1
|
Sutormin OS, Nemtseva EV, Gulnov DV, Sukovatyi LA, Tyrtyshnaya YS, Lisitsa AE, Kratasyuk VA. Coupling of NAD(P)H:FMN-oxidoreductase and luciferase from luminous bacteria in a viscous medium: Finding the weakest link in the chain. Photochem Photobiol 2024; 100:465-476. [PMID: 37583116 DOI: 10.1111/php.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The study aims at revealing the mechanisms of the viscous medium effects on the kinetic features of NAD(P)H:FMN-oxidoreductase from luminous bacteria (Red), which are exhibited in a single enzyme assay and in coupling with bacterial luciferase (BLuc). Different concentrations of glycerol and sucrose were used to vary the medium viscosity. The activity of Red, alone and in the presence of BLuc, was analyzed, as well as BLuc activity in the presence of Red, whereas in the absence of BLuc, the Red activity was suppressed in viscous medium, and in the presence of BLuc, the increase in Red activity was observed at low glycerol concentrations (5-20 wt%). The interaction of glycerol and sucrose with Red substrates FMN and NADH was studied using absorption spectroscopy and molecular dynamics. Glycerol was found to form hydrogen bonds with the phosphate groups of the substrates, unlike sucrose. A mechanism for the activation of Red in the presence of BLuc in glycerol solutions through the acceleration of FMN reoxidation was proposed. Thus, it was concluded that, under the conditions used, the weakest link of the coupled enzyme system BLuc-Red in viscous medium is the FMN concentration, which depends on Red activity and the medium viscosity.
Collapse
Affiliation(s)
- Oleg S Sutormin
- Department of Chemistry, Institute of Natural and Technical Sciences, Surgut State University, Surgut, Russia
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Dmitry V Gulnov
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Yekaterina S Tyrtyshnaya
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Albert E Lisitsa
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Valentina A Kratasyuk
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
2
|
Siniakova TS, Raikov AV, Kudryasheva NS. Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. Int J Mol Sci 2023; 24:ijms24076345. [PMID: 37047313 PMCID: PMC10094403 DOI: 10.3390/ijms24076345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The current paper considers the effects of a water-soluble polymer (polyethylene glycol (PEG)) on the bioluminescent reaction of the photoprotein obelin from the marine coelenterate Obelia longissima and the product of this bioluminescent reaction: a coelenteramide-containing fluorescent protein (CCFP). We varied PEG concentrations (0–1.44 mg/mL) and molecular weights (1000, 8000, and 35,000 a.u.). The presence of PEG significantly increased the bioluminescent intensity of obelin but decreased the photoluminescence intensity of CCFP; the effects did not depend on the PEG concentration or the molecular weight. The photoluminescence spectra of CCFP did not change, while the bioluminescence spectra changed in the course of the bioluminescent reaction. The changes can be explained by different rigidity of the media in the polymer solutions affecting the stability of the photoprotein complex and the efficiency of the proton transfer in the bioluminescent reaction. The results predict and explain the change in the luminescence intensity and color of the marine coelenterates in the presence of water-soluble polymers. The CCFP appeared to be a proper tool for the toxicity monitoring of water-soluble polymers (e.g., PEGs).
Collapse
Affiliation(s)
| | - Alexander V. Raikov
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Correspondence: n ; Tel.: +7-391-249-42-42
| |
Collapse
|
3
|
Kolesnik OV, Rozhko TV, Kudryasheva NS. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. Int J Mol Sci 2022; 24:ijms24010410. [PMID: 36613854 PMCID: PMC9820739 DOI: 10.3390/ijms24010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Radioactive contaminants create problems all over world, involving marine ecosystems, with their ecological importance increasing in the future. The review focuses on bioeffects of a series of alpha and beta emitting radioisotopes (americium-241, uranium-(235 + 238), thorium-232, and tritium) and gamma radiation. Low-intensity exposures are under special consideration. Great attention has been paid to luminous marine bacteria as representatives of marine microorganisms and a conventional bioassay system. This bioassay uses bacterial bioluminescence intensity as the main testing physiological parameter; currently, it is widely applied due to its simplicity and sensitivity. Dependences of the bacterial luminescence response on the exposure time and irradiation intensity were reviewed, and applicability of hormetic or threshold models was discussed. A number of aspects of molecular intracellular processes under exposure to low-intensity radiation were analyzed: (a) changes in the rates of enzymatic processes in bacteria with the bioluminescent system of coupled enzymatic reactions of NADH:FMN-oxidoreductase and bacterial luciferase taken as an example; (b) consumption of an intracellular reducer, NADH; (c) active role of reactive oxygen species; (d) repairing of the DNA damage. The results presented confirm the function of humic substances as natural radioprotectors.
Collapse
Affiliation(s)
- Olga V. Kolesnik
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Tatiana V. Rozhko
- FSBEI HE V.F. Voino-Yasenetsky KrasSMU MOH, 660022 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 660036 Krasnoyarsk, Russia
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
4
|
Effect of viscosity on efficiency of enzyme catalysis of bacterial luciferase coupled with lactate dehydrogenase and NAD(P)H:FMN-Oxidoreductase. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:68-77. [PMID: 25644753 DOI: 10.1016/j.jenvrad.2015.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Akademgorodok 50, 660036, Krasnoyarsk, Russia; Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia.
| | - T V Rozhko
- Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia; Krasnoyarsk State Medical Academy, P. Zheleznyaka 1, 660022, Krasnoyarsk, Russia
| |
Collapse
|
6
|
Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:155-167. [PMID: 25146119 DOI: 10.1007/s11356-014-3459-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia, 660036,
| | | |
Collapse
|
7
|
Application of enzyme bioluminescence in ecology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:67-109. [PMID: 25084995 DOI: 10.1007/978-3-662-43385-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH:FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum" has been developed, which contains the bacterial luciferase, NADH:FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.
Collapse
|
8
|
Selivanova MA, Mogilnaya OA, Badun GA, Vydryakova GA, Kuznetsov AM, Kudryasheva NS. Effect of tritium on luminous marine bacteria and enzyme reactions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2013; 120:19-25. [PMID: 23410594 DOI: 10.1016/j.jenvrad.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/16/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
The paper studies chronic effect of tritiated water, HTO, (0.0002-200 MBq/L) on bioluminescent assay systems: marine bacteria Photobacterium phosphoreum (intact and lyophilized) and coupled enzyme reactions. Bioluminescence intensity serves as a marker of physiological activity. Linear dependencies of bioluminescent intensity on exposure time or radioactivity were not revealed. Three successive stages in bacterial bioluminescence response to HTO were found: (1) absence of the effect, (2) activation, and (3) inhibition. They were interpreted in terms of reaction of organisms to stress-factor i.e. stress recognition, adaptive response/syndrome, and suppression of physiological function. In enzyme system, in contrast, the kinetic stages mentioned above were not revealed, but the dependence of bioluminescence intensity on HTO specific radioactivity was found. Damage of bacteria cells in HTO (100 MBq/L) was visualized by electron microscopy. Time of bioluminescence inhibition is suggested as a parameter to evaluate the bacterial sensitivity to ionizing radiation.
Collapse
|
9
|
Tarasova AS, Stom DI, Kudryasheva NS. Effect of humic substances on toxicity of inorganic oxidizer bioluminescent monitoring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1013-1017. [PMID: 21309025 DOI: 10.1002/etc.472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/11/2010] [Accepted: 11/12/2010] [Indexed: 05/30/2023]
Abstract
The current study deals with the effect of humic substances (HS) on toxicity of solutions of a model inorganic oxidizer, potassium ferricyanide. Chemical reactions responsible for toxicity changes are under consideration. The bioluminescent system of coupled enzymatic reactions catalyzed by bacterial luciferase and oxidoreductase was used as a bioassay. General and oxidative toxicity of ferricyanide solutions were evaluated. Ability of HS to decrease or increase general and oxidative toxicity of the solutions was revealed. Two types of chemical processes are supposed to be responsible for detoxification by HS: ferricyanide-HS complex formation and acceleration of endogenous redox reactions in the bioluminescent assay system. Decrease of oxidative toxicity of ferricyanide solution was observed under incubation with HS at all concentrations of HS used. Conditions for general toxicity decrease were prior incubation of ferricyanide with HS and low HS concentrations (< 10⁻⁴g/L). Acceleration of NADH auto-oxidation under higher HS concentrations was supposed to result in a toxicity increase.
Collapse
|
10
|
Alexandrova M, Rozhko T, Vydryakova G, Kudryasheva N. Effect of americium-241 on luminous bacteria. Role of peroxides. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2011; 102:407-411. [PMID: 21388726 DOI: 10.1016/j.jenvrad.2011.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 05/30/2023]
Abstract
The effect of americium-241 ((241)Am), an alpha-emitting radionuclide of high specific activity, on luminous bacteria Photobacterium phosphoreum was studied. Traces of (241)Am in nutrient media (0.16-6.67 kBq/L) suppressed the growth of bacteria, but enhanced luminescence intensity and quantum yield at room temperature. Lower temperature (4 °C) increased the time of bacterial luminescence and revealed a stage of bioluminescence inhibition after 150 h of bioluminescence registration start. The role of conditions of exposure the bacterial cells to the (241)Am is discussed. The effect of (241)Am on luminous bacteria was attributed to peroxide compounds generated in water solutions as secondary products of radioactive decay. Increase of peroxide concentration in (241)Am solutions was demonstrated; and the similarity of (241)Am and hydrogen peroxide effects on bacterial luminescence was revealed. The study provides a scientific basis for elaboration of bioluminescence-based assay to monitor radiotoxicity of alpha-emitting radionuclides in aquatic solutions.
Collapse
Affiliation(s)
- M Alexandrova
- Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia.
| | | | | | | |
Collapse
|
11
|
Wang YQ, Chen TT, Zhang HM. Investigation of the interactions of lysozyme and trypsin with biphenol A using spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1130-1137. [PMID: 20093070 DOI: 10.1016/j.saa.2009.12.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 05/28/2023]
Abstract
The interaction between bisphenol A (BPA) and lysozyme (or trypsin) was investigated by UV-vis absorption, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. BPA effectively quenched the intrinsic fluorescence of lysozyme and trypsin via static quenching. H-bonds and van der Waals interactions played a major role in stabilizing the BPA-proteinase complex. The distance r between donor and acceptor was obtained to be 1.65 and 2.26 nm for BPA-lysozyme and BPA-trypsin complexes, respectively. The effect of BPA on the conformation of lysozyme and trypsin was analyzed using synchronous fluorescence and three-dimensional fluorescence spectra.
Collapse
Affiliation(s)
- Yan-Qing Wang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City, Jiangsu Province, People's Republic of China.
| | | | | |
Collapse
|
12
|
Zhang HM, Zhou QH, Wang YQ. Studies on the Interactions of 2, 4-Dinitrophenol and 2, 4-Dichlorphenol with Trypsin. J Fluoresc 2009; 20:507-16. [DOI: 10.1007/s10895-009-0574-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
|
13
|
Vetrova E, Esimbekova E, Remmel N, Kotova S, Beloskov N, Kratasyuk V, Gitelson I. A bioluminescent signal system: detection of chemical toxicants in water. LUMINESCENCE 2007; 22:206-14. [PMID: 17603816 DOI: 10.1002/bio.951] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prototype technologies of a bioluminescent signal system (BSS) based on the luminous bacterium Photobacterium phosphoreum and three enzymatic bioluminescence systems have been proposed for detecting and signalling the presence of toxicants in water systems. A number of pesticides, mostly known as poisonous substances, similar in their structures and physicochemical properties, have been taken as model compounds of chemical agents. The effect of toxicants (organophosphates, derivatives of dithiocarbamide acid, and pyrethroid preparations) on the bioluminescence of the four systems has been analysed. EC(50) and EC(80) have been determined and compared to the maximum permissible concentration for each of the analysed substances. The triple-enzyme systems with ADH and trypsin have been shown to be more sensitive to organophosphorous compounds (0.13-11 mg/L), while the triple-enzyme system with trypsin is highly sensitive to lipotropic poison, a derivative of dithiocarbamine acid (0.03 mg/L). Sensitivities of the triple-enzyme systems to pyrethroid preparations are similar to those of luminous bacteria (0.9-5 mg/L). The results can be used to construct an alarm-test bioluminescence system for detecting chemical toxicants, based on intact bacteria or enzyme systems.
Collapse
Affiliation(s)
- E Vetrova
- Institute of Biophysics, Akademgorodok, 660036 Krasnoyarsk, Russia
| | | | | | | | | | | | | |
Collapse
|
14
|
Fedorova E, Kudryasheva N, Kuznetsov A, Mogil'naya O, Stom D. Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 88:131-6. [PMID: 17716903 DOI: 10.1016/j.jphotobiol.2007.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/12/2007] [Accepted: 05/19/2007] [Indexed: 10/23/2022]
Abstract
This study deals with application of bioluminescent assay systems to evaluate the detoxifying effect of humic substances (HS) on the solutions of organic oxidizers - quinones. A series of homologous quinones with different redox characteristics: 1,4-benzoquinone, tetrafluoro-1,4-benzoquinone, methyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, and 1,4-naphtoquinone, was used. Bioluminescent bacteria Photobacterium phosphoreum, and NADH:FMN-oxidoreductase-luciferase enzyme system isolated from these bacteria were used as assay systems. The toxicity was compared in the presence and in the absence of HS. Variation of complexity of bioassays (in vivo or in vitro) combined with spectrometric and microscopic methods, provides insight into the process of detoxification in quinone solutions. Two ways of HS effect were studied: the reduction activity of HS and intensification of self-protection of bacterial cells on HS addition.
Collapse
Affiliation(s)
- Elena Fedorova
- Institute of Biophysics SB RAS, Akademgorodok 50, Krasnoyarsk, Russia
| | | | | | | | | |
Collapse
|
15
|
Rozhko TV, Kudryasheva NS, Kuznetsov AM, Vydryakova GA, Bondareva LG, Bolsunovsky AY. Effect of low-level alpha-radiation on bioluminescent assay systems of various complexity. Photochem Photobiol Sci 2006; 6:67-70. [PMID: 17200739 DOI: 10.1039/b614162p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study addresses the effects of low-level alpha-radiation on bioluminescent assay systems of different levels of organization: in vivo and in vitro. Three bioluminescent assay systems are used: intact bacteria, lyophilized bacteria, and bioluminescent system of coupled enzyme reactions. Solutions of 241Am(NO3)3 are used as a source of alpha-radiation. It has been shown that activation processes predominate in all the three bioluminescent assay systems subjected to short-term exposure (20-55 h) and inhibition processes in the systems subjected to longer-term exposure to radiation. It has been found that these effects are caused by the radiation component of 241Am3+ impact. The intensity of the 241Am3+ effect on the bioluminescent assay systems has been shown to depend on the 241Am3+ concentration, level of organization and integrity of the bioluminescent assay system. The bioluminescent assay systems in vivo have been found to be highly sensitive to 241Am3+ (up to 10(-17) M).
Collapse
|
16
|
Kudryasheva NS. Bioluminescence and exogenous compounds: physico-chemical basis for bioluminescent assay. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:77-86. [PMID: 16413195 DOI: 10.1016/j.jphotobiol.2005.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/28/2005] [Accepted: 10/27/2005] [Indexed: 11/28/2022]
Abstract
Bioluminescent systems are convenient objects to study mechanisms of influence of exogenous molecules on living organisms. Classification of physical and physico-chemical mechanisms of the effects of luminous bacteria Photobacterium leiognathi on bioluminescent reactions is suggested. Five mechanisms are discussed: (1) change of electron-excited states' population and energy transfer, (2) change of efficiency of S-T conversion in the presence of external heavy atom, (3) change of rates of coupled reactions, (4) interactions with enzymes and variation of enzymatic activity, (5) nonspecific effects of electron acceptors. Effects of various groups of chemical compounds are discussed according to the classification suggested. The compounds are: a series of fluorescent dyes, organic oxidizers, organic and inorganic heavy-atom containing compounds, and metallic salts. Applications of fluorescence time-resolved and steady-state techniques, as well as bioluminescence kinetics study, are discussed. The patterns of exogenous compounds' influence form a physico-chemical basis for bioluminescent ecological assay.
Collapse
|