Flynn J, Azzam R, Reich N. DNA binding discrimination of the murine DNA cytosine-C5 methyltransferase.
J Mol Biol 1998;
279:101-16. [PMID:
9636703 DOI:
10.1006/jmbi.1998.1761]
[Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian DNA cytosine-C5 methyltransferase modifies the CpG dinucleotide in the context of many different genomic sequences. A rigorous DNA binding assay was developed for the murine enzyme and used to define how sequences flanking the CpG dinucleotide affect the stability of the enzyme:DNA complex. Oligonucleotides containing a single CpG site form reversible 1:1 complexes with the enzyme that are sequence-specific. A guanine/cytosine-rich 30 base-pair sequence, a mimic of the GC-box cis-element, bound threefold more tightly than an adenine/thymine-rich sequence, a mimic of the cyclic AMP responsive element. However, the binding discrimination between hemi- and unmethylated forms of these DNA substrates was small, as we previously observed at the K(m)DNA level (Biochemistry, 35, 7308-7315 (1996)). Single-stranded substrates are bound much more weakly than double-stranded DNA forms. An in vitro screening method was used to select for CpG flanking sequence preferences of the DNA methyltransferase from a large, divergent population of DNA substrates. After five iterative rounds of increasing selective pressure, guanosine/cytosine-rich sequences were abundant and contributed to binding stabilization for at least 12 base-pairs on either side of a central CpG. Our results suggest a read-out of sequence-dependent conformational features, such as helical flexibility, minor groove dimensions and critical phosphate orientation and mobility, rather than interactions with specific bases over the course of two complete helical turns. Thus, both studies reveal a preference for guanosine/cytosine deoxynucleotides flanking the cognate CpG. The enzyme specificity for similar sequences in the genome may contribute to the in vivo functions of this vital enzyme.
Collapse