1
|
Bolandghamat S, Behnam‐Rassouli M. Iron role paradox in nerve degeneration and regeneration. Physiol Rep 2024; 12:e15908. [PMID: 38176709 PMCID: PMC10766496 DOI: 10.14814/phy2.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Iron accumulates in the neural tissue during peripheral nerve degeneration. Some studies have already been suggested that iron facilitates Wallerian degeneration (WD) events such as Schwann cell de-differentiation. On the other hand, intracellular iron levels remain elevated during nerve regeneration and gradually decrease. Iron enhances Schwann cell differentiation and axonal outgrowth. Therefore, there seems to be a paradox in the role of iron during nerve degeneration and regeneration. We explain this contradiction by suggesting that the increase in intracellular iron concentration during peripheral nerve degeneration is likely to prepare neural cells for the initiation of regeneration. Changes in iron levels are the result of changes in the expression of iron homeostasis proteins. In this review, we will first discuss the changes in the iron/iron homeostasis protein levels during peripheral nerve degeneration and regeneration and then explain how iron is related to nerve regeneration. This data may help better understand the mechanisms of peripheral nerve repair and find a solution to prevent or slow the progression of peripheral neuropathies.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | | |
Collapse
|
2
|
Fu P, Chen Y, Wu M, Bao B, Yin X, Chen Z, Zhang M. Effect of ferroptosis on chronic cerebral hypoperfusion in vascular dementia. Exp Neurol 2023; 370:114538. [PMID: 37709116 DOI: 10.1016/j.expneurol.2023.114538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Vascular dementia (VaD) is the second most prevalent type of dementia after Alzheimer's disease and is caused by impaired nerve cell function resulting from cerebrovascular disease and vascular risk factors. Chronic cerebral hypoperfusion (CCH) is a common pathological and physiological state that may result from cerebral ischemia and hypoxia, causing widespread diffuse lesions in the brain parenchyma which leads to progressive nerve damage. Transferrin (TF) and transferrin receptor 1 (TfR1), two proteins involved in iron uptake, were upregulated by CCH, whereas ferroprotein (FPN), a protein involved in iron efflux, was downregulated. This process may involve various mechanisms including tau and iron regulatory proteins (IRP). CCH can also exacerbate lipid peroxidation caused by an iron imbalance by inhibiting glutathione peroxidase 4 (Gpx4) synthesis and some Gpx4 independent pathways through cystine/glutamate transporters (system Xc-), ultimately leading to ferroptosis in nerve cells and accelerating the progression of VaD.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yanghang Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Bing Bao
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
3
|
Sun L, Lin X, Pornprasert S, Lü X, Ran B, Lin Y. L-type calcium channel blockers decrease the iron overload-mediated oxidative stress in renal epithelial cells by reducing iron accumulation. Eur J Pharmacol 2020; 886:173513. [PMID: 32898550 DOI: 10.1016/j.ejphar.2020.173513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Iron-mediated oxidative stress has been recognized as one of the leading causes of chronic kidney injury. The effect of L-type calcium channel (LTCC) blocker on iron overload has been shown in cardiomyocytes, liver cells, and nerve cells. So far, few studies have examined whether blockers improve kidney iron-mediated oxidative stress. Yet, the precise mechanism through which blockers regulate kidney iron transport still remains unclear. In the present work, treatment with nifedipine or verapamil decreased oxidative stress and reduced the cell apoptosis-induced by ferric ammonium citrate (P < 0.05), decreased cellular iron contents, and prevented the rising of iron level-induced by ferric ammonium citrate (P > 0.05) in HK-2 and HEK293 cells. Besides, nifedipine and verapamil treatments increased the expression of divalent metal transporter 1, divalent metal transporter ZIP14, and ferroportin1 in HK-2 cells and increased ferroportin1 expression in HEK293 cells. In summary, LTCC blockers alleviate iron overload-induced oxidative stress in renal epithelial cells by blocking the iron uptake and enhancing cellular iron transport and/or iron export, thus synergistically reducing the cellular iron accumulation. Consequently, LTCC blockers may be used as a novel treatment for the prevention of primary or secondary iron overload-kidney injury.
Collapse
Affiliation(s)
- Linfeng Sun
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoding Lin
- Class 2 of Grade 2017, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Sakorn Pornprasert
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Xiaomei Lü
- Department of Neurology, Chongqing Medical University Affiliated Children's Hospital, Chongqing, 400014, China
| | - Bing Ran
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Yan Lin
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Iron Metabolism in the Peripheral Nervous System: The Role of DMT1, Ferritin, and Transferrin Receptor in Schwann Cell Maturation and Myelination. J Neurosci 2019; 39:9940-9953. [PMID: 31676601 DOI: 10.1523/jneurosci.1409-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
Iron is an essential cofactor for many cellular enzymes involved in myelin synthesis, and iron homeostasis unbalance is a central component of peripheral neuropathies. However, iron absorption and management in the PNS are poorly understood. To study iron metabolism in Schwann cells (SCs), we have created 3 inducible conditional KO mice in which three essential proteins implicated in iron uptake and storage, the divalent metal transporter 1 (DMT1), the ferritin heavy chain (Fth), and the transferrin receptor 1 (Tfr1), were postnatally ablated specifically in SCs. Deleting DMT1, Fth, or Tfr1 in vitro significantly reduce SC proliferation, maturation, and the myelination of DRG axons. This was accompanied by an important reduction in iron incorporation and storage. When these proteins were KO in vivo during the first postnatal week, the sciatic nerve of all 3 conditional KO animals displayed a significant reduction in the synthesis of myelin proteins and in the percentage of myelinated axons. Knocking out Fth produced the most severe phenotype, followed by DMT1 and, last, Tfr1. Importantly, DMT1 as well as Fth KO mice showed substantial motor coordination deficits. In contrast, deleting these proteins in mature myelinating SCs results in milder phenotypes characterized by small reductions in the percentage of myelinated axons and minor changes in the g-ratio of myelinated axons. These results indicate that DMT1, Fth, and Tfr1 are critical proteins for early postnatal iron uptake and storage in SCs and, as a consequence, for the normal myelination of the PNS.SIGNIFICANCE STATEMENT To determine the function of the divalent metal transporter 1, the transferrin receptor 1, and the ferritin heavy chain in Schwann cell (SC) maturation and myelination, we created 3 conditional KO mice in which these proteins were postnatally deleted in Sox10-positive SCs. We have established that these proteins are necessary for normal SC iron incorporation and storage, and, as a consequence, for an effective myelination of the PNS. Since iron is indispensable for SC maturation, understanding iron metabolism in SCs is an essential prerequisite for developing therapies for demyelinating diseases in the PNS.
Collapse
|
5
|
Amos-Kroohs RM, Usach V, Piñero G, Vorhees CV, Vivot RM, Soto PA, Williams MT, Setton-Avruj P. Metal bashing: iron deficiency and manganese overexposure impact on peripheral nerves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:99-112. [PMID: 30652531 PMCID: PMC6397089 DOI: 10.1080/15287394.2019.1566105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron (Fe) deficiency (FeD) and manganese (Mn) overexposure (MnOE) may result in several neurological alterations in the nervous system. Iron deficiency produces unique neurological deficits due to its elemental role in central nervous system (CNS) development and myelination, which might persist after normalization of Fe in the diet. Conversely, MnOE is associated with diverse neurocognitive deficits. Despite these well-known neurotoxic effects on the CNS, the influence of FeD and MnOE on the peripheral nervous system (PNS) remains poorly understood. The aim of the present investigation was to examine the effects of developmental FeD and MnOE or their combination on the sciatic nerve of young and adult rats. The parameters measured included divalent metal transporter 1 (DMT1), transferrin receptor (TfR), myelin basic protein (MBP) and peripheral myelin protein 22 (PMP22) expression, as well as Fe levels in the nerve. Our results showed that FeD produced a significant reduction in MBP and PMP22 content at P29, which persisted at P60 after Fe-sufficient diet replenishment regardless of Mn exposure levels. At P60 MnOE significantly increased sciatic nerve Fe content and DMT1 expression. However, the combination of FeD and MnOE produced no marked motor skill impairment. Evidence indicates that FeD appears to hinder developmental peripheral myelination, while MnOE may directly alter Fe homeostasis. Further studies are required to elucidate the interplay between these pathological conditions.
Collapse
Affiliation(s)
- Robyn M. Amos-Kroohs
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC 28081
| | - Vanina Usach
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Gonzalo Piñero
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Rocío Martinez Vivot
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Patricia Setton-Avruj
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| |
Collapse
|
6
|
Thirupathi A, Chang YZ. Brain Iron Metabolism and CNS Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:1-19. [PMID: 31456202 DOI: 10.1007/978-981-13-9589-5_1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is the most abundant trace element in the human body. It is well known that iron is an important component of hemoglobin involved in the transport of oxygen. As a component of various enzymes, it participates in the tricarboxylic acid cycle and oxidative phosphorylation. Iron in the nervous system is also involved in the metabolism of catecholamine neurotransmitters and is involved in the formation of myelin. Therefore, iron metabolism needs to be strictly regulated. Previous studies have shown that iron deficiency in the brain during infants and young children causes mental retardation, such as delayed development of language and body balance, and psychomotor disorders. However, if the iron is excessively deposited in the aged brain, it is closely related to the occurrence of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. Therefore, it is important to fully study and understand the mechanism of brain iron metabolism and its regulation. On this basis, exploring the relationship between brain iron regulation and the occurrence of nervous system diseases and discovering new therapeutic targets related to iron metabolism have important significance for breaking through the limitation of prevention and treatment of nervous system diseases. This review discusses the complete research history of iron and its significant role in the pathogenesis of the central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20, Nan Er Huan Eastern Road, Shijiazhuang, 050024, Hebei Province, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20, Nan Er Huan Eastern Road, Shijiazhuang, 050024, Hebei Province, China.
| |
Collapse
|
7
|
The Divalent Metal Transporter 1 (DMT1) Is Required for Iron Uptake and Normal Development of Oligodendrocyte Progenitor Cells. J Neurosci 2018; 38:9142-9159. [PMID: 30190412 DOI: 10.1523/jneurosci.1447-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/24/2023] Open
Abstract
The divalent metal transporter 1 (DMT1) is a multimetal transporter with a primary role in iron transport. Although DMT1 has been described previously in the CNS, nothing was known about the role of this metal transporter in oligodendrocyte maturation and myelination. To determine whether DMT1 is required for oligodendrocyte progenitor cell (OPC) maturation, we used siRNAs and the Cre-lox system to knock down/knock out DMT1 expression in vitro as well as in vivo Blocking DMT1 synthesis in primary cultures of OPCs reduced oligodendrocyte iron uptake and significantly delayed OPC development. In vivo, a significant hypomyelination was found in DMT1 conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive OPCs. The brain of DMT1 knock-out animals presented a decrease in the expression levels of myelin proteins and a substantial reduction in the percentage of myelinated axons. This reduced postnatal myelination was accompanied by a decrease in the number of myelinating oligodendrocytes and a rise in proliferating OPCs. Furthermore, using the cuprizone model of demyelination, we established that DMT1 deletion in NG2-positive OPCs lead to less efficient remyelination of the adult brain. These results indicate that DMT1 is vital for OPC maturation and for the normal myelination of the mouse brain.SIGNIFICANCE STATEMENT To determine whether divalent metal transporter 1 (DMT1), a multimetal transporter with a primary role in iron transport, is essential for oligodendrocyte development, we created two conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive oligodendrocyte progenitor cells (OPCs). We have established that DMT1 is necessary for normal OPC maturation and is required for an efficient remyelination of the adult brain. Since iron accumulation by OPCs is indispensable for myelination, understanding the iron incorporation mechanism as well as the molecules involved is critical to design new therapeutic approaches to intervene in diseases in which the myelin sheath is damaged or lost.
Collapse
|
8
|
Systemic Transplantation of Bone Marrow Mononuclear Cells Promotes Axonal Regeneration and Analgesia in a Model of Wallerian Degeneration. Transplantation 2017; 101:1573-1586. [DOI: 10.1097/tp.0000000000001478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Martinez-Vivot R, Copello G, Leal C, Piñero G, Usach V, Rozenszajn M, Morelli L, Setton-Avruj CP. DMT1 iron uptake in the PNS: bridging the gap between injury and regeneration. Metallomics 2015; 7:1381-9. [DOI: 10.1039/c5mt00156k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work supports DMT1 involvement in iron regulation in SCs, its role as a sensor of iron necessity and its ability to guarantee iron supply during myelination and remyelination.
Collapse
Affiliation(s)
- Rocío Martinez-Vivot
- Departamento de Química Biológica
- Facultad de Farmacia y Bíoquímica
- Universidad de Buenos Aires
- Instituto de Química y Físicoquímica Biológica (IQUIFIB)
- UBA-CONICET
| | - Guillermo Copello
- Cátedra de Química Analítica Instrumental
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- , Argentina
| | - Celeste Leal
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso Central
- Fundación Instituto Leloir
- IIBBA-CONICET
- , Argentina
| | - Gonzalo Piñero
- Departamento de Química Biológica
- Facultad de Farmacia y Bíoquímica
- Universidad de Buenos Aires
- Instituto de Química y Físicoquímica Biológica (IQUIFIB)
- UBA-CONICET
| | - Vanina Usach
- Departamento de Química Biológica
- Facultad de Farmacia y Bíoquímica
- Universidad de Buenos Aires
- Instituto de Química y Físicoquímica Biológica (IQUIFIB)
- UBA-CONICET
| | - Mijael Rozenszajn
- Departamento de Química Biológica
- Facultad de Farmacia y Bíoquímica
- Universidad de Buenos Aires
- Instituto de Química y Físicoquímica Biológica (IQUIFIB)
- UBA-CONICET
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración
- Fundación Instituto Leloir
- IIBBA- CONICET
- , Argentina
| | - Clara Patricia Setton-Avruj
- Departamento de Química Biológica
- Facultad de Farmacia y Bíoquímica
- Universidad de Buenos Aires
- Instituto de Química y Físicoquímica Biológica (IQUIFIB)
- UBA-CONICET
| |
Collapse
|
10
|
Abstract
SIGNIFICANCE Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. RECENT ADVANCES During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. CRITICAL ISSUES However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. FUTURE DIRECTIONS To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood-nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies.
Collapse
Affiliation(s)
- Sonia Levi
- 1 University Vita-Salute San Raffaele , Milan, Italy
| | | |
Collapse
|