1
|
do Nascimento WC, Ramo LB, da Silva FF, C U Araujo M, I E de Andrade S, Bichinho KM. One-step microwave-assisted synthesis of fluorescent carbon quantum dots for determination of ascorbic acid and riboflavin in vitamin supplements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124669. [PMID: 38909560 DOI: 10.1016/j.saa.2024.124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.
Collapse
Affiliation(s)
- Wallis C do Nascimento
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Luciano B Ramo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Fausthon F da Silva
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Mario C U Araujo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Stéfani I E de Andrade
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Kátia M Bichinho
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| |
Collapse
|
2
|
AlSalem HS, Alharbi SN, Al-Goul ST, Salman BI, Hassan YF, Abdel-Lateef MA. Design of new boron-doped carbon dots for nano-level assay of nebivolol in human plasma and commercial products; Application to greenness assessments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124470. [PMID: 38761476 DOI: 10.1016/j.saa.2024.124470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Recently, nanomaterials have attracted a lot of attention due to their potential as effective fluorescent nano-sensor probes. They were distinguishing substitutes for other luminescent techniques, such as fluorescent dyes and luminous derivatization, because of their affordability, environmental friendliness, and special photocatalytic properties. In the suggested work, a straightforward method was used to create boron and nitrogen carbon dots (B@CDs) with a good quantum yield value of 31.15 % utilizing boric acid and di-sodium EDTA. For the purpose of characterizing QDs, a variety of instruments were employed, such as transmission electron microscopy, fluorescence spectroscopy, X-ray FTIR, and UV-VIS spectroscopy. Nebivolol (NEB) is a cardiovascular medication used globally to treat congestive heart failure and hypertension, is in the meantime. For this reason, a brand-new, environmentally friendly analytical technique was created to determine the amount of human plasma, uniformity test, and commercial nebivolol (NEB) tablets. After gradually adding NEB, the response of B@CQDs was enhanced at 438 nm (excitation at 371 nm). The calibration graph ranged between 20 and 500 ng mL-1 with a quantification limit (LOQ) of 2.50 ng mL-1 and a detection limit (LOD) of 0.82 ng mL-1.
Collapse
Affiliation(s)
- Huda Salem AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sara Naif Alharbi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Soha Talal Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Baher I Salman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Yasser F Hassan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
3
|
Salman BI, Abdel-Lateef MA, Alzahrani E, Al-Harrasi A, Ibrahim AE, El-Shoura EAM, Hassan YF. Synthesis of organic solvent-free nitrogen-doped carbon quantum dots as unique green fluorimetric probes for analysis of abrocitinib in human plasma. LUMINESCENCE 2024; 39:e4801. [PMID: 38855811 DOI: 10.1002/bio.4801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Atopic dermatitis (AD) is a persistent, inflammatory skin condition that impacts approximately 15 to 20% of children and 1 to 3% of adults globally. Common skin manifestations include papules, papulovesicular, and brown or red patches with swelling, crusting, and flaking. Therefore, the drug abrocitinib (ABR) was approved by the US FDA as an oral treatment for atopic dermatitis. The present study outlines the development of innovative, thermostable, and pH-stable organic solvent-free nitrogen-doped carbon dots (N@CQDs) synthesized through a one-step method for evaluating ABR with a notable quantum yield of 33.84% to minimize the use of organic solvents. Their cost-effectiveness, eco-friendly characteristics, and outstanding photocatalytic properties have established them as a promising alternative to conventional luminescent techniques like fluorescent dyes and luminous derivatization technique. The reaction of ABR with N@CQDs led to a significant decrease in the luminescent response of the produced green and stable carbon quantum dots at 513 nm. The detection range was determined to be 1.0-150.0 ng mL-1, with a lower limit of quantitation (LOQ) equal to 0.52 ng mL-1 based on the linear graph. The green method effectively used for analysis of ABR in pharmaceutical tablets and pharmacokinetic study with high sensitivity.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
4
|
Salman BI. An Innovative Selective Fluorescence Sensor for Quantification of Hazardous Food Colorant Allura Red in Beverages Using Nitrogen-Doped Carbon Quantum Dots. J Fluoresc 2024; 34:599-608. [PMID: 37329379 PMCID: PMC10914892 DOI: 10.1007/s10895-023-03303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
An innovative simple, sensitive, and selective method has been developed and validated for quantification of hazardous Allura red (AR, E129) dye in beverages. Allura red (AR) is a synthetic dye that is commonly used in the food industry to give foods a bright and appealing color. The method is based on microwave-assistant nitrogen-doped carbon quantum dots (N@CQDs) from a very cheap source with a high quantum yield equal to (36.60%). The mechanism of the reaction is based on an ion-pair association complex between AR and nitrogen-doped carbon quantum dots (N@CQDs) at pH 3.2. The reaction between AR and N@CQDs led to a quenching effect of the fluorescence intensity of N@CQDs at 445 nm after excitation at 350 nm. Moreover, the quantum method's linearity covered the range between 0.07 and 10.0 µg mL- 1 with a regression coefficient is 0.9992. The presented work has been validated by ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize of the N@CQDs. The N@CQDs were successfully utilized in different applications (beverages) with high accuracy.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, 71524, Egypt.
| |
Collapse
|
5
|
Navarro J, Cepriá G, Camacho-Aguayo J, Martín S, González Orive A, de Marcos S, Galbán J. Towards new fluorometric methodologies based on the in-situ generation of gold nanoclusters. Talanta 2024; 266:125119. [PMID: 37657379 DOI: 10.1016/j.talanta.2023.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
In this manuscript a method for the fluorometric determination of tyramine is described. It is based on the direct reaction between Au(III) and tyramine in a phosphate buffer which produces fluorescent gold nanoclusters (AuNC) (λexc = 320 nm, λem = 410 nm) with a diameter of 1.50 ± 0.06 nm. The Au(III) and buffer solutions are mixed and after 140 s, tyramine solution is added; which produces a fast and stable fluorescence signal. The formation of AuNC is demonstrated by STEM and, more importantly, this reaction could be followed by Atomic Fluorescence Microscopy (AFM). The method allows the determination of tyramine in the range from 6.0x10-7 M (limit of quantification) up to 1.2x10-4 M; with a relative standard deviation (RSD) ranges from 1.8% to 4.4% depending on the tyramine concentration. The mechanism of AuNC formation involves the Au(III) reduction via the phenol group and the complexation with the amine group. Putrescine and cadaverine do not produce interference, meanwhile histamine causes a proportional decrease in the signal which can be overcome by the standard addition method. The method was applied to the determination of tyramine in a tuna and cheese samples and the results obtained are in statistical agreement with these obtained using a validated or standard method.
Collapse
Affiliation(s)
- Jesús Navarro
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Gemma Cepriá
- Group of Analytical Spectroscopy and Sensors (GEAS), Instituto de Ciencias Ambientales (IUCA), Analytical Chemistry Department, Faculty of Sciences, University of Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Camacho-Aguayo
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Física, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Alejandro González Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Susana de Marcos
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Galbán
- Analytical Biosensors Group (GBA), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
6
|
Salman BI, Hassan AI, Saraya RE, Ibrahim AE, Mohammed BS, Batakoushy HA, El Deeb S, Hassan YF. Development of cysteine-doped MnO 2 quantum dots for spectrofluorimetric estimation of copper: applications in different matrices. Anal Bioanal Chem 2023; 415:5529-5538. [PMID: 37432444 PMCID: PMC10444647 DOI: 10.1007/s00216-023-04827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Copper (Cu) plays a role in maintaining healthy nerve cells and the immune system. Osteoporosis is a high-risk factor for Cu deficiency. In the proposed research, unique green, fluorescent cysteine-doped MnO2 quantum dots (Cys@MnO2 QDs) were synthesized and assessed for the determination of Cu in different food and hair samples. The developed quantum dots were synthesized with the help of cysteine using a straightforward ultrasonic approach to create 3D fluorescent Cys@MnO2 QDs. The resulting QDs' morphological and optical characteristics were carefully characterized. By adding Cu ions, the intensity of fluorescence for the produced Cys@MnO2 QDs was found to be dramatically reduced. Additionally, the applicability of Cys@MnO2 QDs as a new luminous nanoprobe was found to be strengthened by the quenching effect grounded on the Cu-S bonding. The concentrations of Cu2+ ions were estimated within the range of 0.06 to 7.00 µg mL-1, with limit of quantitation equal to 33.33 ng mL-1 and detection limit equal to 10.97 ng mL-1. The Cys@MnO2 QD technique was applied successfully for the quantification of Cu in a variety of foods, including chicken meat, turkey, and tinned fish, as well as in human hair samples. The chance that this novel technique could be a useful tool for figuring out the amount of cysteine in bio-samples is increased by the sensing system's remarkable advantages, which include being rapid, simple, and economical.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Roshdy E Saraya
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Bassam Shaaban Mohammed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, 32511, Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, 32511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106, Braunschweig, Germany.
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
7
|
Salman BI. A Novel Design Eco-friendly Microwave-assisted Cu-N@CQDs Sensor for the Quantification of Eravacycline via Spectrofluorimetric Method; Application to Greenness Assessments, Dosage Form and Biological Samples. J Fluoresc 2023; 33:1887-1896. [PMID: 36867288 PMCID: PMC10539432 DOI: 10.1007/s10895-023-03190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Community-acquired pneumonia is one of the most common infectious diseases and a substantial cause of mortality and morbidity worldwide. Therefore eravacycline (ERV) was approved by the FDA in 2018 for the treatment of acute bacterial skin infections, GIT infections, and community-acquired bacterial pneumonia caused by susceptible bacteria. Hence, a green highly sensitive, cost-effective, fast, and selective fluorimetric approach was developed for the estimation of ERV in milk, dosage form, content uniformity, and human plasma. The selective method is based on the utilization of plum juice and copper sulphate for the synthesis of green copper and nitrogen carbon dots (Cu-N@CDs) with high quantum yield. The quantum dots' fluorescence was enhanced after the addition of ERV. The calibration range was found to be in the range 1.0 - 80.0 ng mL-1 with LOQ equal to 0.14 ng mL-1 and LOD was found to be 0.05 ng mL-1. The creative method is simple to deploy in clinical labs and therapeutic drug health monitoring system. The current approach has been bioanalytically validated using US-FDA and validated ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize the Cu-N@CQDs. The Cu-N@CQDs were effectively applied in human plasma and milk samples with a high percentage of recovery ranging from 97.00 to 98.80%.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
8
|
Saraya RE, Salman BI, Hassan YF, Hassan AI, Refaat SA, Batakoushy HA. Applicability of fluorescamine as a fluorogenic reagent for highly sensitive fluorimetric analysis of the tyrosine kinase inhibitor (avapritinib) in pharmaceuticals and biological samples. LUMINESCENCE 2023; 38:1632-1638. [PMID: 37417422 DOI: 10.1002/bio.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Avapritinib (AVP) was the first precision drug to be approved by the US Food and Drug Administration (FDA) in 2020 for patients suffering from metastatic gastrointestinal stromal tumors (GISTs) and progressive systemic mastocytosis. The analysis of AVP in pharmaceutical tablets and human plasma was then carried out using a fast, efficient, sensitive, and simple fluorimetric method using a fluorescamine reagent. The procedure is based on the interaction between fluorescamine as a fluorogenic reagent and the primary aliphatic amine moiety in AVP using borate buffer solution at pH 8.8. The produced fluorescence was measured at 465 nm (Excitation at 395 nm). The calibration graph's linearity range was discovered to be 45.00-500.0 ng mL-1 . Utilizing the International Council for Harmonization (ICH) and US-FDA recommendations, the research technique was validated and bioanalytically validated. The proposed approach was effectively employed for determining the stated pharmaceuticals in plasma with a high percentage of recovery ranging from 96.87 to 98.09 and pharmaceutical formulations with a percentage of recovery equal to 102.11% ± 1.05%. In addition, the study was extended to a pharmacokinetic study of AVP with 20 human volunteers as a step for AVP management in therapeutic cancer centers.
Collapse
Affiliation(s)
- Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Shymaa Abdelsattar Refaat
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Hany A Batakoushy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
9
|
Salman BI. Green microwave quantum dots as luminescent probes for quantifying prucalopride: consistency of content and application to pharmacokinetic studies. BMC Chem 2023; 17:83. [PMID: 37468925 DOI: 10.1186/s13065-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Prucalopride (PCP) is a medication used for the management of constipation via regulating bowel motions. PCP is widely used all over the world. So, novel, rapid, and highly sensitive carbon dots N-CQDs were obtained from Eruca Sativa juice via microwave approach in 4 min. The luminescence power of N-CQDs was declined by the increasing prucalopride concentration at emission 518 nm with linearity ranged from 3.00 to 200.00 ng mL-1. The luminescent antecedent was utilized for the test of PCP in human plasma with the rate of recovery extending from 95.06 to 98.40%. The new technique is an eco-friendly analytical method that can be easily applied in clinical laboratories. This assay is also simple, sensitive, and applied to therapeutic laboratories and subsequent pharmacokinetic studies in several clinical laboratories. Furthermore, the N-CQDs nano-sensor was able to distinguish the target drug from interferents commonly found in human plasma, indicating its high specificity and selectivity for PCP detection.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
10
|
Salman BI, Hassan YF, Ali MFB, Batakoushy HA. Ultrasensitive green spectrofluorimetric approach for quantification of Hg(II) in environmental samples (water and fish samples) using cysteine@MnO 2 dots. LUMINESCENCE 2023; 38:145-151. [PMID: 36579943 DOI: 10.1002/bio.4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Mercury (Hg2+ ) is a natural element present in foods such as fish, water and soil. Exposure to mercury leads to severe toxic effects on the nervous, digestive, and immune systems. Here, a novel, green, and environmentally friendly fluorescent probe decorated with cysteine/MnO2 quantum dots (Cys@MnO2 QDs) was synthesized. This synthesis was carried out using a simple ultrasound technique with the aid of cysteine for fabricating Cys@MnO2 QDs to estimate Hg levels in fish and water samples. In this morphological study, Cys@MnO2 QDs were fully characterized using high-resolution transmission electron microscopy, zeta potential analysis, fluorescence, ultraviolet-visible and infrared spectroscopy. The fluorescence of the synthesized Cys@MnO2 QDs was significantly quenched by gradually increasing the Hg(II) concentration. The quenching mechanism based on the Hg-S bonds strengthened the utility of the Cys@MnO2 QDs as a novel luminescent nanoprobe. The estimation of Hg was linear in the concentration range 0.7-100.0 ng mL-1 with a limit of quantitation equal to 0.30 ng mL-1 . The Cys@MnO2 QDs are fluorescent probes with various benefits such as speed, ease of use, cost- effective, and being environmentally friendly; they are easily applied in food manufacturing and for public health improvement.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, Egypt
| | - Marwa F B Ali
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hany A Batakoushy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
11
|
Salman BI, Hassan AI, Hassan YF, Saraya RE, Batakoushy HA. Rapid One-Pot Microwave Assisted Green Synthesis Nitrogen Doped Carbon Quantum Dots as Fluorescent Precursor for Estimation of Modafinil as Post-Covid Neurological Drug in Human Plasma with Greenness Assessments. J Fluoresc 2022; 33:1101-1110. [PMID: 36576682 PMCID: PMC9795147 DOI: 10.1007/s10895-022-03128-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologically friendly procedure was carried out. A highly sensitive N@CQDs technique was created from green Eruca sativa leaves in about 4 min using microwave synthesis at 700 w. The quantum yield of the synthesized N@CQDs was found to be 41.39%. By increasing the concentration of MOD, the quantum dots' fluorescence intensity was gradually quenched. After being excited at 445 nm, the fluorescence reading was recorded at 515 nm. The linear range was found to be in the range 50 - 700 ng mL-1 with lower limit of quantitation (LOQ) equal to 45.00 ng mL-1. The current method was fully validated and bio analytically according to (US-FDA and ICH) guidelines. Full characterization of the N@CQDs has been conducted by high resolution transmission electron microscope (HRTEM), Zeta potential measurement, fluorescence, UV-VIS, and FTIR spectroscopy. Various experimental variables including pH, QDs concentration and the reaction time were optimized. The proposed study is simply implemented for the therapeutic drug monitoring system (TDMS) and various clinical laboratories for further pharmacokinetic research.
Collapse
Affiliation(s)
- Baher I. Salman
- grid.411303.40000 0001 2155 6022Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | - Ahmed I. Hassan
- grid.411303.40000 0001 2155 6022Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | - Yasser F. Hassan
- grid.411303.40000 0001 2155 6022Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | - Roshdy E. Saraya
- grid.440879.60000 0004 0578 4430Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511 Egypt
| | - Hany A. Batakoushy
- grid.411775.10000 0004 0621 4712Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, 32511 Egypt
| |
Collapse
|
12
|
Salman BI, Hassan AI, Hassan YF, Saraya RE. Ultra-sensitive and selective fluorescence approach for estimation of elagolix in real human plasma and content uniformity using boron-doped carbon quantum dots. BMC Chem 2022; 16:58. [PMID: 35922841 PMCID: PMC9351230 DOI: 10.1186/s13065-022-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Elagolix (ELX) is an orally administered non-peptidic GnRH antagonist that has been approved by the Food and Drug Administration in 2018 for the treatment of endometriosis pain. A sensitive and selective method for estimating elagolix (ELX) in human plasma and content uniformity was developed and validated. The spectrofluorimetric technique was used to investigate ELX utilizing boron-doped carbon quantum dots (B@CQDs). After gradually adding ELX, the quantum dots fluorescence was enhanced with LOQ of 1.74 ng mL−1, the calibration curve between ELX and corresponding fluorescence intensity was found over a range of 4–100 ng mL−1. The method was successfully applied in real human plasma with pharmacokinetic study and content uniformity test. The pharmacokinetic parameters as Cmax were found to be 570 ± 5.32 ng. mL−1 after 1 h, t1/2 was found to be 6.50 h, and AUC was found to be 1290 ± 30.33 ng. h. mL−1. B@CQDs were characterized using variety of instruments. The strategy is simple to implement in clinical labs and therapeutic drug monitoring systems.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Roshdy E Saraya
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| |
Collapse
|