a paradigm for α helical coiled coil structures, epitope variation and GPI-anchor signals. At the DNA level, the genes are a paradigm for diversifying evolutionary processes and for the role of subtelomeres and recombination mechanisms in generation of diversity in multigene families. To enable ready availability of VSG sequences for addressing these general questions, and trypanosome-specific questions, we have created VSGdb, a database of all known sequences. Description VSGdb contains fully annotated VSG sequences from the genome sequencing project, with which it shares all identifiers and annotation, and other available sequences. The database can be queried in various ways. Sequence retrieval, in FASTA format, can deliver protein or nucleotide sequence filtered by chromosomes or contigs, gene type (functional, pseudogene, etc.), domain and domain sequence family. Retrieved sequences can be stored as a temporary database for BLAST querying, reports from which include hyperlinks to the genome project database (GeneDB) CDS Info and to individual VSGdb pages for each VSG, containing annotation and sequence data. Queries (text search) with specific annotation terms yield a list of relevant VSGs, displayed as identifiers leading again to individual VSG web pages. Conclusion VSGdb is a freely available, web-based platform enabling easy retrieval, via various filters, of sets of VSGs that will enable detailed analysis of a number of general and trypanosome-specific questions, regarding protein structure potential, epitope variability, sequence evolution and recombination events.
Collapse
|
45
|
Genest PA, ter Riet B, Cijsouw T, van Luenen HG, Borst P. Telomeric localization of the modified DNA base J in the genome of the protozoan parasite Leishmania. Nucleic Acids Res 2007; 35:2116-24. [PMID: 17329373 PMCID: PMC1874636 DOI: 10.1093/nar/gkm050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Base J or β-d-glucosylhydroxymethyluracil is a DNA modification replacing a fraction of thymine in the nuclear DNA of kinetoplastid parasites and of Euglena. J is located in the telomeric sequences of Trypanosoma brucei and in other simple repeat DNA sequences. In addition, J was found in the inactive variant surface glycoprotein (VSG) expression sites, but not in the active expression site of T. brucei, suggesting that J could play a role in transcription silencing in T. brucei. We have now looked at the distribution of J in the genomes of other kinetoplastid parasites. First, we analyzed the DNA sequences immunoprecipitated with a J-antiserum in Leishmania major Friedlin. Second, we investigated the co-migration of J- and telomeric repeat-containing DNA sequences of various kinetoplastids using J-immunoblots and Southern blots of fragmented DNA. We find only ∼1% of J outside the telomeric repeat sequences of Leishmania sp. and Crithidia fasciculata, in contrast to the substantial fraction of non-telomeric J found in T. brucei, Trypanosoma equiperdum and Trypanoplasma borreli. Our results suggest that J is a telomeric base modification, recruited for other (unknown) functions in some kinetoplastids and Euglena.
Collapse
Affiliation(s)
| | | | | | | | - Piet Borst
- *To whom Correspondence should be addressed. +31 20 512 2880+31 20 669 1383
| |
Collapse
|
46
|
Urbaniak MD, Tabudravu JN, Msaki A, Matera KM, Brenk R, Jaspars M, Ferguson MAJ. Identification of novel inhibitors of UDP-Glc 4′-epimerase, a validated drug target for african sleeping sickness. Bioorg Med Chem Lett 2006; 16:5744-7. [PMID: 16962325 DOI: 10.1016/j.bmcl.2006.08.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Novel inhibitors of Trypanosoma brucei and mammalian UDP-Glc 4'-epimerase were identified by screening a small library of natural products and commercially available drug-like molecules. The inhibitors possess low micromolar potency against the T. brucei and human enzymes in vitro, display a degree of selectivity between the two enzymes, and are cytotoxic to cultured T. brucei and mammalian cells.
Collapse
Affiliation(s)
- Michael D Urbaniak
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Güther MLS, Lee S, Tetley L, Acosta-Serrano A, Ferguson MA. GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol Biol Cell 2006; 17:5265-74. [PMID: 17035628 PMCID: PMC1679689 DOI: 10.1091/mbc.e06-08-0702] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The procyclic form of Trypanosoma brucei exists in the midgut of the tsetse fly. The current model of its surface glycocalyx is an array of rod-like procyclin glycoproteins with glycosylphosphatidylinositol (GPI) anchors carrying sialylated poly-N-acetyllactosamine side chains interspersed with smaller sialylated poly-N-acetyllactosamine-containing free GPI glycolipids. Mutants for TbGPI12, deficient in the second step of GPI biosynthesis, were devoid of cell surface procyclins and poly-N-acetyllactosamine-containing free GPI glycolipids. This major disruption to their surface architecture severely impaired their ability to colonize tsetse fly midguts but, surprisingly, had no effect on their morphology and growth characteristics in vitro. Transmission electron microscopy showed that the mutants retained a cell surface glycocalyx. This structure, and the viability of the mutants in vitro, prompted us to look for non-GPI-anchored parasite molecules and/or the adsorption of serum components. Neither were apparent from cell surface biotinylation experiments but [3H]glucosamine biosynthetic labeling revealed a group of previously unidentified high apparent molecular weight glycoconjugates that might contribute to the surface coat. While characterizing GlcNAc-PI that accumulates in the TbGPI12 mutant, we observed inositolphosphoceramides for the first time in this organism.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Güther
- *Division of Biological Chemistry and Molecular Microbiology, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Sylvia Lee
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G11 6NU, Scotland, United Kingdom; and
| | - Laurence Tetley
- Institute of Biomedical and Life Science, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Alvaro Acosta-Serrano
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G11 6NU, Scotland, United Kingdom; and
| | - Michael A.J. Ferguson
- *Division of Biological Chemistry and Molecular Microbiology, Faculty of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
48
|
Welburn SC, Macleod E, Figarella K, Duzensko M. Programmed cell death in African trypanosomes. Parasitology 2006; 132 Suppl:S7-S18. [PMID: 17018168 DOI: 10.1017/s0031182006000825] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Until recently it had generally been assumed that apoptosis and other forms of programmed cell death evolved during evolution of the metazoans to regulate growth and development in these multicellular organisms. However, recent research is adding strength to the original phenotypic observations described almost a decade ago which indicated that some parasitic protozoa may have evolved a cell death pathway analogous to the process described as apoptosis in metazoa. Here we explore the implications of a programmed cell death pathway in the African tsetse-transmitted trypanosomes.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, EH25 9RG.
| | | | | | | |
Collapse
|
49
|
Domenicali Pfister D, Burkard G, Morand S, Renggli CK, Roditi I, Vassella E. A Mitogen-activated protein kinase controls differentiation of bloodstream forms of Trypanosoma brucei. EUKARYOTIC CELL 2006; 5:1126-35. [PMID: 16835456 PMCID: PMC1489280 DOI: 10.1128/ec.00094-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
African trypanosomes undergo differentiation in order to adapt to the mammalian host and the tsetse fly vector. To characterize the role of a mitogen-activated protein (MAP) kinase homologue, TbMAPK5, in the differentiation of Trypanosoma brucei, we constructed a knockout in procyclic (insect) forms from a differentiation-competent (pleomorphic) stock. Two independent knockout clones proliferated normally in culture and were not essential for other life cycle stages in the fly. They were also able to infect immunosuppressed mice, but the peak parasitemia was 16-fold lower than that of the wild type. Differentiation of the proliferating long slender to the nonproliferating short stumpy bloodstream form is triggered by an autocrine factor, stumpy induction factor (SIF). The knockout differentiated prematurely in mice and in culture, suggestive of increased sensitivity to SIF. In contrast, a null mutant of a cell line refractory to SIF was able to proliferate normally. The differentiation phenotype was partially rescued by complementation with wild-type TbMAPK5 but exacerbated by introduction of a nonactivatable mutant form. Our results indicate a regulatory function for TbMAPK5 in the differentiation of bloodstream forms of T. brucei that might be exploitable as a target for chemotherapy against human sleeping sickness.
Collapse
|
50
|
Utz S, Roditi I, Kunz Renggli C, Almeida IC, Acosta-Serrano A, Bütikofer P. Trypanosoma congolense procyclins: unmasking cryptic major surface glycoproteins in procyclic forms. EUKARYOTIC CELL 2006; 5:1430-40. [PMID: 16896226 PMCID: PMC1539152 DOI: 10.1128/ec.00067-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/20/2006] [Indexed: 11/20/2022]
Abstract
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.
Collapse
Affiliation(s)
- Silvia Utz
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|