1
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
2
|
The Scavenging Effect of Myoglobin from Meat Extracts toward Peroxynitrite Studied with a Flow Injection System Based on Electrochemical Reduction over a Screen-Printed Carbon Electrode Modified with Cobalt Phthalocyanine: Quantification and Kinetics. BIOSENSORS-BASEL 2021; 11:bios11070220. [PMID: 34356690 PMCID: PMC8301918 DOI: 10.3390/bios11070220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
The scavenging activity of myoglobin toward peroxynitrite (PON) was studied in meat extracts, using a new developed electrochemical method (based on cobalt phthalocyanine-modified screen-printed carbon electrode, SPCE/CoPc) and calculating kinetic parameters of PON decay (such as half-time and apparent rate constants). As reactive oxygen/nitrogen species (ROS/RNS) affect the food quality, the consumers can be negatively influenced. The discoloration, rancidity, and flavor of meat are altered in the presence of these species, such as PON. Our new highly thermically stable, cost-effective, rapid, and simple electrocatalytical method was combined with a flow injection analysis system to achieve high sensitivity (10.843 nA µM−1) at a nanomolar level LoD (400 nM), within a linear range of 3–180 µM. The proposed biosensor was fully characterized using SEM, FTIR, Raman spectroscopy, Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), and Linear Sweep Voltammetry (LSV). These achievements were obtained due to the CoPc-mediated reduction of PON at very low potentials (around 0.1 V vs. Ag/AgCl pseudoreference). We also proposed a redox mechanism involving two electrons in the reduction of peroxynitrite to nitrite and studied some important interfering species (nitrite, nitrate, hydrogen peroxide, dopamine, ascorbic acid), which showed that our method is highly selective. These features make our work relevant, as it could be further applied to study the kinetics of important oxidative processes in vivo or in vitro, as PON is usually present in the nanomolar or micromolar range in physiological conditions, and our method is sensitive enough to be applied.
Collapse
|
3
|
Bunaciu AA, Danet AF, Fleschin Ş, Aboul-Enein HY. Recent Applications for in Vitro Antioxidant Activity Assay. Crit Rev Anal Chem 2016; 46:389-99. [DOI: 10.1080/10408347.2015.1101369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrei A. Bunaciu
- SCIENT - Research Center for Instrumental Analysis, Tancabesti, Snagov, Romania
| | - Andrei Florin Danet
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Şerban Fleschin
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Nalewajko-Sieliwoniuk E, Iwanowicz M, Kalinowski S, Kojło A. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index. Anal Chim Acta 2016; 911:82-91. [PMID: 26893089 DOI: 10.1016/j.aca.2016.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/22/2015] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
Abstract
In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices).
Collapse
Affiliation(s)
- Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland.
| | - Magdalena Iwanowicz
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Sławomir Kalinowski
- Department of Chemistry, University of Warmia and Mazury, 10-957 Olsztyn, Poland
| | - Anatol Kojło
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| |
Collapse
|
5
|
WADA M, KURODA N, NAKASHIMA K. Analysis of Ingredients and Assessments of the Functionalities in Functional Foods and Supplements. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mitsuhiro WADA
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare
| | - Naotaka KURODA
- Graduate School of Biomedical Sciences, Nagasaki University
| | | |
Collapse
|
7
|
Nalewajko-Sieliwoniuk E, Malejko J, Święczkowska M, Kowalewska A. A study on the selection of chemiluminescence system for the flow injection determination of the total polyphenol index of plant-derived foods. Food Chem 2014; 176:175-83. [PMID: 25624221 DOI: 10.1016/j.foodchem.2014.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/04/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022]
Abstract
Different chemiluminescence systems based on luminol, permanganate, manganese(IV) and cerium(IV) reagents were compared regarding their sensitivity and selectivity to determine plant polyphenols. Among the seventeen systems tested, Mn(IV)-formaldehyde-hexametaphosphate was considered to be the most suitable for polyphenols detection. The developed flow injection method (FI-CL) based on enhancing effect of polyphenols on Mn(IV) chemiluminescence is characterised by low detection limit of gallic acid (0.02μgL(-1)) and high precision (RSD=1.7%). The calibration graph was linear from 0.1 to 100μgL(-1). The selectivity studies revealed that the FI-CL method ensures accurate determination of the total polyphenols content in food samples. The method was successfully applied to analysis of a variety of plant-derived foods (wine, tea, cereal coffee, fruit and vegetable juices, herbs and spices). The proposed method is superior to conventional spectrophotometric assays due to its higher sample throughput (195samplesh(-1)), simplicity, sensitivity and, above all, higher selectivity.
Collapse
Affiliation(s)
- Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Julita Malejko
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland.
| | - Marta Święczkowska
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Agata Kowalewska
- Department of Analytical Chemistry, Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| |
Collapse
|