1
|
Hildebrand EM, Polovnikov K, Dekker B, Liu Y, Lafontaine DL, Fox AN, Li Y, Venev SV, Mirny LA, Dekker J. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol Cell 2024; 84:1422-1441.e14. [PMID: 38521067 DOI: 10.1016/j.molcel.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/23/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Bastiaan Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yu Liu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Denis L Lafontaine
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A Nicole Fox
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ying Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Sartsanga C, Phengchat R, Wako T, Fukui K, Ohmido N. Localization and quantitative distribution of a chromatin structural protein Topoisomerase II on plant chromosome using HVTEM and UHVTEM. Micron 2024; 179:103596. [PMID: 38359615 DOI: 10.1016/j.micron.2024.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Topoisomerase II (TopoII) is an essential structural protein of the metaphase chromosome. It maintains the axial compaction of chromosomes during metaphase. It is localized at the axial region of chromosomes and accumulates at the centromeric region in metaphase chromosomes. However, little is known about TopoII localization and distribution in plant chromosomes, except for several publications. We used high voltage transmission electron microscopy (HVTEM) and ultra-high voltage transmission electron microscopy (UHVTEM) in conjunction with immunogold labeling and visualization techniques to detect TopoII and investigate its localization, alignment, and density on the barley chromosome at 1.4 nm scale. We found that HVTEM and UHVTEM combined with immunogold labeling is suitable for the detection of structural proteins, including a single molecule of TopoII. This is because the average size of the gold particles for TopoII visualization after silver enhancement is 8.9 ± 3.9 nm, which is well detected. We found that 31,005 TopoII molecules are distributed along the barley chromosomes in an unspecific pattern at the chromosome arms and accumulate specifically at the nucleolus organizer regions (NORs) and centromeric region. The TopoII density were 1.32-fold, 1.58-fold, and 1.36-fold at the terminal region, at the NORs, and the centromeric region, respectively. The findings of TopoII localization in this study support the multiple reported functions of TopoII in the barley metaphase chromosome.
Collapse
Affiliation(s)
- Channarong Sartsanga
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan
| | - Rinyaporn Phengchat
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2M9 Edmonton, Alberta, Canada
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, 2-1-1 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan.
| |
Collapse
|
3
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Zeng S, Liu A, Dai L, Yu X, Zhang Z, Xiong Q, Yang J, Liu F, Xu J, Xue Y, Sun Y, Xu C. Prognostic value of TOP2A in bladder urothelial carcinoma and potential molecular mechanisms. BMC Cancer 2019; 19:604. [PMID: 31216997 PMCID: PMC6582551 DOI: 10.1186/s12885-019-5814-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prognosis of bladder urothelial carcinoma (BLCA) varies greatly among patients, and conventional pathological predictors are generally inadequate and often inaccurate to predict the heterogeneous behavior of BLCA. This study aims to investigate the prognostic value and function of TOP2A in BLCA. METHODS TOP2A expression level was examined by RNA-sequencing, quantitative real time polymerase chain reaction and immunohistochemistry from 10, 40 and 209 BLCA samples, respectively. Public databases were analyzed for validation. Cell proliferation, migration, invasion assays were performed to explore potential functions of TOP2A in BLCA. Flow cytometry was performed for cell cycle and apoptosis analysis. Univariable and multivariable Cox regression models were performed to identify independent risk factors for the prognosis of BLCA. RESULTS We found TOP2A was significantly upregulated in BLCA samples, especially for high-grade and advanced stage tumors, compared with matched normal epithelial tissue. Univariable COX regression analysis revealed high TOP2A expression was significantly associated with poorer cancer-specific, progression-free and recurrence-free survival, but not independently of clinical characteristics in the multivariable models. Knockdown of TOP2A remarkably inhibited the proliferation of BLCA cells and non-cancerous urothelial cells. Furthermore, migration and invasion capacity of BLCA cells were strongly suppressed after TOP2A knockdown. Moreover, flow cytometry suggested TOP2A had anti-apoptotic function, and knockdown of TOP2A could induce resistance to doxorubicin in J82 cells. CONCLUSIONS In our study, TOP2A was overexpressed in BLCA and could serve as a prognostic biomarker for BLCA. Moreover, TOP2A is functionally important for the proliferation, invasion and survival of BLCA cells.
Collapse
Affiliation(s)
- Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Anwei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lihe Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaowen Yu
- Department of Geriatrics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jun Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Fei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jinshan Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yongping Xue
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Yao D, Gu P, Wang Y, Luo W, Chi H, Ge J, Qian Y. Inhibiting polo-like kinase 1 enhances radiosensitization via modulating DNA repair proteins in non-small-cell lung cancer. Biochem Cell Biol 2018; 96:317-325. [PMID: 29040814 DOI: 10.1139/bcb-2017-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assure faithful chromosome segregation, cells make use of the spindle assembly checkpoint, which can be activated in aneuploid cancer cells. In this study, the efficacies of inhibiting polo-like kinase 1 (PLK1) on the radiosensitization of non-small-cell lung cancer (NSCLC) cells were studied. Clonogenic survival assay was performed to identify the effects of the PLK1 inhibitor on radiosensitivity within NSCLC cells. Mitotic catastrophe assessment was used to measure the cell death and histone H2AX protein (γH2AX) foci were utilized to assess the DNA double-strand breaks (DSB). The transcriptome was analyzed via unbiased profiling of microarray expression. The results showed that the postradiation mitotic catastrophe induction and the DSB repair were induced by PLK1 inhibitor BI-6727, leading to an increase in the radiosensitivity of NSCLC cells. BI-6727 in combination with radiation significantly induced the delayed tumor growth. PLK1-silenced NSCLC cells showed an altered mRNA and protein expression related to DNA damaging, replication, and repairing, including the DNA-dependent protein kinase (DNAPK) and topoisomerase II alpha (TOPO2A). Furthermore, inhibition of PLK1 blocked 2 important DNA repair pathways. To summarize, our study showed PLK1 kinase as an option in the therapy of NSCLC.
Collapse
Affiliation(s)
- Da Yao
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Peigui Gu
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Youyu Wang
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Weibin Luo
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Huiliang Chi
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| | - Jianjun Ge
- a Department of Cardiovascular Surgery Center, Anhui Province Hospital of Anhui Medical University, Hefei, 230001, PR China
| | - Youhui Qian
- b Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, PR China
| |
Collapse
|
6
|
Clarke DJ, Azuma Y. Non-Catalytic Roles of the Topoisomerase IIα C-Terminal Domain. Int J Mol Sci 2017; 18:ijms18112438. [PMID: 29149026 PMCID: PMC5713405 DOI: 10.3390/ijms18112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
DNA Topoisomerase IIα (Topo IIα) is a ubiquitous enzyme in eukaryotes that performs the strand passage reaction where a double helix of DNA is passed through a second double helix. This unique reaction is critical for numerous cellular processes. However, the enzyme also possesses a C-terminal domain (CTD) that is largely dispensable for the strand passage reaction but is nevertheless important for the fidelity of cell division. Recent studies have expanded our understanding of the roles of the Topo IIα CTD, in particular in mitotic mechanisms where the CTD is modified by Small Ubiquitin-like Modifier (SUMO), which in turn provides binding sites for key regulators of mitosis.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN 55455, USA.
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
7
|
de Campos-Nebel M, Palmitelli M, González-Cid M. A flow cytometry-based method for a high-throughput analysis of drug-stabilized topoisomerase II cleavage complexes in human cells. Cytometry A 2016; 89:852-60. [PMID: 27517472 DOI: 10.1002/cyto.a.22919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 11/08/2022]
Abstract
Topoisomerase II (Top2) is an important target for anticancer therapy. A variety of drugs that poison Top2, including several epipodophyllotoxins, anthracyclines, and anthracenediones, are widely used in the clinic for both hematologic and solid tumors. The poisoning of Top2 involves the formation of a reaction intermediate Top2-DNA, termed Top2 cleavage complex (Top2cc), which is persistent in the presence of the drug and involves a 5' end of DNA covalently bound to a tyrosine from the enzyme through a phosphodiester group. Drug-induced Top2cc leads to Top2 linked-DNA breaks which are the major responsible for their cytotoxicity. While biochemical detection is very laborious, quantification of drug-induced Top2cc by immunofluorescence-based microscopy techniques is time consuming and requires extensive image segmentation for the analysis of a small population of cells. Here, we developed a flow cytometry-based method for the analysis of drug-induced Top2cc. This method allows a rapid analysis of a high number of cells in their cell cycle phase context. Moreover, it can be applied to almost any human cell type, including clinical samples. The methodology is useful for a high-throughput analysis of drugs that poison Top2, allowing not just the discrimination of the Top2 isoform that is targeted but also to track its removal. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marcelo de Campos-Nebel
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina.
| | - Micaela Palmitelli
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina
| | - Marcela González-Cid
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Abd-Rabou AA. Calcium, a Cell Cycle Commander, Drives Colon Cancer Cell Diffpoptosis. Indian J Clin Biochem 2016; 32:9-18. [PMID: 28149007 DOI: 10.1007/s12291-016-0562-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
The story of the cell commonder, calcium, reaches into all corners of the cell and controls cell proliferation, differentiation, function, and even death. The calcium-driven eukaryotic revolution is one of the great turning points in the life history, happened about two billion years later when it was converted from a dangerous killer that had to be kept out of cell into the cell master which drives the cell. This review article will take the readers to a tour of tissues chosen to best show the calcium's many faces (proliferator, differentiator, and killer). The reader will first see calcium and its many helpers, such as the calcium-binding signaler protein calmodulin, directing the key events of the cell cycle. Then the tour will move onto the colon to show calcium driving the proliferation of progenitor cells, then the differentiation and ultimately the programmed death of their progeny. Moreover, the reader will learn of the striking disabling and bypassing of calcium-dependent control mechanisms during carcinogenesis. Finally, recommendations should be taken from the underlying mechanisms through which calcium masters the presistance, progression, and even apoptosis of colorectal cancer cells. Thus, this could be of great interest for designing of chemoprevention protocols.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department (Cancer Biology and Nano-Drug Delivery Group), Medical Research Division, National Research Center, Cairo, 12622 Egypt.,Center for Aging and Associated Diseases, Zewail City of Science and Technology, 6th of October, Egypt
| |
Collapse
|
9
|
Maachani UB, Kramp T, Hanson R, Zhao S, Celiku O, Shankavaram U, Colombo R, Caplen NJ, Camphausen K, Tandle A. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins. Mol Cancer Res 2015; 13:852-62. [PMID: 25722303 DOI: 10.1158/1541-7786.mcr-14-0462-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell-specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells were analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor NMS-P715 on radiosensitivity in multiple model systems, including GBM cell lines, a normal astrocyte, and a normal fibroblast cell line. DNA double-strand breaks (DSB) were evaluated using γH2AX foci, and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Furthermore, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of postradiation mitotic catastrophe. NMS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1-silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair, and replication, including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. IMPLICATIONS Inhibition of MPS1 kinase in combination with radiation represents a promising new approach for glioblastoma and for other cancer therapies.
Collapse
Affiliation(s)
- Uday Bhanu Maachani
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ryan Hanson
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shuping Zhao
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Orieta Celiku
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Natasha J Caplen
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anita Tandle
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
Concurrent inhibition of enzymatic activity and NF-Y-mediated transcription of Topoisomerase-IIα by bis-DemethoxyCurcumin in cancer cells. Cell Death Dis 2013; 4:e756. [PMID: 23928695 PMCID: PMC3763449 DOI: 10.1038/cddis.2013.287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 01/23/2023]
Abstract
Topoisomerases-IIα (TOP2A) enzyme is essential for cell viability due to its fundamental role in DNA metabolism and in chromatin organization during interphase and mitosis. TOP2A expression is finely regulated at the transcriptional level through the binding of the CCAAT-transcription factor NF-Y to its promoter. Overexpression and/or amplification of TOP2A have been observed in many types of cancers. For this reason, TOP2A is the target of the most widely successful drugs in cancer chemotherapy, such as TOP2A poisons, which stabilize TOP2A-DNA cleavage complexes and create DSBs, leading to chromosome damage and cell death. We previously reported that the Curcumin-derivative bis-DemethoxyCurcumin (bDMC) is an anti-proliferative agent that inhibits cell growth by concomitant G1/S and G2/M arrest. Here we showed that bDMC irreversibly induces DSBs in cancer cells, but not in normal cells, by targeting TOP2A activity and expression. TOP2A ablation by siRNA corroborates its contribution to apoptosis induced by bDMC. Short-term exposure to bDMC induces retention of TOP2A-DNA intermediates, while longer exposure inhibits TOP2A transcription by affecting expression and sub-cellular localization of NF-Y subunits. ChIP analysis highlighted reduced recruitment of NF-Y to TOP2A regulatory regions, concomitantly to histone deacetylation and decreased gene transcription. Our findings suggest that the dual activity of bDMC on TOP2A represents a novel therapeutic strategy to induce persistent apoptosis in cancer cells and identify NF-Y regulation as a promising approach in anti-cancer therapy.
Collapse
|
11
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination. PLoS One 2010; 5. [PMID: 20824055 PMCID: PMC2932731 DOI: 10.1371/journal.pone.0012541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022] Open
Abstract
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.
Collapse
|
13
|
Outwin EA, Irmisch A, Murray JM, O'Connell MJ. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol Cell Biol 2009; 29:4363-75. [PMID: 19528228 PMCID: PMC2725735 DOI: 10.1128/mcb.00377-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/14/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022] Open
Abstract
The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants.
Collapse
Affiliation(s)
- Emily A Outwin
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
14
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
15
|
Abstract
Topoisomerase II activity is crucial to maintain genome stability through the removal of catenanes in the DNA formed during DNA replication and scaffolding the mitotic chromosome. Perturbed Topo II activity causes defects in chromosome segregation due to persistent catenations and aberrant DNA condensation during mitosis. Recently, novel top2 alleles in the yeast Saccharomyces cerevisiae revealed a checkpoint control that responds to perturbed Topo II activity. Described in this chapter are protocols for assaying the phenotypes seen in top2 mutants on a cell biological basis in live cells: activation of the Topo II checkpoint using spindle morphology, chromosome condensation using fluorescently labeled chromosomal loci, and cell cycle progression by flow cytometry. Further characterization of this novel checkpoint is warranted so that we can further our understanding of the cell cycle, genomic stability, and the possibility of identifying novel drug targets.
Collapse
|
16
|
Abstract
DNA topoisomerases are enzymes that alter the topology of DNA. They have important functions in DNA replication, transcription, Holliday junction dissolution, chromosome condensation, and sister chromatid separation. Deficiencies in these enzymes are associated with diseases that result from genome instability. The last 10-15 years has seen a great deal of exciting research in the field of topoisomerase. Here we discuss a selection of the new themes that have been recently introduced into the already large body of topoisomerase research.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, University of Minnesota, Medical School, Minneapolis, MN, USA
| | | |
Collapse
|
17
|
Abstract
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their significance inside the cell, where DNA configurations markedly differ from those of DNA in free solution. The eukaryotic type-2A enzyme, topoisomerase II, is the second most abundant chromatin protein after histones and its biological roles include the decatenation of newly replicated DNA and the relaxation of polymerase-driven supercoils. Yet, topoisomerase II is also implicated in other cellular processes such as chromatin folding and gene expression, in which the topological transformations catalysed by the enzyme are uncertain. Here, some capabilities of topoisomerase II that might be relevant to infer the enzyme performance in the context of chromatin architecture are discussed. Some aspects addressed are the importance of the DNA rejoining step to ensure genome stability, the regulation of the enzyme activity and of its putative structural role, and the selectively of DNA transport in the chromatin milieu.
Collapse
Affiliation(s)
- Joaquim Roca
- Institut de Biologia Molecular de Barcelona, CSIC, Baldiri i Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Agostinho M, Santos V, Ferreira F, Costa R, Cardoso J, Pinheiro I, Rino J, Jaffray E, Hay RT, Ferreira J. Conjugation of human topoisomerase 2 alpha with small ubiquitin-like modifiers 2/3 in response to topoisomerase inhibitors: cell cycle stage and chromosome domain specificity. Cancer Res 2008; 68:2409-18. [PMID: 18381449 DOI: 10.1158/0008-5472.can-07-2092] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 2 topoisomerases, in particular the alpha isoform in human cells, play a key role in cohesion and sister chromatid separation during mitosis. These enzymes are thus vital for cycling cells and are obvious targets in cancer chemotherapy. Evidence obtained in yeast and Xenopus model systems indicates that conjugation of topoisomerase 2 with small ubiquitin-like modifier (SUMO) proteins is required for its mitotic functions. Here, we provide biochemical and cytologic evidence that topoisomerase 2 alpha is conjugated to SUMO-2/3 during interphase and mitosis in response to topoisomerase 2 inhibitors and "poisons" (ICRF-187, etoposide, doxorubicin) that stabilize catalytic intermediates (cleavage complexes, closed clamp forms) of the enzyme onto target DNA. During mitosis, SUMO-2/3-modified forms of topoisomerase 2 alpha localize to centromeres and chromosome cores/axes. However, centromeres are unresponsive to inhibitors during interphase. Furthermore, formation of topoisomerase 2 alpha-SUMO-2/3 conjugates within mitotic chromosomes strongly correlates with incomplete chromatid decatenation and decreases progressively as cells approach the metaphase-anaphase transition. We also found that the PIASy protein, an E3 ligase for SUMO proteins, colocalizes with SUMO-2/3 at the mitotic chromosomal cores/axes and is necessary for both formation of SUMO-2/3 conjugates and proper chromatid segregation. We suggest that the efficacy of topoisomerase inhibitors to arrest cells traversing mitosis may relate to their targeting of topoisomerase 2 alpha-SUMO-2/3 conjugates that concentrate at mitotic chromosome axes and are directly involved in chromatid arm separation.
Collapse
Affiliation(s)
- Marta Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shaman JA, Yamauchi Y, Ward WS. Sperm DNA fragmentation: awakening the sleeping genome. Biochem Soc Trans 2007; 35:626-8. [PMID: 17511666 DOI: 10.1042/bst0350626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently demonstrated that mammalian spermatozoa have the ability to degrade their DNA by a mechanism that is similar to apoptosis in somatic cells. When this mechanism is activated, the DNA is first degraded into loop-sized fragments by TOP2B (topoisomerase IIB). This degradation, termed sperm chromatin fragmentation, can be reversed by EDTA, which causes TOP2B to religate the double-stranded breaks it originally produced. Under certain conditions, a nuclease then degrades the sperm DNA further, digesting the entire sperm genome. When mouse spermatozoa which have been treated to induce TOP2B-mediated DNA breaks are injected into oocytes, the paternal DNA is specifically and completely degraded. This total digestion of paternal DNA occurs at the time of DNA synthesis initiation. In the present study, we explore the significance of an active TOP2B in the nucleus for mouse sperm function.
Collapse
Affiliation(s)
- J A Shaman
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
20
|
Díaz-Martínez LA, Giménez-Abián JF, Azuma Y, Guacci V, Giménez-Martín G, Lanier LM, Clarke DJ. PIASgamma is required for faithful chromosome segregation in human cells. PLoS One 2006; 1:e53. [PMID: 17183683 PMCID: PMC1762334 DOI: 10.1371/journal.pone.0000053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/24/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS We identify PIASgamma as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASgamma, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASgamma-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASgamma and Topoisomerase II. CONCLUSIONS PIASgamma directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASgamma in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel.
Collapse
Affiliation(s)
- Laura A. Díaz-Martínez
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
| | - Juan F. Giménez-Abián
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of KansasLawrence, Kansas, United States of America
| | - Vincent Guacci
- Carnegie Institute, Department of EmbryologyBaltimore, Maryland, United States of America
| | - Gonzalo Giménez-Martín
- Proliferación Celular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Lorene M. Lanier
- Department of Neuroscience, University of MinnesotaMinneapolis, Minnesota, United States of America
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical SchoolMinneapolis, Minnesota, United States of America
| |
Collapse
|
21
|
Kondapi AK, Satyanarayana N, Saikrishna AD. A study of the Topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes. Arch Biochem Biophys 2006; 450:123-32. [PMID: 16712776 DOI: 10.1016/j.abb.2006.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 11/17/2022]
Abstract
Human Topoisomerase II is present in two isoforms, 170KDa alpha and 180KDa beta. Both the isoforms play a crucial role in maintenance of topological changes during DNA replication and recombination. It has been shown that Topoisomerase II activity is required for HIV-1 replication and the enzyme is phosphorylated during early time points of HIV-1 replication. In the present study, we have studied the molecular action of Topoisomerase II inhibitors, azalactone ferrocene (AzaFecp), Thiomorpholide amido methyl ferrocene (ThioFecp), and Ruthenium benzene amino pyridine (Ru(ben)Apy) on cell proliferation and also on various events of HIV-1 replication cycle. The Topoisomerase II beta over-expressing neuroblastoma cell line shows a higher sensitivity to these compounds compared to the Sup-T1 cell line. All the three Topoisomerase II inhibitors show significant anti-HIV activity at nanomolar concentrations against an Indian isolate of HIV-1(93IN101) in Sup-T1 cell line. An analysis of action of these compounds on proviral DNA synthesis at 5h of post-infection shows that they inhibit proviral DNA synthesis as well as the formation of pre-integration complexes completely. Further analysis, using polymerase chain reaction and western blot, showed that both the Topoisomerase II alpha and beta isoforms are present in the pre-integration complexes, suggesting their significant role in HIV-1 replication.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biochemistry, University of Hyderabad, School of Life Sciences, Hyderabad 500 046, India.
| | | | | |
Collapse
|
22
|
Kondapi AK, Padmaja G, Satyanarayana N, Mukhopadyaya R, Reitz MS. A biochemical analysis of topoisomerase II alpha and beta kinase activity found in HIV-1 infected cells and virus. Arch Biochem Biophys 2005; 441:41-55. [PMID: 16091284 DOI: 10.1016/j.abb.2005.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
Human topoisomerase II plays a crucial role in DNA replication and repair. It exists in two isoforms: topoisomerase II alpha (alpha) and topoisomerase II beta (beta). The alpha isoform is localized predominantly in the nucleus, while the beta isoform exhibits a reticular pattern of distribution both in the cytosol and in the nucleus. We show that both isoforms of topoisomerase II are phosphorylated in HIV infected cells and also by purified viral lysate. An analysis of the phosphorylation of topoisomerase II isoforms showed that extracts of HIV infected cells at 8 and 32 h. post-infection (p.i.) contain maximal phosphorylated topoisomerase II alpha, whereas infected cell extracts at 4 and 64 h p.i. contain maximum levels of phosphorylated topoisomerase II beta. In concurrent to phosphorylated topoisomerase II isoforms, we have also observed increased topoisomerase II alpha kinase activity after 8h p.i and topoisomerase beta kinase activity at 4 and 64 h p.i. These findings suggest that both topoisomerase II alpha and beta kinase activities play an important role in early as well as late stages of HIV-1 replication. Further analysis of purified virus showed that HIV-1 virion contained topoisomerase II isoform-specific kinase activities, which were partially isolated. One of the kinase activities of higher hydrophobicity can phosphorylate both topoisomerase II alpha and beta, while lower hydrophobic kinase could predominantly phosphorylate topoisomerase II alpha. The phosphorylation status was correlated with catalytic activity of the enzyme. Western blot analysis using phosphoamino-specific antibodies shows that both the kinase activities catalyze the phosphorylation at serine residues of topoisomerase II alpha and beta. The catalytic inhibitions by serine kinase inhibitors further suggest that the alpha and beta kinase activities associated with virus are distinctly different.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biochemistry, University of Hyderabad, Hyderabad 500 046, India.
| | | | | | | | | |
Collapse
|
23
|
Savvidou E, Cobbe N, Steffensen S, Cotterill S, Heck MMS. DrosophilaCAP-D2 is required for condensin complex stability and resolution of sister chromatids. J Cell Sci 2005; 118:2529-43. [PMID: 15923665 DOI: 10.1242/jcs.02392] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise mechanism of chromosome condensation and decondensation remains a mystery, despite progress over the last 20 years aimed at identifying components essential to the mitotic compaction of the genome. In this study, we analyse the localization and role of the CAP-D2 non-SMC condensin subunit and its effect on the stability of the condensin complex. We demonstrate that a condensin complex exists in Drosophila embryos, containing CAP-D2, the anticipated SMC2 and SMC4 proteins, the CAP-H/Barren and CAP-G (non-SMC) subunits. We show that CAP-D2 is a nuclear protein throughout interphase, increasing in level during S phase, present on chromosome axes in mitosis, and still present on chromosomes as they start to decondense late in mitosis. We analysed the consequences of CAP-D2 loss after dsRNA-mediated interference, and discovered that the protein is essential for chromosome arm and centromere resolution. The loss of CAP-D2 after RNAi has additional downstream consequences on the stability of CAP-H, the localization of DNA topoisomerase II and other condensin subunits, and chromosome segregation. Finally, we discovered that even after interfering with two components important for chromosome architecture (DNA topoisomerase II and condensin), chromosomes were still able to compact, paving the way for the identification of further components or activities required for this essential process.
Collapse
Affiliation(s)
- Ellada Savvidou
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | | | | | |
Collapse
|
24
|
Hermsen M, Snijders A, Guervós MA, Taenzer S, Koerner U, Baak J, Pinkel D, Albertson D, van Diest P, Meijer G, Schrock E. Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas. Oncogene 2005; 24:1571-9. [PMID: 15674345 DOI: 10.1038/sj.onc.1208294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural chromosomal aberrations are common in epithelial tumors. Here, we compared the location of centromeric breaks associated with whole arm translocations in seven adenocarcinoma cell lines and nine squamous cell carcinoma cell lines using SKY, microarray-based comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH). Whole arm translocations were more frequent in squamous cell carcinomas (112 in nine cell lines and nine in one short-term culture) than in adenocarcinomas (13 in seven cases) and most often resulted in copy number alterations. Array CGH analysis demonstrated that in all squamous cell carcinomas and in most adenocarcinomas, the breakpoints of unbalanced whole arm translocations occurred between the two clones on the array flanking the centromeres. However, FISH with centromeric probes revealed that in squamous cell carcinomas, the marker chromosomes with whole arm translocations contained centromeres comprised of material from both participating chromosomes, while in adenocarcinomas centromeric material from only one of the chromosomes was present. These observations suggest that different mechanisms of centromeric instability underlie the formation of chromosomal aberrations in adenocarcinomas and squamous cell carcinomas.
Collapse
Affiliation(s)
- Mario Hermsen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
We review micromechanical experiments studying mechanoelastic properties of mitotic chromosomes. We discuss the history of this field, starting from the classic in vivo experiments of Nicklas (1983). We then focus on experiments where chromosomes were extracted from prometaphase cells and then studied by micromanipulation and microfluidic biochemical techniques. These experiments reveal that chromosomes have a well-behaved elastic response over a fivefold range of stretching, with an elastic modulus similar to that of a loosely tethered polymer network. Perturbation by microfluidic "spraying" of various ions reveals that the mitotic chromosome can be rapidly and reversibly decondensed or overcondensed, i.e., that the native state is not maximally compacted. We compare our results for chromosomes from cells to results of experiments by Houchmandzadeh and Dimitrov (1999) on chromatids reconstituted using Xenopus egg extracts. Remarkably, while the stretching elastic response of reconstituted chromosomes is similar to that observed for chromosomes from cells, reconstituted chromosomes are far more easily bent. This result suggests that reconstituted chromatids have a large-scale structure that is quite different from chromosomes in somatic cells. Finally, we discuss microspraying experiments of DNA-cutting enzymes, which reveal that the element that gives mitotic chromosomes their mechanical integrity is DNA itself. These experiments indicate that chromatin-condensing proteins are not organized into a mechanically contiguous "scaffold," but instead that the mitotic chromosome is best thought of as a cross-linked network of chromatin. Preliminary results from restriction enzyme digestion experiments indicate a spacing between chromatin "cross-links" of roughly 15 kb, a size similar to that inferred from classical chromatin loop isolation studies. These results suggest a general strategy for the use of micromanipulation methods for the study of chromosome structure.
Collapse
Affiliation(s)
- M G Poirier
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
26
|
Agostinho M, Rino J, Braga J, Ferreira F, Steffensen S, Ferreira J. Human topoisomerase IIalpha: targeting to subchromosomal sites of activity during interphase and mitosis. Mol Biol Cell 2004; 15:2388-400. [PMID: 14978217 PMCID: PMC404031 DOI: 10.1091/mbc.e03-08-0558] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian topoisomerase IIalpha (topo IIalpha) plays a vital role in the removal of topological complexities left on DNA during S phase. Here, we developed a new assay to selectively identify sites of catalytic activity of topo IIalpha with subcellular resolution. We show that topo IIalpha activity concentrates at replicating heterochromatin in late S in a replication-dependent manner and at centric heterochromatin during G2 and M phases. Inhibitor studies indicate that this cell cycle-dependent concentration over heterochromatin is sensitive to chromatin structure. We further show that catalytically active topo IIalpha concentrates along the longitudinal axis of mitotic chromosomes. Finally, we found that catalytically inert forms of the enzyme localize predominantly to splicing speckles in a dynamic manner and that this pool is differentially sensitive to changes in the activities of topo IIalpha itself and RNA polymerase II. Together, our data implicate several previously unsuspected activities in the partitioning of the enzyme between sites of activity and putative depots.
Collapse
Affiliation(s)
- Marta Agostinho
- Institute of Histology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Sumer H, Craig JM, Sibson M, Choo KHA. A rapid method of genomic array analysis of scaffold/matrix attachment regions (S/MARs) identifies a 2.5-Mb region of enhanced scaffold/matrix attachment at a human neocentromere. Genome Res 2003; 13:1737-43. [PMID: 12840048 PMCID: PMC403747 DOI: 10.1101/gr.1095903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 04/18/2003] [Indexed: 11/24/2022]
Abstract
Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome.
Collapse
MESH Headings
- Cell Line, Transformed
- Centromere/genetics
- Chromosome Aberrations
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, P1 Bacteriophage/genetics
- Chromosomes, Human, Pair 20/genetics
- Contig Mapping/methods
- DNA/genetics
- Fibroblasts/virology
- Gene Expression Profiling/methods
- Herpesvirus 4, Human
- Humans
- In Situ Hybridization, Fluorescence/methods
- Matrix Attachment Region Binding Proteins/genetics
- Metaphase/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- Huseyin Sumer
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | | | | | | |
Collapse
|
28
|
Lyu YL, Wang JC. Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc Natl Acad Sci U S A 2003; 100:7123-8. [PMID: 12773624 PMCID: PMC165840 DOI: 10.1073/pnas.1232376100] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have examined corticogenesis in mouse embryos lacking DNA topoisomerase IIbeta (IIbeta) in the brain or in all tissues. The absence of IIbeta, a type II DNA topoisomerase normally expressed in postmitotic cells in the developing cortex, severely affects cerebral stratification: no subplate is discernible, and neurons born at later stages of corticogenesis fail to migrate to the superficial layers. This abnormal pattern of neuron positioning in the cerebral cortex is reminiscent of that observed in mouse mutants defective in the reelin-signaling pathway. Significantly, the level of reelin in the neocortex is much reduced when IIbeta is absent. These results implicate a role of IIbeta in brain development. The enzyme may be required in implementing particular genetic programs in postmitotic cells, such as reelin expression in Cajal-Retzius cells, perhaps through its action on nucleoprotein structure of particular chromosomal regions.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Cell Movement
- Cerebral Cortex/abnormalities
- Cerebral Cortex/embryology
- Cerebral Cortex/enzymology
- DNA/genetics
- DNA Topoisomerases, Type II/deficiency
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/physiology
- DNA-Binding Proteins
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/physiology
- Female
- Gene Expression Regulation, Developmental
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Neurologic Mutants
- Mitosis
- Neocortex/abnormalities
- Neocortex/embryology
- Neocortex/enzymology
- Nerve Tissue Proteins/physiology
- Neurons/pathology
- Pregnancy
- Reelin Protein
- Serine Endopeptidases
- Signal Transduction
Collapse
Affiliation(s)
- Yi Lisa Lyu
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
29
|
Abstract
Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | |
Collapse
|
30
|
Abstract
Topoisomerase IIalpha (topoIIalpha) and 13S condensin are both required for mitotic chromosome assembly. Here we show that they constitute the two main components of the chromosomal scaffold on histone-depleted chromosomes. The structural stability and chromosomal shape of the scaffolding toward harsh extraction procedures are shown to be mediated by ATP or its nonhydrolyzable analogs, but not ADP. TopoIIalpha and 13S condensin components immunolocalize to a radially restricted, longitudinal scaffolding in native-like chromosomes. Double staining for topoIIalpha and condensin generates a barber pole appearance of the scaffolding, where topoIIalpha- and condensin-enriched "beads" alternate; this structure appears to be generated by two juxtaposed, or coiled, chains. Cell cycle studies establish that 13S condensin appears not to be involved in the assembly of prophase chromatids; they lack this complex but contain a topoIIalpha-defined (-mediated?) scaffolding. Condensin associates only during the pro- to metaphase transition. This two-step assembly process is proposed to generate the barber pole appearance of the native-like scaffolding.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Department of Biochemistry, NCCR Frontiers in Genetics, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
31
|
Andersen CL, Wandall A, Kjeldsen E, Mielke C, Koch J. Active, but not inactive, human centromeres display topoisomerase II activity in vivo. Chromosome Res 2003; 10:305-12. [PMID: 12199144 DOI: 10.1023/a:1016571825025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic centromeres are composed of centromere DNA and the multiple proteins directly or indirectly associated with it. One important DNA-binding protein in the centromere is DNA topoisomerase II (topo II). In the genome in general, topo II has two functions, one structural and one enzymatic, the latter catalyzing DNA strand-passage reactions. It has been demonstrated that topo II accumulates at centromeres during the first part of mitosis, and disappears again at anaphase, but it has not been clear whether it serves a structural or an enzymatic function at the centromere. To investigate this issue, we developed the topo II-induced self-primed in situ assay (Topo-SPRINS). In this assay, DNA breaks created by topo II are stabilized with the topo II inhibitor VM-26 in vivo, and used as 'primers' for localized DNA synthesis in vitro. The assay revealed that topo II has enzymatic activity at mitotic centromeres and that the activity is relatively constant across centromeres. Furthermore, the activity was observed at a neocentromere, and, in multicentric chromosomes, the activity was restricted to the active centromere. The topo II activity is thus selectively present at functioning centromeres, indicating that it plays a role in mitotic centromere function.
Collapse
Affiliation(s)
- Claus L Andersen
- Cancercytogenetics Laboratory, Tage Hansens Gade 2, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
32
|
Abstract
The condensation of mitotic chromosomes is essential for the faithful segregation of sister chromatids in anaphase. An emerging view is that chromosome assembly is an active and dynamic process of chromatin reorganization in which two ATP hydrolyzing enzymes, topoisomerase II and the condensin complex, play central roles. In this review, we discuss recent work that sheds new light on the molecular and structural dynamics of mitotic chromosomes.
Collapse
Affiliation(s)
- Jason R Swedlow
- Division of Gene Regulation and Expression, University of Dundee, DD1 5EH, Dundee, United Kingdom
| | | |
Collapse
|
33
|
Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 2003; 11:203-13. [PMID: 12535533 DOI: 10.1016/s1097-2765(02)00799-2] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
34
|
Belmont AS. Mitotic chromosome scaffold structure: new approaches to an old controversy. Proc Natl Acad Sci U S A 2002; 99:15855-7. [PMID: 12461163 PMCID: PMC138527 DOI: 10.1073/pnas.262672799] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
35
|
Morrison C, Henzing AJ, Jensen ON, Osheroff N, Dodson H, Kandels-Lewis SE, Adams RR, Earnshaw WC. Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res 2002; 30:5318-27. [PMID: 12466558 PMCID: PMC137976 DOI: 10.1093/nar/gkf665] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few substrates have been identified for Aurora B, so that the precise role it plays in controlling mitosis remains to be elucidated. To identify potential novel mitotic substrates of Aurora B, extracted chromosomes were prepared from mitotically-arrested HeLa S3 cells and incubated with recombinant human Aurora B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those phosphorylated by Aurora B revealed topoisomerase II alpha (topo IIalpha) as a potential Aurora B substrate. Purified recombinant human topo IIalpha was phosphorylated by Aurora B in vitro, confirming this proteomic approach as a valid method for the initial definition of candidate substrates of key mitotic kinases.
Collapse
Affiliation(s)
- Ciaran Morrison
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, Swann Building, King's Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 2002; 21:5269-80. [PMID: 12356743 PMCID: PMC129033 DOI: 10.1093/emboj/cdf511] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dissection of human centromeres is difficult because of the lack of landmarks within highly repeated DNA. We have systematically manipulated a single human X centromere generating a large series of deletion derivatives, which have been examined at four levels: linear DNA structure; the distribution of constitutive centromere proteins; topoisomerase IIalpha cleavage activity; and mitotic stability. We have determined that the human X major alpha-satellite locus, DXZ1, is asymmetrically organized with an active subdomain anchored approximately 150 kb in from the Xp-edge. We demonstrate a major site of topoisomerase II cleavage within this domain that can shift if juxtaposed with a telomere, suggesting that this enzyme recognizes an epigenetic determinant within the DXZ1 chromatin. The observation that the only part of the DXZ1 locus shared by all deletion derivatives is a highly restricted region of <50 kb, which coincides with the topo isomerase II cleavage site, together with the high levels of cleavage detected, identify topoisomerase II as a major player in centromere biology.
Collapse
Affiliation(s)
| | | | - Thomas A. Ebersole
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Manuel M. Valdivia
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - William C. Earnshaw
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Tatsuo Fukagawa
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH,
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK, Laboratory of Biosystems and Cancer Genome Structure and Function Section, National Cancer Institute, NIH, Building 49, Room 4A56, Bethesda, MD 20892-4471, USA, Department of Biochemistry and Molecular Biology, University of Cadiz, 11510 Puerto Real, Cadiz, Spain and PRESTO of the Japan Science and Technology Corporation, National Institute of Genetics and Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| |
Collapse
|
37
|
Li G, Tolstonog GV, Sabasch M, Traub P. Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities. DNA Cell Biol 2002; 21:743-69. [PMID: 12443544 DOI: 10.1089/104454902760599726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To further characterize the interaction of cytoplasmic intermediate filament (cIF) proteins with supercoiled (sc)DNA, and to support their potential function as complementary nuclear matrix proteins, the type III IF proteins vimentin, glial fibrillary acidic protein, and desmin were analyzed for their capacities to interact with supercoiled plasmids containing a bent mouse gamma-satellite insert or inserts capable of non-B-DNA transitions into triplex, Z, and cruciform DNA, that is, DNA conformations typically bound by nuclear matrices. While agarose gel electrophoresis revealed a rough correlation between the superhelical density of the plasmids and their affinity for cIF proteins as well as cIF protein-mediated protection of the plasmid inserts from S1 nucleolytic cleavage, electron microscopy disclosed binding of the cIF proteins to DNA strand crossovers in the plasmids, in accordance with their potential to interact with both negatively and positively supercoiled DNA. In addition, the three cIF proteins were analyzed for their effects on eukaryotic DNA topoisomerases I and II. Possibly because cIF proteins interact with the same plectonemic and paranemic scDNA conformations also recognized by topoisomerases, but select the major groove of DNA for binding in contrast to topoisomerases that insert into the minor groove, the cIF proteins were able to stimulate the enzymes in their supercoil-relaxing activity on both negatively and positively supercoiled plasmids. The stimulatory effect was considerably stronger on topoisomerase I than on topoisomerase II. Moreover, cIF proteins assisted topoisomerases I and II in overwinding plasmid DNA with the formation of positive supercoils. Results obtained with the N-terminal head domain of vimentin harboring the DNA binding region and terminally truncated vimentin proteins indicated the involvement of both protein-DNA and protein-protein interactions in these activities. Based on these observations, it seems conceivable that cIF proteins participate in the control of the steady-state level of DNA superhelicity in the interphase nucleus in conjunction with such topoisomerase-controlled processes as DNA replication, transcription, recombination, maintenance of genome stability, and chromosome condensation and segregation.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Ladenburg, Germany
| | | | | | | |
Collapse
|
38
|
Tavormina PA, Côme MG, Hudson JR, Mo YY, Beck WT, Gorbsky GJ. Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis. J Cell Biol 2002; 158:23-9. [PMID: 12105179 PMCID: PMC2173008 DOI: 10.1083/jcb.200202053] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A stable cell line (GT2-LPk) derived from LLC-Pk was created in which endogenous DNA topoisomerase II alpha (topoII alpha) protein was downregulated and replaced by the expression of topoII alpha fused with enhanced green fluorescent protein (EGFP-topoII alpha). The EGFP-topoII alpha faithfully mimicked the distribution of the endogenous protein in both interphase and mitosis. In early stages of mitosis, EGFP-topoII alpha accumulated at kinetochores and in axial lines extending along the chromosome arms. During anaphase, EGFP-topoII alpha diminished at kinetochores and increased in the cytoplasm with a portion accumulating into large circular foci that were mobile and appeared to fuse with the reforming nuclei. These cytoplasmic foci appearing at anaphase were coincident with precursor organelles of the reforming nucleolus called nucleolus-derived foci (NDF). Photobleaching of EGFP-topoII alpha associated with kinetochores and chromosome arms showed that the majority of the protein rapidly exchanges (t1/2 of 16 s). Catalytic activity of topoII alpha was essential for rapid dynamics, as ICRF-187, an inhibitor of topoII alpha, blocked recovery after photobleaching. Although some topoII alpha may be stably associated with chromosomes, these studies indicate that the majority undergoes rapid dynamic exchange. Rapid mobility of topoII alpha in chromosomes may be essential to resolve strain imparted during chromosome condensation and segregation.
Collapse
Affiliation(s)
- Penny A Tavormina
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Campbell S, Maxwell A. The ATP-operated clamp of human DNA topoisomerase IIalpha: hyperstimulation of ATPase by "piggy-back" binding. J Mol Biol 2002; 320:171-88. [PMID: 12079377 DOI: 10.1016/s0022-2836(02)00461-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have constructed a series of clones encoding N-terminal fragments of human DNA topoisomerase IIalpha. All fragments exhibit DNA-dependent ATPase activity. Fragment 1-420 shows hyperbolic dependence of ATPase on DNA concentration, whereas fragment 1-453 shows hyperstimulation at low ratios of DNA to enzyme, a phenomenon found previously with the full-length enzyme. The minimum length of DNA found to stimulate the ATPase activity was approximately 10 bp; fragments >or=32 bp manifest the hyperstimulation phenomenon. Molecular mass studies show that fragment 1-453 is a monomer in the absence of nucleotides and a dimer in the presence of nucleotide triphosphate. The results are consistent with the role of the N-terminal domain of topoisomerase II as an ATP-operated clamp that dimerises in the presence of ATP. The hyperstimulation effect can be interpreted in terms of a "piggy-back binding" model for protein-DNA interaction.
Collapse
Affiliation(s)
- Spencer Campbell
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
40
|
Abstract
DNA topoisomerases are the magicians of the DNA world by allowing DNA strands or double helices to pass through each other, they can solve all of the topological problems of DNA in replication, transcription and other cellular transactions. Extensive biochemical and structural studies over the past three decades have provided molecular models of how the various subfamilies of DNA topoisomerase manipulate DNA. In this review, the cellular roles of these enzymes are examined from a molecular point of view.
Collapse
Affiliation(s)
- James C Wang
- Department of Molecular and Cellular Biology, Harvard University, Fairchild Building, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
41
|
Christensen MO, Larsen MK, Barthelmes HU, Hock R, Andersen CL, Kjeldsen E, Knudsen BR, Westergaard O, Boege F, Mielke C. Dynamics of human DNA topoisomerases IIalpha and IIbeta in living cells. J Cell Biol 2002; 157:31-44. [PMID: 11927602 PMCID: PMC2173268 DOI: 10.1083/jcb.200112023] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.
Collapse
Affiliation(s)
- Morten O Christensen
- Department of Clinical Chemistry, Medizinische Poliklinik, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Muñoz P, Baus F, Piette J. Ku antigen is required to relieve G2 arrest caused by inhibition of DNA topoisomerase II activity by the bisdioxopiperazine ICRF-193. Oncogene 2001; 20:1990-9. [PMID: 11360183 DOI: 10.1038/sj.onc.1204262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 01/09/2001] [Accepted: 01/15/2001] [Indexed: 11/09/2022]
Abstract
Ku antigen is necessary for DNA double-strand break (DSB) repair through its ability to bind DNA ends with high affinity and to recruit the catalytic subunit of DNA-PK to the DSBs. Ku-deficient cells are hypersensitive to agents causing DSBs in DNA but also to the DNA topoisomerase II (topo II) inhibitor ICRF-193, which does not induce DSBs. This suggests a new role of Ku antigen, that is independent of DSB repair by DNA-PK. Here we characterize the basis for the hypersensitivity of Ku-deficient cells to ICRF-193. Chromosome condensation and segregation, which are dependent on topo II, but also the catalytic activity of topo II in late S-G2 were inhibited to a comparable extent when ICRF-193 was applied to Ku-deficient cells or wild-type cells. However, mutant cells arrested in G2 by ICRF-193 treatment were unable to progress into M phase upon drug removal, although drug-trapped topo II complexes were removed from DNA and the two isoforms of topo II recovered their catalytic activity as in wild-type cells. The reversibility of G2 arrest was recovered by complementation of mutant cells with a human Ku86 cDNA. Notably, chromosome condensation was abnormal in Ku-deficient cells after suppression of the G2 arrest by caffeine, even in the absence of ICRF-193. These results reflect the involvement of Ku-antigen in the cellular response to topo II inhibition, more particularly in relieving G2 arrest caused by topo II inhibition in late S/G2 and the subsequent recovery of chromosome condensation.
Collapse
Affiliation(s)
- P Muñoz
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 24, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
43
|
Steffensen S, Coelho PA, Cobbe N, Vass S, Costa M, Hassan B, Prokopenko SN, Bellen H, Heck MM, Sunkel CE. A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr Biol 2001; 11:295-307. [PMID: 11267866 DOI: 10.1016/s0960-9822(01)00096-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Faithful segregation of the genome during mitosis requires interphase chromatin to be condensed into well-defined chromosomes. Chromosome condensation involves a multiprotein complex known as condensin that associates with chromatin early in prophase. Until now, genetic analysis of SMC subunits of the condensin complex in higher eukaryotic cells has not been performed, and consequently the detailed contribution of different subunits to the formation of mitotic chromosome morphology is poorly understood. RESULTS We show that the SMC4 subunit of condensin is encoded by the essential gluon locus in Drosophila. DmSMC4 contains all the conserved domains present in other members of the structural-maintenance-of-chromosomes protein family. DmSMC4 is both nuclear and cytoplasmic during interphase, concentrates on chromatin during prophase, and localizes to the axial chromosome core at metaphase and anaphase. During decondensation in telophase, most of the DmSMC4 leaves the chromosomes. An examination of gluon mutations indicates that SMC4 is required for chromosome condensation and segregation during different developmental stages. A detailed analysis of mitotic chromosome structure in mutant cells indicates that although the longitudinal axis can be shortened normally, sister chromatid resolution is strikingly disrupted. This phenotype then leads to severe chromosome segregation defects, chromosome breakage, and apoptosis. CONCLUSIONS Our results demonstrate that SMC4 is critically important for the resolution of sister chromatids during mitosis prior to anaphase onset.
Collapse
Affiliation(s)
- S Steffensen
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Machado C, Andrew DJ. Titin as a chromosomal protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:221-32; discussion 232-6. [PMID: 10987075 DOI: 10.1007/978-1-4615-4267-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We identified titin as a chromosomal protein using a human autoimmune scleroderma serum. We cloned the corresponding gene in the fruitfly, Drosophila melanogaster. We have demonstrated that titin is not only expressed and localized in striated muscle but is also distributed uniformly on condensed mitotic chromosomes using multiple antibodies directed against different domains of both Drosophila and vertebrate titin. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle. Titin may also function as a molecular scaffold during myofibril assembly. We hypothesize that titin is a component of chromosomes that may function to determine chromosome structure and provide elasticity, playing a role similar to that proposed for titin in muscle. We have identified mutations in Drosophila Titin (D-Titin) and are characterizing phenotypes in muscle and chromosomes.
Collapse
Affiliation(s)
- C Machado
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Gemkow MJ, Dichter J, Arndt-Jovin DJ. Developmental regulation of DNA-topoisomerases during Drosophila embryogenesis. Exp Cell Res 2001; 262:114-21. [PMID: 11139335 DOI: 10.1006/excr.2000.5084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I and type II DNA-topoisomerases are essential enzymes that mediate replication, transcription, recombination, and mitosis in multicellular eukaryotes but the extent of their interchange for specific reactions in vivo is controversial. Expression patterns for topoisomerase I and topoisomerase II during the embryogenesis of Drosophila melanogaster were compared with patterns of DNA replication and expression of the histone genes. In late oogenesis the maternally supplied top2 mRNA was evenly distributed throughout the egg with elevated levels at the posterior tip, a pattern that is maintained in syncytial blastoderm embryos. During gastrulation, top2 mRNA became differentially localized only to regions of DNA replication, including new expression in the gonads preceding mitosis/meiosis. Significantly higher levels of top2 mRNA were found in mitotic compared to endoreplicating tissues. The total histone mRNA was exclusively associated with DNA replication but, in contrast to top2 mRNA, mitotic and endoreplicating cells contained similar expression levels with no expression in the gonads. Striking differences exist between the distribution of the top2 mRNA and topoisomerase II protein. The protein localizes to all evolving nuclei where it persists throughout embryogenesis. A high level of top1 mRNA transcript was present without differential tissue distribution throughout embryogenesis.
Collapse
Affiliation(s)
- M J Gemkow
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, 37070, Germany
| | | | | |
Collapse
|
46
|
Floridia G, Zatterale A, Zuffardi O, Tyler-Smith C. Mapping of a human centromere onto the DNA by topoisomerase II cleavage. EMBO Rep 2000; 1:489-93. [PMID: 11263492 PMCID: PMC1083782 DOI: 10.1093/embo-reports/kvd110] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning approximately 50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active centromere. Although the underlying centromeric DNA structure is variable, the position of the centromere measured in this way is fixed relative to the Yp edge of the array, and has retained the same position for >100,000 years.
Collapse
Affiliation(s)
- G Floridia
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
47
|
Barthelmes HU, Grue P, Feineis S, Straub T, Boege F. Active DNA topoisomerase IIalpha is a component of the salt-stable centrosome core. J Biol Chem 2000; 275:38823-30. [PMID: 11006289 DOI: 10.1074/jbc.m007044200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that the monoclonal antibody specific for human DNA topoisomerase IIalpha, Ki-S1, stains not only the nuclei of human A431 cells but also extranuclear structures suggestive of centrosomes (Meyer, K. N., Kjeldsen, E., Straub, T., Knudsen, B. K., Kikuchi, A., Hickson, I. D., Kreipe, H., and Boege, F. (1997) J. Cell Biol. 136, 775-788). Here, we confirm colocalization of Ki-S1 with the centrosomal marker gamma-tubulin. In addition, we show labeling of centrosomes by peptide antibodies against the N and C termini of human topoisomerase IIalpha. Probing Western blots of isolated centrosomes with topoisomerase IIalpha antibodies, we demonstrate a protein band of 170 kDa. Moreover, isolated centrosomes exhibited DNA decatenation and relaxation activity correlated to the amount of topoisomerase IIalpha protein in the same way as seen in the pure recombinant enzyme. Topoisomerase IIalpha epitopes could not be removed from centrosomes by salt extraction, DNase treatment, or RNase treatment, procedures that completely removed the enzyme from nuclei. Taken together, these observations suggest that active topoisomerase IIalpha is bound tightly to the centrosome in a DNA-independent manner. Because such centrosomal topoisomerase IIalpha was also present in quiescent lymphocytes devoid of topoisomerase IIalpha in the nuclei, we assume that it might be a long-lived storage form.
Collapse
Affiliation(s)
- H U Barthelmes
- Medizinische Poliklinik der Universität Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Machado C, Andrew DJ. D-Titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151:639-52. [PMID: 11062264 PMCID: PMC2185597 DOI: 10.1083/jcb.151.3.639] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 09/20/2000] [Indexed: 11/28/2022] Open
Abstract
Previously, we reported that chromosomes contain a giant filamentous protein, which we identified as titin, a component of muscle sarcomeres. Here, we report the sequence of the entire titin gene in Drosophila melanogaster, D-Titin, and show that it encodes a two-megadalton protein with significant colinear homology to the NH(2)-terminal half of vertebrate titin. Mutations in D-Titin cause chromosome undercondensation, chromosome breakage, loss of diploidy, and premature sister chromatid separation. Additionally, D-Titin mutants have defects in myoblast fusion and muscle organization. The phenotypes of the D-Titin mutants suggest parallel roles for titin in both muscle and chromosome structure and elasticity, and provide new insight into chromosome structure.
Collapse
Affiliation(s)
- C Machado
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
49
|
Bidder M, Loewy AP, Latifi T, Newberry EP, Ferguson G, Willis DM, Towler DA. Ets domain transcription factor PE1 suppresses human interstitial collagenase promoter activity by antagonizing protein-DNA interactions at a critical AP1 element. Biochemistry 2000; 39:8917-28. [PMID: 10913304 DOI: 10.1021/bi000343+] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In MC3T3E1 calvarial osteoblasts, fibroblast growth factor receptor (FGFR) signaling elicits multiple transcriptional responses, including upregulation of the interstitial collagenase/matrix metalloproteinase 1 (MMP1) promoter. FGF responsiveness maps to a bipartite Ets/AP1 element at base pairs -123 to -61 in the human MMP1 promoter. Under basal conditions, the MMP1 promoter is repressed in part via protein-DNA interactions at the Ets cognate, and minimally two mechanisms convey MMP1 promoter upregulation by FGF2: (a) transcriptional activation via Fra1/c-Jun containing DNA-protein interactions at the AP1 cognate and (b) derepression of promoter activity regulated by the Ets cognate. To identify osteoblast Ets repressors that potentially participate in gene expression in the osteoblast, we performed reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA isolated from MC3T3E1 cells, using degenerative amplimers to the conserved Ets DNA binding domain to survey the Ets genes expressed by these cells. Six distinct Ets mRNAs were identified: Ets2, Fli1, GABPalpha, SAP1, Elk1, and PE1. Of these, only PE1 has extensive homology to the known Ras-regulated Ets transcriptional repressor, ERF. Therefore, we cloned and characterized PE1 cDNA from a mouse brain library and performed functional analysis of this particular Ets family member. A 2 kb transcript was isolated from brain that encodes a approximately 57 kDa protein; the predicted protein contains the known N-terminal Ets domain of PE1 and a novel C-terminal domain with signficant homology to murine ERF. The murine PE1 open reading frame (ORF) is much larger than the previously reported human PE1 ORF. Consistent with this, affinity-purified rabbit anti-mouse PE1 antibody specifically recognizes an approximately 66 kDa protein present only in the nuclear fraction of MC3T3E1 osteoblasts. Recombinant PE1 binds authentic AGGAWG Ets DNA cognates, and transient transfection studies demonstrate that PE1 represses MMP1 promoter activity. Surprisingly, although deletion of the MMP1 Ets cognate at nucleotides -88 to -83 abrogates FGF2 induction, it does not prevent suppression of the AP1-dependent MMP1 promoter by PE1. PE1 regulation maps to the MMP1 promoter region -75 to -61, suggesting that PE1 suppresses transcription via protein-protein interactions with AP1. Consistent with this, recombinant GST-PE1 specifically inhibits the formation of protein-DNA interactions on the MMP1 AP1 site (-72 to -66) when present in an admixture with MC3T3E1 crude nuclear extract. In toto, these data indicate that PE1 participates in the transcriptional regulation of the MMP1 promoter in osteoblasts. As observed with other transcriptional repressors of MMP1 gene expression, transcriptional suppression by PE1 occurs via inhibition of AP1-dependent promoter activity.
Collapse
Affiliation(s)
- M Bidder
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Fortune JM, Osheroff N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:221-53. [PMID: 10697411 DOI: 10.1016/s0079-6603(00)64006-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Topoisomerase II is an essential enzyme that plays a role in virtually every cellular DNA process. This enzyme interconverts different topological forms of DNA by passing one nucleic acid segment through a transient double-stranded break generated in a second segment. By virtue of its double-stranded DNA passage reaction, topoisomerase II is able to regulate DNA over- and underwinding, and can resolve knots and tangles in the genetic material. Beyond the critical physiological functions of the eukaryotic enzyme, topoisomerase II is the target for some of the most successful anticancer drugs used to treat human malignancies. These agents are referred to as topoisomerase II poisons, because they transform the enzyme into a potent cellular toxin. Topoisomerase II poisons act by increasing the concentration of covalent enzyme-cleaved DNA complexes that normally are fleeting intermediates in the catalytic cycle of topoisomerase II. As a result of their action, these drugs generate high levels of enzyme-mediated breaks in the genetic material of treated cells and ultimately trigger cell death pathways. Topoisomerase II is also the target for a second category of drugs referred to as catalytic inhibitors. Compounds in this category prevent topoisomerase II from carrying out its required physiological functions. Drugs from both categories vary widely in their mechanisms of actions. This review focuses on topoisomerase II function and how drugs alter the catalytic cycle of this important enzyme.
Collapse
Affiliation(s)
- J M Fortune
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|