1
|
Tang X, Gong Z, Lang Y, Chen H, Huang S, Lv Y. Research Progress Towards and Prospects of Carbon Dots Derived from Tea and Chinese Medicinal Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:171. [PMID: 39940152 PMCID: PMC11820907 DOI: 10.3390/nano15030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
This review focuses on the research progress related to carbon dots (CDs) derived from Chinese herbal medicines and tea, covering preparation methods, physicochemical properties, and application fields. It elaborates on preparation approaches like hydrothermal, solvothermal, microwave-assisted, and ultrasonic-assisted methods, and their influence on CDs' structure and properties. It also explores CDs' structural and optical properties. The application fields include antibacterial, sensing, bioimaging, photocatalysis, hemostasis, and energy. Carbon dots show antibacterial activity by destroying bacterial cell membranes, they can detect various substances in sensing, are important for bioimaging, degrade organic pollutants in photocatalysis, have hemostatic and anti-inflammatory effects, and can be used as battery anode materials. Despite progress, challenges remain in improving yield, quantum yield, property control, and understanding their mechanism of action. This review provides a reference for related research and looks ahead to future directions.
Collapse
Affiliation(s)
- Xiaoxue Tang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Zhao Gong
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yan Lang
- Department of Rehabilitation, Wuyi University, Wuyishan 354301, China
| | - Hongyue Chen
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Siqi Huang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
2
|
Mate N, Satwani V, Pranav, Mobin SM. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chem Asian J 2025; 20:e202401098. [PMID: 39499673 DOI: 10.1002/asia.202401098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/07/2024]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials that have garnered immense attention owing to their exceptional photophysical and optoelectronic properties. They have been employed extensively for biomedical imaging and phototherapy due to their superb water dispersibility, low toxicity, outstanding biocompatibility, and exceptional tissue permeability. This review summarizes the structural classification of CDs, the classification of CDs according to precursor sources, and the luminescence mechanism of CDs. The modification in CDs via various doping routes is comprehensively reviewed, and the effect of such alterations on their photophysical properties, such as absorbance, photoluminescence (PL), and reactive oxygen species generation ability, is also highlighted. This review strives to summarize the role of CDs in cellular imaging and fluorescence lifetime imaging for cellular metabolism. Subsequently, recent advancements and the future potential of CDs as nanotheranostic agents have been discussed. Herein, we have discussed the role of CDs in photothermal, photodynamic, and synergistic therapy of anticancer, antiviral, and antibacterial applications. The overall summary of the review highlights the prospects of CD-based research in bioimaging and biomedicine.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Vinita Satwani
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, Vellore, India, 632014
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
3
|
Baishya N, Bora N, Athparia M, Padhi P, Kataki R. Hydrothermal conversion of biomass for co-production of carbon quantum dots and biofuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-024-35842-x. [PMID: 39751683 DOI: 10.1007/s11356-024-35842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons. This study investigates the applicability of hydrothermal conversion in simultaneous production of biofuel and carbon quantum dots from biowastes obtained from flour mill. Water soluble CQDs of average size ranging between 4.67 and 4.88 nm were produced from various biowastes generated during wheat processing. Hydrochars obtained during the conversion exhibited calorific values between 12.95 and 25.94 MJ/kg. The influence of the composition of feedstock on hydrochar properties was also investigated. This study revealed that hydrothermal conversion technique could lead to the production of high-value materials along with the proper management of agro-industrial wastes, paving the way for a circular economy and bioeconomy. This would also help to mitigate environmental problems caused by open dumping and burning of the biowastes.
Collapse
Affiliation(s)
- Nilotpal Baishya
- Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India
| | - Neelam Bora
- Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India
| | - Mondita Athparia
- Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India
| | - Priyanka Padhi
- Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India
| | - Rupam Kataki
- Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India.
| |
Collapse
|
4
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
5
|
Bu L, Li S, Nie L, Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Zhou Q. Construction of fluorescent sensor array with nitrogen-doped carbon dots for sensing Sudan Orange G and identification of various azo compounds. J Colloid Interface Sci 2024; 667:403-413. [PMID: 38640659 DOI: 10.1016/j.jcis.2024.04.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 μg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.
Collapse
Affiliation(s)
- Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
6
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
7
|
Li TX, Zhao DF, Li L, Meng Y, Xie YH, Feng D, Wu F, Xie D, Liu Y, Mei Y. Unraveling fluorescent mechanism of biomass-sourced carbon dots based on three major components: Cellulose, lignin, and protein. BIORESOURCE TECHNOLOGY 2024; 394:130268. [PMID: 38154737 DOI: 10.1016/j.biortech.2023.130268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The complexity of biomass components leads to significant variations in the performance of biomass-based carbon dots (CDs). To shed light on this matter, this study presents a comparative analysis of the fluorescence properties of CDs using pure cellulose, lignin, and protein as models. Three CDs showed different fluorescent properties, resulting from the structure difference and carbonization behavior in the hydrothermal. The relatively gentle thermal degradation of proteins allows the macromolecular structure of amino acids to be preserved. This preservation results in a more regular lattice structure, a larger sp2 domain size, and N-doping, which contribute to the highest quantum yield (QY) of 8.7% of the CDs. In contrast, cellulose undergoes more severe thermal degradation with large amounts of small molecules generated, resulting in the CDs with fewer surface defects, more irregular lattice structures, and lower QY. These results provide a guideline for the design of carbon dots from different biomass.
Collapse
Affiliation(s)
- Tian-Xiang Li
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - De-Fang Zhao
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Lin Li
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Yang Meng
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China
| | - Yu-Hui Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China
| | - Dong Feng
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China
| | - Feng Wu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China.
| | - Delong Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China.
| | - Yuxin Liu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China
| | - Yi Mei
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; The International Joint Laboratory for Sustainable Polymers of Yunnan Province, Yunnan 650500, China
| |
Collapse
|
8
|
Sun P, Li X, Kong B, Zhu YA, Wang M, Wang H, Liu Q. Fabrication and characterization of microwave-assisted synthesis of carbon dots crosslinked sodium alginate hydrogel films. Int J Biol Macromol 2023; 253:127130. [PMID: 37776925 DOI: 10.1016/j.ijbiomac.2023.127130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In this study, potassium-incorporated carbon dots (K-CDs) and nitrogen-incorporated carbon dots (N-CDs) were composted using the microwave-assisted method, in which the carbon source is citric acid. Subsequently, the prepared CDs were added into sodium alginate (NaAlg)/CaCO3 to form a hydrogel film. The Ca2+ in the system is tend to be released in the presence of acidic CDs to promote the cross-linking of NaAlg. This study presents a NaAlg hydrogel film preparation process that requires no additional acid and is natural and environmentally friendly. Moreover, it gives the NaAlg hydrogel film excellent antioxidant and antimicrobial properties and also improves its mechanical properties and gel strength. The release behaviors of the CDs in the hydrogel films were also explored. The prepared CD-incorporated NaAlg hydrogel films have potential applications in medical, biological engineering, food preservation, and other fields owing to their functional properties.
Collapse
Affiliation(s)
- Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meihui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Wang CY, Ndraha N, Wu RS, Liu HY, Lin SW, Yang KM, Lin HY. An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. Int J Mol Sci 2023; 24:16579. [PMID: 38068902 PMCID: PMC10706188 DOI: 10.3390/ijms242316579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Food-based carbon dots (CDs) hold significant importance across various fields, ranging from biomedical applications to environmental and food industries. These CDs offer unique advantages over traditional carbon nanomaterials, including affordability, biodegradability, ease of operation, and multiple bioactivities. This work aims to provide a comprehensive overview of recent developments in food-based CDs, focusing on their characteristics, properties, therapeutic applications in biomedicine, and safety assessment methods. The review highlights the potential of food-based CDs in biomedical applications, including antibacterial, antifungal, antivirus, anticancer, and anti-immune hyperactivity. Furthermore, current strategies employed for evaluating the safety of food-based CDs have also been reported. In conclusion, this review offers valuable insights into their potential across diverse sectors and underscores the significance of safety assessment measures to facilitate their continued advancement and application.
Collapse
Affiliation(s)
- Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ren-Siang Wu
- Division of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Hsin-Yun Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Sin-Wei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Kuang-Min Yang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
10
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
11
|
Zhao WB, Liu KK, Wang Y, Li FK, Guo R, Song SY, Shan CX. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv Healthc Mater 2023; 12:e2300324. [PMID: 37178318 DOI: 10.1002/adhm.202300324] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increase in antibiotic resistance promotes the situation of developing new antibiotics at the forefront, while the development of non-antibiotic pharmaceuticals is equally significant. In the post-antibiotic era, nanomaterials with high antibacterial efficiency and no drug resistance make them attractive candidates for antibacterial materials. Carbon dots (CDs), as a kind of carbon-based zero-dimensional nanomaterial, are attracting much attention for their multifunctional properties. The abundant surface states, tunable photoexcited states, and excellent photo-electron transfer properties make sterilization of CDs feasible and are gradually emerging in the antibacterial field. This review provides comprehensive insights into the recent development of CDs in the antibacterial field. The topics include mechanisms, design, and optimization processes, and their potential practical applications are also highlighted, such as treatment of bacterial infections, against bacterial biofilms, antibacterial surfaces, food preservation, and bacteria imaging and detection. Meanwhile, the challenges and outlook of CDs in the antibacterial field are discussed and proposed.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
13
|
Wang L, Weng S, Su S, Wang W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Adv 2023; 13:19173-19194. [PMID: 37362342 PMCID: PMC10288538 DOI: 10.1039/d3ra02519e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
With the continuous development of carbon-based materials, a variety of new materials have emerged one after another. Carbon Quantum Dots (CQDs) have succeeded in standing out from the crowd of new materials due to their better optical properties in biomedicine, ion detection, anti-counterfeiting materials and photocatalysis. In recent years, through the continuous exploration of CQDs, research scholars have found that the organic substances or heavy metals contained in traditional ones can cause irreversible harm to people and the environment. Therefore, the application of traditional CQDs in future studies will be gradually limited. Among various new materials, biomass raw materials have the merits of good biocompatibility, lower toxicity and green and environmental protection, which largely overcome the defects of traditional materials and have attracted many scholars to focus on the research and development of various biomass CQDs. This paper summarises the optical properties, fluorescence mechanisms, synthetic methods, functionalisation modulation of biomass CQDs and their relevant research progress in the fields of ion detection, bioimaging, biomedicine, biosensing, solar cells, anti-counterfeit materials, photocatalysis and capacitors. Finally, the paper concludes with some discussion of the challenges and prospects of this exciting and promising field of application.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shujia Weng
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shuai Su
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Weiwei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| |
Collapse
|
14
|
Wang ZX, Wang Z, Wu FG. Carbon Dots as Drug Delivery Vehicles for Antimicrobial Applications: A Minireview. ChemMedChem 2022; 17:e202200003. [DOI: 10.1002/cmdc.202200003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zi-Xi Wang
- Southeast University School of Biological Sciences and Medical Engineering CHINA
| | - Zihao Wang
- Southeast University School of Biological Sciences and Medical Engineering CHINA
| | - Fu-Gen Wu
- Southeast University School of Biological Science and Medical Engineering 2 Sipailou Road 210096 Nanjing CHINA
| |
Collapse
|
15
|
Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022; 343:528-550. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
For the past several years, dementia, is one of the predominantly observed groups of symptoms in a geriatric population. Alzheimer's disease (AD) is a progressive memory related neurodegenerative disease, for which the current Food and drug administration approved therapeutics are only meant for a symptomatic management rather than targeting the root cause of AD. These therapeutics belong to two classes, Acetylcholine Esterase inhibitors and N-methyl D-aspartate antagonist. Furthermore, to facilitate neuroprotective action in AD, the drugs are majorly expected to reach the specific target area in the brain for the desired efficacy. Thus, there is a huge requirement for drug discovery and development for facilitating the entry of drugs more in brain to exert a specific action. The very first line of defense and the major limitation for the entry of drugs into the brain is the Blood Brain Barrier, followed by Blood-Cerebrospinal Fluid Barrier. More than a barrier, these mainly act as selectively permeable membranes, which allows entry of specific molecules into the brain. Furthermore, specific enzymes result in the degradation of xenobiotics. All these mechanisms pose as hurdles in the way of effective drug delivery in the brain. Thus, novel techniques need to be harbored for the facilitation of the delivery of such drugs into the brain. Nanocarriers are advantageous for facilitating the specific targeted drug treatment in AD. As nanomedicines are one of the novels and most useful approaches for AD, thus the present review mainly focuses on understanding the advanced use of nanocarriers for targeted drug delivery in the management of AD.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - K C Sarathlal
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Sanskruti Santosh Kharavtekar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Chandrashekar R Karennanavar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | | | - Gautam Singhvi
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
16
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon BH. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers (Basel) 2021; 13:3190. [PMID: 34578091 PMCID: PMC8469539 DOI: 10.3390/polym13183190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cutting-edge technologies are making inroads into new areas and this remarkable progress has been successfully influenced by the tiny level engineering of carbon dots technology, their synthesis advancement and impressive applications in the field of allied sciences. The advances of science and its conjugation with interdisciplinary fields emerged in carbon dots making, their controlled characterization and applications into faster, cheaper as well as more reliable products in various scientific domains. Thus, a new era in nanotechnology has developed into carbon dots technology. The understanding of the generation process, control on making processes and selected applications of carbon dots such as energy storage, environmental monitoring, catalysis, contaminates detections and complex environmental forensics, drug delivery, drug targeting and other biomedical applications, etc., are among the most promising applications of carbon dots and thus it is a prominent area of research today. In this regard, various types of carbon dot nanomaterials such as oxides, their composites and conjugations, etc., have been garnering significant attention due to their remarkable potential in this prominent area of energy, the environment and technology. Thus, the present paper highlights the role and importance of carbon dots, recent advancements in their synthesis methods, properties and emerging applications.
Collapse
Affiliation(s)
- Areeba Khayal
- Industrial Chemistry Section, Aligarh Muslim University, Aligarh 202002, India;
| | - Vinars Dawane
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India;
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | - Samreen Heena Khan
- Centre of Research and Development, YNC ENVIS PRIVATE LIMITED, New Delhi 110059, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
18
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
19
|
Luo J, Hu J, Zhang M, Zhang Y, Wu J, Cheng J, Qu H, Kong H, Zhao Y. Gastroprotective effects of Nelumbinis Rhizomatis Nodus-derived carbon dots on ethanol-induced gastric ulcers in rats. Nanomedicine (Lond) 2021; 16:1657-1671. [PMID: 34261362 DOI: 10.2217/nnm-2020-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague-Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Juan Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Hu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiashu Wu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chaoyang District, Beijing, 100029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
20
|
Humaera NA, Fahri AN, Armynah B, Tahir D. Natural source of carbon dots from part of a plant and its applications: a review. LUMINESCENCE 2021; 36:1354-1364. [PMID: 33982393 DOI: 10.1002/bio.4084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Carbon dots (CDs) are carbon nanoparticles with a size of less than 10 nm, and are synthesized from various sources; they have been of great interest to scientists worldwide due to their unique optical, electrical, and chemical properties. Sources of carbon are inexpensive and can be classified as a renewable natural resources. Many researchers use CDs because of their low toxicity, better water solubility, high biocompatibility, and stable photoluminescence. The simple methods for producing CDs are hydrothermal and use inexpensive equipment, have low energy consumption, simple manipulation, and one-step preparation. Since the discovery of CDs, researchers have used them in various applications such as sensing, bioimaging, drug delivery, and catalysis. In this review, CDs synthesized from natural resources such as samples from herbs, roots, leaves, flowers, and fruit and some applications are described. This review provides a summary of carbon dots that is expected to provide further information for development of new CDs.
Collapse
Affiliation(s)
| | | | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
21
|
Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of Carbon Dots Produced from Biomass Wastes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2316. [PMID: 33238367 PMCID: PMC7700468 DOI: 10.3390/nano10112316] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
The fluorescent carbon dot is a novel type of carbon nanomaterial. In comparison with semiconductor quantum dots and fluorescence organic agents, it possesses significant advantages such as excellent photostability and biocompatibility, low cytotoxicity and easy surface functionalization, which endow it a wide application prospect in fields of bioimaging, chemical sensing, environmental monitoring, disease diagnosis and photocatalysis as well. Biomass waste is a good choice for the production of carbon dots owing to its abundance, wide availability, eco-friendly nature and a source of low cost renewable raw materials such as cellulose, hemicellulose, lignin, carbohydrates and proteins, etc. This paper reviews the main sources of biomass waste, the feasibility and superiority of adopting biomass waste as a carbon source for the synthesis of carbon dots, the synthetic approaches of carbon dots from biomass waste and their applications. The advantages and deficiencies of carbon dots from biomass waste and the major influencing factors on their photoluminescence characteristics are summarized and discussed. The challenges and perspectives in the synthesis of carbon dots from biomass wastes are also briefly outlined.
Collapse
Affiliation(s)
- Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Ying Huang
- Key Laboratory of Tobacco Quality Research of Guizhou Province, College of Tobacco Science, Guizhou University, Guiyang 550025, China;
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China;
| | - Xiu Fang Yan
- Key Laboratory of Tobacco Quality Research of Guizhou Province, College of Tobacco Science, Guizhou University, Guiyang 550025, China;
| | - Zeng Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|