1
|
Hao F, Yan XP. Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127353. [PMID: 34879558 DOI: 10.1016/j.jhazmat.2021.127353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/10/2023]
Abstract
Understanding the toxicity of metal-organic frameworks (MOFs) is important for improving their biocompatibility in further applications, especially the hematotoxicity of MOFs due to the unavoidable contact of MOFs with blood in biomedical science. Here we report the hematotoxicity and underlying mechanisms of nano-sized zeolite-like MOFs ZIF-8 and ZIF-67 because of their wide applications in biomedical science. ZIF-67 induced significant hemolysis of red blood cell (Rb) through breaking the structure of membrane due to the generation of free radicals, whereas ZIF-8 was hematocompatible. ZIF-67 was thus internalized by Rb and then bound with hemoglobin via hydrogen bond and van der Waals force, which influenced the structure and function of hemoglobin in accompany with heme release. These findings reveal the detailed mechanism of the hematological effects of MOFs on Rb and are helpful to the assessment of the toxicity and potential health risks of MOFs and the design of biosafe MOFs for biomedical applications.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases I: Toxic Chemicals and Food. PATHOPHYSIOLOGY 2021; 28:513-543. [PMID: 35366249 PMCID: PMC8830458 DOI: 10.3390/pathophysiology28040034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases affect 5–9% of the world’s population. It is now known that genetics play a relatively small part in the pathophysiology of autoimmune disorders in general, and that environmental factors have a greater role. In this review, we examine the role of the exposome, an individual’s lifetime exposure to external and internal factors, in the pathophysiology of autoimmune diseases. The most common of these environmental factors are toxic chemicals, food/diet, and infections. Toxic chemicals are in our food, drink, common products, the air, and even the land we walk on. Toxic chemicals can directly damage self-tissue and cause the release of autoantigens, or can bind to human tissue antigens and form neoantigens, which can provoke autoimmune response leading to autoimmunity. Other types of autoimmune responses can also be induced by toxic chemicals through various effects at the cellular and biochemical levels. The food we eat every day commonly has colorants, preservatives, or packaging-related chemical contamination. The food itself may be antigenic for susceptible individuals. The most common mechanism for food-related autoimmunity is molecular mimicry, in which the food’s molecular structure bears a similarity with the structure of one or more self-tissues. The solution is to detect the trigger, remove it from the environment or diet, then repair the damage to the individual’s body and health.
Collapse
|
3
|
Habibian Dehkordi S, Farhadian S, Ghasemi M. The interaction between the azo dye tartrazine and α-Chymotrypsin enzyme: Molecular dynamics simulation and multi-spectroscopic investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Gaurav M, Natesh A, Arundhati A, Mariam D. Biochemical aspects of hemoglobin-xenobiotic interactions and their implications in drug discovery. Biochimie 2021; 191:154-163. [PMID: 34474139 DOI: 10.1016/j.biochi.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Hemoglobin, a homodimeric globular protein, is found predominantly in red blood cells and in a small amount in blood plasma. Along with binding to certain native molecules, it also interacts with various xenobiotics. The present review aims at studying these interactions and the resultant tangible impact on the structure and function of the protein if any. The review also encompasses various analytical and computational approaches which are routinely used to study these interactions. A detailed discussion on types of interaction exhibited by individual xenobiotics has been included herein. Additionally, the effects of xenobiotic binding on the oxygen carrying capacity of hemoglobin have been reviewed. These insights would be of great value in drug design and discovery. Envisaging probable interactions of designed ligands with hemoglobin would help improvise the process of drug development. This would also open up new avenues for studying hemoglobin-mediated drug delivery.
Collapse
Affiliation(s)
- Mehta Gaurav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India
| | - Ahuja Natesh
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India
| | - Abhyankar Arundhati
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, India
| | - Degani Mariam
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, India.
| |
Collapse
|
5
|
Zou L, Zhang X, Shao M, Sun R, Zhu Y, Zou B, Huang Z, Liu H, Teng Y. A biophysical probe on the binding of 2-mercaptothioazoline to bovine hemoglobin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:208-214. [PMID: 30387064 DOI: 10.1007/s11356-018-3405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
2-Mercaptothiazoline (MTZ) is broadly present in daily use as an antifungal reagent, a brightening agent, and a corrosion inhibitor. MTZ is potentially harmful for human health. Although the toxic effects of MTZ on experimental animals have been reported, the effects of MTZ on the proteins in the circulatory system at the molecular level have not been identified previously. Here, we explored the interaction of MTZ with bovine hemoglobin (BHb) in vitro using multiple spectroscopic techniques and molecular docking. In this study, the binding capacity, acting force, binding sites, molecular docking simulation, and conformational changes were investigated. MTZ quenched the intrinsic emission of BHb via the static quenching process and could spontaneously bind with BHb mainly through van der Waals forces and hydrogen bond. The computational docking visualized that MTZ bound to the β2 subunit of BHb, which further led to some changes of the skeleton and secondary structure of BHb. This research provides valuable information about the molecular mechanisms on BHb induced by MTZ and is beneficial for clarifying the toxicological actions of MTZ in blood.
Collapse
Affiliation(s)
- Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyue Zhang
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Mingying Shao
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Ruirui Sun
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Yuting Zhu
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Binbin Zou
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Zhenxing Huang
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Sienkiewicz A, Kierys A, Goworek J. Polymer-hybrid silica composite for the azo dye removal from aqueous solution. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrzej Sienkiewicz
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Kierys
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Goworek
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
7
|
The Interaction and Thermodynamic Studies on the Binding of Congo Red Dye with Collagen Protein by Polarographic and Equilibrium Dialysis Techniques. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The survey of the existing literature revealed that the binding of Molybdenum, Vanadium, Zinc, Cadmium, Copper, Nickel and Cobalt with the protein is well known but no binding studies of Congo red molecules with collagen are reported. With a view to extend the existed knowledge of ecological nature of dye-protein system, it was thought of interest to investigate of properties of dye-protein mixture. The binding of Congo red dye has been studied with collagen protein using polarographic and equilibrium dialysis techniques. The intrinsic association constants and the number of binding sites have been calculated from Scatchard plots. The effect of pH on these constants was studied at pH 5.57, 7.50, 9.50 by polarographic technique and it was found that these values were decreased with increasing pH. The effect of pH was found to be similar by equilibrium dialysis technique. The values of different thermodynamic parameters have been reported. The free energies of aggregation, ΔG associated with the binding interaction of the dyes and protein were calculated. The negative values of the ΔG confirm the feasibility of interaction between the dye and protein.
Collapse
|
8
|
Wu Q, Wan J, He Z, Liu R. Spectroscopic investigations on the conformational changes of lysozyme effected by different sizes of N-acetyl-l-cysteine-capped CdTe quantum dots. J Biochem Mol Toxicol 2017; 31. [PMID: 28902442 DOI: 10.1002/jbt.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022]
Abstract
The effect of N-acetyl-l-cysteine-capped CdTe quantum dots (NAC-CdTe QDs) with different sizes on lysozyme was investigated by isothermal titration calorimetry (ITC), enzyme activity assays, and multi-spectroscopic methods. ITC results proved that NAC-CdTe QDs can spontaneously bind with lysozyme and hydrophobic force plays a major role in stabilizing QDs-lysozyme complex. Multi-spectroscopic measurements revealed that NAC-CdTe QDs caused strong quenching of the lysozyme's fluorescence in a size-dependent quenching manner. Moreover, the changes of secondary structure and microenvironment in lysozyme caused by the NAC-CdTe QDs were higher with a bigger size. The results of enzyme activity assays showed that the interaction between lysozyme and NAC-CdTe QDs inhibited the activity of lysozyme and the inhibiting effect was in a size-dependent manner. Based on these results, we conclude that NAC-CdTe QDs with larger particle size had a larger impact on the structure and function of lysozyme.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Zhuo He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| |
Collapse
|
9
|
Fang Q, Xing M, Guo C, Liu Y. Probing the interaction of doxycycline to trypsin and bovine hemoglobin by using multi-spectral techniques and molecular docking. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Fang Q, Guo C, Wang Y, Liu Y. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods. J Biomol Struct Dyn 2017; 36:2032-2044. [PMID: 28604271 DOI: 10.1080/07391102.2017.1341335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interactions of levofloxacin (LEV) with lysozyme (LYZ), trypsin and bovine hemoglobin (BHb) were investigated, respectively, by using multi-spectral techniques and molecular docking in vitro. Fluorescence studies showed that LEV quenched LYZ/trypsin fluorescence in a combined quenching ways and BHb fluorescence in a static quenching with binding constants of .14, .51 and .20 × 105 L mol-1 at 298 K, respectively. The thermodynamic parameters demonstrated that hydrophobic forces, hydrogen bonds, and van der Waals forces played the major role in the binding process. The binding distances between LEV and the inner tryptophan residues of LYZ, trypsin, and BHb were calculated to be 4.04, 3.38, and 4.52 nm, respectively. Furthermore, the results of circular dichroism spectra (CD), UV-vis, and three-dimensional fluorescence spectra indicated that the secondary structures of LYZ, trypsin, and BHb were partially changed by LEV with the α-helix percentage of LYZ-LEV system increased while that of BHb-LEV system was decreased, the β-sheet percentage of trypsin-LEV system increased from 41.3 to 42.9%. UV-vis spectral results showed that the binding interactions could cause conformational and some micro-environmental changes of LYZ, trypsin, and BHb. The results of molecular docking revealed that in LYZ and trypsin systems, LEV bound to the active sites residues GLU 35 and ASP 52 of LYZ and trypsin at the active site SER 195, and in BHb system, LEV was located in the central cavity, which was consistent with the results of synchronous fluorescence experiment. Besides, LEV made the activity of LYZ decrease while the activity of trypsin increased.
Collapse
Affiliation(s)
- Qing Fang
- a College of Life and Environmental Sciences, Minzu University of China , Beijing 100081 , China
| | - Chenhui Guo
- a College of Life and Environmental Sciences, Minzu University of China , Beijing 100081 , China
| | - Yirun Wang
- a College of Life and Environmental Sciences, Minzu University of China , Beijing 100081 , China
| | - Ying Liu
- a College of Life and Environmental Sciences, Minzu University of China , Beijing 100081 , China.,b Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China , Beijing 100081 , China
| |
Collapse
|
11
|
Basu A, Suresh Kumar G. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme. J Phys Chem B 2017; 121:1222-1239. [DOI: 10.1021/acs.jpcb.6b10465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
12
|
Kamaljeet, Bansal S, SenGupta U. A Study of the Interaction of Bovine Hemoglobin with Synthetic Dyes Using Spectroscopic Techniques and Molecular Docking. Front Chem 2017; 4:50. [PMID: 28119912 PMCID: PMC5223637 DOI: 10.3389/fchem.2016.00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/22/2016] [Indexed: 12/02/2022] Open
Abstract
Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, and drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine hemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modeling was used to visualize the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with hemoglobin to allow for the formation of potentially toxic interactions. Molecular modeling showed that all four dyes bind within the central cavity of the hemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye.
Collapse
Affiliation(s)
| | | | - Uttara SenGupta
- Department of Chemistry, Lovely Professional UniversityPhagwara, India
| |
Collapse
|
13
|
Basu A, Suresh Kumar G. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:468-476. [PMID: 27450339 DOI: 10.1016/j.jhazmat.2016.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
14
|
Wang R, Li Z, Yang L, Ren T, Zhang L, Wang R. Studies on the interaction between neutral red and bovine hemoglobin by fluorescence spectroscopy and molecular modeling. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
|
16
|
Jing M, Liu R, Yan W, Tan X, Chen Y. Investigations on the effects of Cu(2+) on the structure and function of human serum albumin. LUMINESCENCE 2015; 31:557-564. [PMID: 26250799 DOI: 10.1002/bio.2995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022]
Abstract
Human serum albumin (HSA) is the most prominent protein in blood plasma with important physiological functions. Although copper is an essential metal for all organisms, the massive utilization of copper has led to concerns regarding its potential health impact. To better understand the potential toxicity and toxic mechanisms of Cu(2+), it is of vital importance to characterize the interaction of Cu(2+) with HSA. The effect of Cu(2+) on the structure and function of HSA in vitro were investigated by biophysical methods including fluorescence techniques, circular dichroism (CD), time-resolved measurements, isothermal titration calorimetry (ITC), molecular simulations and esterase activity assay. Multi-spectroscopic measurements proved that Cu(2+) quenched the intrinsic fluorescence of HSA in a dynamic process accompanied by the formation of complex and alteration of secondary structure. But the Cu(2+) had minimal effect on the backbone and secondary structure of HSA at relatively low concentrations. The ITC results indicated Cu(2+) interacted with HSA spontaneously through hydrophobic forces with approximately 1 thermodynamic identical binding sites at 298 K. The esterase activity of HSA was inhibited obviously at the concentration of 8 × 10(-5) M. However, molecular simulation showed that Cu(2+) mainly interacted with the amino acid residues Asp (451) by the electrostatic force. Thus, we speculated the interaction between Cu(2+) and HSA might induce microenvironment of the active site (Arg 410). This study has provided a novel idea to explore the biological toxicity of Cu(2+) at the molecular level.
Collapse
Affiliation(s)
- Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27 Shanda Nanlu, Jinan, 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27 Shanda Nanlu, Jinan, 250100, China
| | - Wenbao Yan
- School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 27 Shanda Nanlu, Jinan, 250100, China
| | - Xuejie Tan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong Province, 250353, P.R. China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
17
|
Masone D, Chanforan C. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Comput Biol Chem 2015; 56:152-8. [PMID: 25935119 DOI: 10.1016/j.compbiolchem.2015.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/13/2015] [Accepted: 04/16/2015] [Indexed: 01/26/2023]
Abstract
Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health.
Collapse
Affiliation(s)
- Diego Masone
- CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza 5500, Argentina.
| | - Céline Chanforan
- Chr. Hansen France SAS, 92 avenue des Baronnes, 34730 Prades-le-lez, France
| |
Collapse
|
18
|
Li Z, Song S, Xu L, Kuang H, Guo S, Xu C. Development of an ultrasensitive immunoassay for detecting tartrazine. SENSORS 2013; 13:8155-69. [PMID: 23799494 PMCID: PMC3758588 DOI: 10.3390/s130708155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 11/16/2022]
Abstract
We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.
Collapse
Affiliation(s)
- Zhuokun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | | | | | | | | | | |
Collapse
|