1
|
Ansari MF, Arjmand F. Quercetin-phenylalanine 3d-transition metal-based {Co(II), Ni(II) & Cu(II)} intercalative therapeutic agents: DNA & BSA interaction studies in vitro and cleavage activity. Int J Biol Macromol 2024; 254:127521. [PMID: 37898256 DOI: 10.1016/j.ijbiomac.2023.127521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
New Quercetin-phenylalanine metal-based therapeutic agents of the formulation [Qu(Phe)M(II).(H2O)2].NO3 where M(II) = Co(II) and Ni(II) and [Qu(Phe)Cu(II).(H2O)2] were synthesized and their structure was predicted by IR, UV-vis, EPR and ESI-MS spectroscopic techniques. The bio-molecular interaction studies of the Quercetin-phenylalanine complexes, 1-3 with ct-DNA and BSA were performed using a battery of complimentary biophysical techniques. The corroborative results of these experiments revealed strong binding propensity via electrostatic interactions probably through minor grove binding towards ct-DNA, therapeutic target. The binding affinity of Quercetin-phenylalanine complexes 1-3 was quantified by determining binding constants values, Kb, Ksv, and the magnitude of binding propensity followed the order 3 > 1 > 2, implicating the preferential binding of Cu(II) complex 3 with ct-DNA. The cleavage studies were performed with complexes using gel electrophoretic mobility assay. The complexes 1-3 demonstrated efficient cleaving ability by the hydrolytic cleavage pathway involving hydroxyl (OH) radicals. BSA binding profile of Quercetin-phenylalanine metal therapeutics 1-3 was studied in order to understand the drug carrier potential of these compounds and found that complex 3 was capable of binding preferentially with BSA as compared to other complexes.
Collapse
Affiliation(s)
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
2
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Malekipour MH, Shirani F, Moradi S, Taherkhani A. Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations. Genomics Inform 2023; 21:e9. [PMID: 37037467 PMCID: PMC10085732 DOI: 10.5808/gi.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 04/03/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer′s disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer′s disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.
Collapse
Affiliation(s)
- Mohammad Hossein Malekipour
- Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farzaneh Shirani
- Dental Research Center, Dental Research Institute, Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Shadi Moradi
- Department of Medical Immunology, School of Medicine, Hamadan University of Medical Science, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
5
|
Patel DK. Medicinal Importance, Pharmacological Activities and Analytical Aspects of an Isoflavone Glycoside Tectoridin. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1570193x19666220411133129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Polyphenols are a group of plant secondary metabolites that are produced in plants as a protective system against oxidative stress, UV radiation, pathogens and predator’s attack. Flavonoids are major class of plant phenolics found to be present in fruits, vegetables, tea and red wine. Tectoridin also called 40,5,7-thrihydroxy-6-methoxyisoflavone-7-Ob-D-glucopyranoside is an isoflavone glycoside found to be present in the flower of Porites lobata.
Methods:
Present work focused on the biological importance, therapeutic potential and pharmacological activities of tectoridin in medicine. Numerous scientific data has been collected from different literature databases such as Google Scholar, Science Direct, PubMed and Scopus in order to know the health beneficial potential of tectoridin. Pharmacological data have been analyzed in the present work to know the biological effectiveness of tectoridin against human disorders. Analytical data of tectoridin have been collected and analyzed in the present work in order to know the importance of modern analytical method in the isolation, separation and identification of tectoridin.
Results:
Scientific data analysis revealed the biological importance and therapeutic benefit of tectoridin in medicine, signifying the therapeutic potential of tectoridin in the healthcare systems. Biological activities of tectoridin are mainly due to its anti-inflammatory, anti-platelet, anti-angiogenic, hepatoprotective, anti-tumor, estrogenic, antioxidant and hypoglycemic activity. However effectiveness of tectoridin against rat lens aldose reductase, nitric oxide, skeletal and cardiac muscle sarcoplasmic reticulum and enzymes have been also presented in this work. Analytical data signified the importance of modern analytical techniques for the separation, identification and isolation of tectoridin.
Conclusion:
Present work signified the biological importance and therapeutic benefit of tectoridin in the medicine and other allied health sectors.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
6
|
Meng X, Nan G, Shi B, Li W, Liu H, Lin R, Yang G, Zheng S. Investigation on the interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin, lysozyme by spectroscopy and molecular docking methods. LUMINESCENCE 2022; 37:810-821. [PMID: 35289053 DOI: 10.1002/bio.4225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
The interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin and lysozyme was investigated using multispectral and molecular docking methods. The results of fluorescence quenching revealed that myricetin and dihydromyricetin could quench the intrinsic fluorescence of three different proteinases through a static quenching procedure. The binding constant and number of binding sites at different temperatures were measured. The thermodynamic parameters obtained at different temperatures showed van der Waals' interactions and hydrogen bonds played the main roles in the interaction of myricetin with trypsin and lysozyme, hydrophobic force was dominant both in myricetin with α-chymotrypsin interaction and dihydromyricetin with trypsin and lysozyme interaction, as for the electrostatic forces, it was the mainly driving force in dihydromyricetin binding to α-chymotrypsin. There was non-radiative energy transfer between three proteinases and myricetin or dihydromyricetin with high probability. The microenvironment of trypsin, α-chymotrypsin and lysozyme is changed. The docking studies revealed that myricetin and dihydromyricetin entered the hydrophobic cavity of three proteinases and formed hydrogen bond. The binding affinity of myricetin or dihydromyricetin is difference with the trypsin, α-chymotrypsin and lysozyme due to the different molecular structure.
Collapse
Affiliation(s)
- Xianxin Meng
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Bowen Shi
- Anesthesia Operation Center, Xi'an International Medical Center, Shaanxi, P.R. China
| | - Wanlu Li
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Henglin Liu
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Rong Lin
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Shaanxi, P.R. China
| | - Shaohua Zheng
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, P.R. China
| |
Collapse
|
7
|
Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Moghadam NH, Salehzadeh S, Najafi R, Amini R, Saidijam M. The Use of Molecular Docking and Spectroscopic Methods for Investigation of The Interaction Between Regorafenib with Human Serum Albumin (HSA) and Calf Thymus DNA (Ct-DNA) In The Presence Of Different Site Markers. Protein Pept Lett 2021; 28:290-303. [PMID: 32957871 DOI: 10.2174/0929866527666200921164536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interactions of drugs with DNA and proteins may modify their biological activities and conformations, which effect transport and biological metabolism of drugs. OBJECTIVE In this study the interaction of anticancer drug regorafenib (REG) with calf thymus-DNA (ct-DNA) and human serum albumin (HSA) has been investigated Methods: Hence, for the first time, it was discovered interaction between REG with DNA and HSA using multi-spectroscopic, zeta potential measurements and molecular docking method. RESULTS AND DISCUSSION DNA displacement studies showed that REG does not have any effect on acridine orange and methylene blue bound DNA, though it was substantiated by displacement studies with Hoechst (as groove binder). Furthermore, the different concentrations of REG induce slight changes in the viscosity of ct-DNA. Zeta potential parameters indicated that hydrophobic interaction plays a major role in the DNA-REG complex. Results obtained from molecular docking demonstrate that the REG prefers to bind on the minor groove of DNAs than that of the major groove. Binding properties of HSA reveal that intrinsic fluorescence of HSA could be quenched by REG in a static mode. The competitive experiments in the presence of warfarin and ibuprofen (as site markers) suggested that the binding site of REG to HSA was most probably located in the subdomain IIA. Measurements of the zeta potential indicated that REG bound to HSA mainly by both electrostatic and hydrophobic interactions. It was found on docking procedures that REG could fit well into HSA subdomain IIA, which confirmed the experimental results. CONCLUSION In conclusion, REG can be delivered by HSA in a circulatory system and affect DNA as potential target.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Moradi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Liu R, Wu L, Feng H, Tang F, Si H, Yao X, He W. The study on the interactions of two 1,2,3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118795. [PMID: 32814256 DOI: 10.1016/j.saa.2020.118795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
1-(4-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (CPTC) and 5-(3-chlorophenyl) -1-phenyl-1H-1,2,3-triazole (PCTA) are two new derivatives of 1,2,3-triazole. Their structural and spectral properties were characterized by density functional theory calculations (DFT). The binding properties of CPTC or PCTA with several typical biomacromolecules such as human serum albumin (HSA), bovine hemoglobin (BHb), human immunoglobulin (HIgG) or DNA were investigated by molecular docking and multiple spectroscopic methodologies. The different parameters including binding constants and thermodynamic parameters for CPTC/PCTA-HSA/BHb/HIgG/DNA systems were obtained based on various fluorescence enhancement or quenching mechanisms. The results of binding constants indicated that there were the strong interactions between two triazoles and four biological macromolecules due to the higher order of magnitude between 103 and 105. The values of thermodynamic parameters revealed that the binding forces for these systems are mainly hydrophobic interactions, electrostatic force, or hydrogen bond, respectively, which are in agreement with the results of molecular docking to a certain extent. Moreover, the information from synchronous, 3D fluorescence and UV-Vis spectroscopies proved that two compounds CPTC and PCTA could affect the microenvironment of amino acids residues of three kinds of proteins. Based on the above experimental results, a comparison of the interaction mechanisms for CPTC/PCTA-proteins/DNA systems have been performed in view of their different molecular structures, which is beneficial for the further research in order to design them as the novel drugs.
Collapse
Affiliation(s)
- Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Huajie Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Fengqi Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China.
| |
Collapse
|
9
|
Mohammadnia F, Fatemi MH, Taghizadeh SM. Study on the interaction of anti-inflammatory drugs with human serum albumin using molecular docking, quantitative structure-activity relationship, and fluorescence spectroscopy. LUMINESCENCE 2019; 35:266-273. [PMID: 31766079 DOI: 10.1002/bio.3723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
The interaction of 14 anti-inflammatory drugs with human serum albumin (HSA) was investigated using fluorescence quenching, molecular docking studies, and quantitative structure-activity relationship (QSAR) methodology. Binding of anti-inflammatory drugs to HSA plays a fundamental role in their transport, distribution, delivery, and elimination. Binding constants of these drugs to HSA, obtained using the fluorescence quenching method, were within the range 0.01 × 104 M-1 (acetaminophen) to 1881.05 × 104 M-1 (meloxicam). Binding sites and binding constants of these anti-inflammatory drugs were estimated using molecular docking. Inspection of the obtained values for docking score, logKb and Kb , showed that the drugs in this data set have a relatively strong binding constant for HSA. QSAR modelling was applied for binding constants obtained from fluorescence quenching and theoretical molecular descriptors. This modelling led to a linear two-parameter model with a correlation coefficient of 0.95 and adequate robustness. The descriptor results showed the importance of a bonding network and electronegativity as the discriminative structural factors in binding affinity for the HSA molecule.
Collapse
Affiliation(s)
- F Mohammadnia
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - M H Fatemi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - S M Taghizadeh
- Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran
| |
Collapse
|
10
|
Tanzadehpanah H, Mahaki H, Moradi M, Afshar S, Rajabi O, Najafi R, Amini R, Saidijam M. Human serum albumin binding and synergistic effects of gefitinib in combination with regorafenib on colorectal cancer cell lines. COLORECTAL CANCER 2018. [DOI: 10.2217/crc-2017-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the combination effect of gefitinib (GEF) and regorafenib (REG) against HCT116, CT26 and SW948 colorectal cancer cell lines. Results showed synergistic effects on HCT116 and CT26 cells, while the additive effect was observed on SW948 cells. Combination of GEF and REG induced sub-G1 peak as the apoptotic population on HCT116 cells, through flow cytometry histogram. Downregulation of AKT1 and TGFB2 and upregulation of CASP3 were observed in the combination of GEF and REG in HCT116 cells, using quantitative real-time PCR analysis. HSA binding properties exhibit that the first drug increased binding affinity between the second drug and HSA; as a result, HSA could transport both drugs. Thus, we hope this study creates a promising strategy to treat colorectal cancer.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadreza Moradi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Rajabi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Tanzadehpanah H, Mahaki H, Moghadam NH, Salehzadeh S, Rajabi O, Najafi R, Amini R, Saidijam M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J Biomol Struct Dyn 2018; 37:823-836. [DOI: 10.1080/07391102.2018.1441073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Omid Rajabi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Wang B, Qin Q, Chang M, Li S, Shi X, Xu G. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal Bioanal Chem 2017; 410:827-837. [PMID: 28840311 DOI: 10.1007/s00216-017-0564-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
Abstract
Noncovalent interactions between proteins and small-molecule ligands widely exist in biological bodies and play significant roles in many physiological and pathological processes. Native mass spectrometry (MS) has emerged as a new powerful tool to study noncovalent interactions by directly analyzing the ligand-protein complexes. In this work, an ultrahigh-resolution native MS method based on a 15-T SolariX XR Fourier transform ion cyclotron resonance mass spectrometer was firstly used to investigate the interaction between human serum albumin (HSA) and flavonoids. Various flavonoids with similar structure were selected to unravel the relationship between the structure of flavonoids and their binding affinity for HSA. It was found that the position of the hydroxyl groups and double bond of flavonoids could influence the noncovalent interaction. Through a competitive experiment between HSA binding site markers and apigenin, the subdomain IIA (site 1) of HSA was determined as the binding site for flavonoids. Moreover, a cooperative allosteric interaction between apigenin and ibuprofen was found from their different HSA binding sites, which was further verified by circular dichroism spectroscopy and molecular docking studies. These results show that native MS is a useful tool to investigate the molecular interaction between a protein and its ligands. Graphical abstract Unravel the relationship between the structure of flavonoids and their binding affinity to HSA by native MS.
Collapse
Affiliation(s)
- Bohong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| |
Collapse
|
13
|
Zhang C, Zhang X, Liu W, Chen S, Mao Z, Le X. Synthesis, crystal structures and DNA/human serum albumin binding of ternary Cu(II) complexes containing amino acids and 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chun‐Lian Zhang
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Xue‐Mei Zhang
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Wei Liu
- College of Materials and EnergySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Shi Chen
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| | - Zong‐Wan Mao
- School of ChemistrySun Yat‐sen University Guangzhou 510275 People's Republic of China
| | - Xue‐Yi Le
- Department of Applied ChemistrySouth China Agricultural University Guangzhou 510642 People's Republic of China
| |
Collapse
|
14
|
Hassan MF, Rauf A. Synthesis and study on the binding of thiazol-2(3H)-ylidine derivative with human serum albumin using spectroscopic and molecular docking methods. LUMINESCENCE 2016; 32:602-611. [PMID: 27813306 DOI: 10.1002/bio.3227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022]
Abstract
In this article, a facile and convenient synthesis of thiazol-2(3H)-ylidine derivatives of fatty acid (3a-c) is described. The binding of N'-(4,5-dimethyl-3-penylthiazol-2(3H)-ylidine)octadec-9-enehydrazide (3a) with human serum albumin (HSA) is explored using various spectral methods and molecular docking. Fluorescence quenching results show that 3a induces conformational changes in HSA and the polarity around the tryptophan residues is increased. Stern-Volmer quenching plots at different temperatures (298, 305 and 312 K) show that the fluorescence quenching mechanism is static quenching. Synchronous fluorescence, 3D fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy are used to determine the structural change in HSA on interaction with 3a. Förster resonance energy transfer analysis shows that the binding distance (r0 = 2.78 nm) between HSA (Trp214) and 3a is within the of range 2-8 nm for quenching to occur. The molecular docking study also confirms that 3a is located in subdomain IIA (site I) of HSA and is stabilized by hydrogen bonding and hydrophobic forces.
Collapse
Affiliation(s)
| | - Abdul Rauf
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Abdelhameed AS, Alam P, Khan RH. Binding of Janus kinase inhibitor tofacitinib with human serum albumin: multi-technique approach. J Biomol Struct Dyn 2016; 34:2037-44. [DOI: 10.1080/07391102.2015.1104522] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Nan G, Wang P, Sun J, Lv J, Ding M, Yang L, Li Y, Yang G. Spectroscopy and molecular docking study on the interaction of daidzein and genistein with pepsin. LUMINESCENCE 2016; 31:1524-1531. [DOI: 10.1002/bio.3139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Guanjun Nan
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology; Xi'an No.4 Hospital; Shaanxi 710004 People's Republic of China
| | - Jing Sun
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Jianhua Lv
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Meiwen Ding
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Liu Yang
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Yiping Li
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| | - Guangde Yang
- School of Pharmacy; Xi'an Jiaotong University; Shaanxi 710061 People's Republic of China
| |
Collapse
|
17
|
Xiang Y, Duan L, Ma Q, Lv Z, Ruohua Z, Zhang Z. Fluorescence spectroscopy and molecular simulation on the interaction of caffeic acid with human serum albumin. LUMINESCENCE 2016; 31:1496-1502. [DOI: 10.1002/bio.3135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Lili Duan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qiang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zizheng Lv
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhu Ruohua
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhuoyong Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
18
|
He J, Wang Q, Ma X, Yang H, Li S, Xu K, Li H. Probing the binding of two 19-nortestosterone derivatives to human serum albumin: insights into the interactions of steroid hormone drugs with functional biomacromolecule. J Mol Recognit 2016; 29:415-25. [DOI: 10.1002/jmr.2540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/13/2015] [Accepted: 02/02/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiawei He
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Qing Wang
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Xiangling Ma
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Hongqin Yang
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Shanshan Li
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Kailin Xu
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Hui Li
- College of Chemical Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
19
|
Bortolotti A, Wong YH, Korsholm SS, Bahring NHB, Bobone S, Tayyab S, van de Weert M, Stella L. On the purported “backbone fluorescence” in protein three-dimensional fluorescence spectra. RSC Adv 2016. [DOI: 10.1039/c6ra23426g] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A peak in 3D-fluorescence spectra of proteins, often assigned to backbone emission, is shown to be due to aromatic residues.
Collapse
Affiliation(s)
- Annalisa Bortolotti
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Yin How Wong
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Stine S. Korsholm
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Noor Hafizan B. Bahring
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Saad Tayyab
- Biomolecular Research Group
- Biochemistry Program
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
| | - Marco van de Weert
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche
- Università di Roma Tor Vergata
- 00133 Rome
- Italy
| |
Collapse
|