1
|
Irwin-Huston JM, Bourebaba L, Bourebaba N, Tomal A, Marycz K. Sex hormone-binding globulin promotes the osteogenic differentiation potential of equine adipose-derived stromal cells by activating the BMP signaling pathway. Front Endocrinol (Lausanne) 2024; 15:1424873. [PMID: 39483986 PMCID: PMC11524885 DOI: 10.3389/fendo.2024.1424873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Musculoskeletal injuries and chronic degenerative diseases pose significant challenges in equine health, impacting performance and overall well-being. Sex Hormone-Binding Globulin (SHBG) is a glycoprotein determining the bioavailability of sex hormones in the bloodstream, and exerting critical metabolic functions, thus impacting the homeostasis of many tissues including the bone. Methods In this study, we investigated the potential role of SHBG in promoting osteogenesis and its underlying mechanisms in a model of equine adipose-derived stromal cells (ASCs). An SHBG-knocked down model has been established using predesigned siRNA, and cells subjected to osteogenic induction medium in the presence of exogenous SHBG protein. Changes in differentiation events where then screened using various analytical methods. Results We demonstrated that SHBG treatment enhances the expression of key osteoconductive regulators in equine ASCs CD34+ cells, suggesting its therapeutic potential for bone regeneration. Specifically, SHBG increased the cellular expression of BMP2/4, osteocalcin (OCL), alkaline phosphatase (ALP), and osteopontin (OPN), crucial factors in early osteogenesis. Furthermore, SHBG treatment maintained adequate apoptosis and enhanced autophagy during osteogenic differentiation, contributing to bone formation and remodeling. SHBG further targeted mitochondrial dynamics, and promoted the reorganization of the mitochondrial network, as well as the expression of dynamics mediators including PINK, PARKIN and MFN1, suggesting its role in adapting cells to the osteogenic milieu, with implications for osteoblast maturation and differentiation. Conclusion Overall, our findings provide novel insights into SHBG's role in bone formation and suggest its potential therapeutic utility for bone regeneration in equine medicine.
Collapse
Affiliation(s)
- Jennifer M. Irwin-Huston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Uptegrove A, Chen C, Sahagun-Bisson M, Kulkarni AK, Louie KW, Ueharu H, Mishina Y, Omi-Sugihara M. Influence of bone morphogenetic protein (BMP) signaling and masticatory load on morphological alterations of the mouse mandible during postnatal development. Arch Oral Biol 2024; 169:106096. [PMID: 39341045 DOI: 10.1016/j.archoralbio.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis. DESIGN We employed conditional deletion of Bmpr1a in osteoblasts and chondrocytes via Osterix-Cre. Cre activity was induced at birth for the 3-week group and at three weeks for the 9-week and 12-week groups, respectively. The conditional knockout (cKO) and control mice were given either a regular diet (hard diet, HD) or a powdered diet (soft diet, SD) from 3 weeks until sample collection, followed by micro-CT and histological analysis. RESULTS The cKO mice exhibited shorter anterior lengths and a posteriorly inclined ramus across all age groups compared to the control mice. The cKO mice displayed an enlarged hypertrophic cartilage area along with fewer osteoclast numbers in the subchondral bone of the condyle compared to the control group at three weeks, followed by a reduction in the cartilage area in the posterior region at twelve weeks. Superimposed imaging and histomorphometrical analysis of the condyle revealed that BMP signaling primarily affects the posterior part of the condyle, while mastication affects the anterior part. CONCLUSIONS Using 3D landmark-based geometric morphometrics and histological assessments of the mandible, we demonstrated that BMP signaling and mechanical loading reciprocally contribute to the morphological alterations of the mandible and condyle during postnatal development.
Collapse
Affiliation(s)
- Amber Uptegrove
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Coral Chen
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Madison Sahagun-Bisson
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA.
| | - Maiko Omi-Sugihara
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Crespo D, Fjelldal PG, Hansen TJ, Kjærner-Semb E, Skaftnesmo KO, Thorsen A, Norberg B, Edvardsen RB, Andersson E, Schulz RW, Wargelius A, Kleppe L. Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure. FASEB J 2024; 38:e23837. [PMID: 39031536 DOI: 10.1096/fj.202400370r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anders Thorsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway
| | - Rolf B Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
4
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The importance of BMPs and TGF-βs for endochondral bone repair - A longitudinal study in hip arthroplasty patients. Bone Rep 2023; 19:101723. [PMID: 38047271 PMCID: PMC10690547 DOI: 10.1016/j.bonr.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osseointegration of hip implants, although a decade-long process, shows striking similarities with the four major phases of endochondral bone repair. In the current study we investigated the spatiotemporal involvement of bone morphogenic proteins (BMPs) and transforming growth factor betas (TGF-βs) throughout the process of bone repair leading to successfully osseointegrated hip implants. Materials and methods Twenty-four patients that had undergone primary total hip arthroplasty (THA) due to one-sided osteoarthritis (OA) were investigated during a period of 18 years (Y) with repeated measurements of plasma biomarkers as well as clinical and radiological variables. All implants were clinically and radiographically well anchored throughout the follow-up. Eighty-one healthy donors divided in three gender- and age-matched groups and twenty OA patients awaiting THA, served as controls. Plasma was analyzed for BMP-1, -2, -3, -4, -6, -7 -9 and TGF-β1, -β2, -β3 by use of a high-sensitivity and wide dynamic range electrochemiluminescence technique allowing for detection of minor changes. Results Spatiotemporal changes during the follow-up are presented in the context of the four phases of endochondral bone repair shown in earlier studies and transposed to the current study based on similarities in biomarker responses. Phase 1: Primary proinflammatory phase lasting from surgery until day 7, Phase 2: Chondrogenic phase from day 7 until 18 months postsurgery, Phase 3: Secondary proinflammatory and cartilage remodeling phase lasting from 18 months until 7Y, Phase 4: coupled bone remodeling from 7Y until 18Y postsurgery. BMP-1 increased sharply shortly after surgery and remained significantly above healthy during the chondrocyte recruitment, proliferation, and hypertrophy phases with a subsequent return to control level at 5Y postsurgery. BMP-2 was above healthy controls before surgery and 1 day after surgery before decreasing to control level and remaining there throughout the follow-up. BMP-3 was at control level from presurgery until 6M after surgery when it increased to a peak at 2Y during the cartilage hypertrophy phase followed by a gradual decrease to control level at 10Y during the phase of bone formation. In the following, BMP-3 decreased below controls to a nadir 15Y postsurgery during coupled bone remodeling. BMP-4 was at control level from presurgery until 10Y postsurgery when it increased to a sharp peak at 15Y after surgery followed by a return to the level of healthy at 18Y. BMP-6 did not differ from healthy during the follow-up. BMP-7 was at control level from presurgery until 1Y postsurgery before gradually increasing to a peak at 10Y during the early phase of osteogenesis with a gradual return to control level at 18Y during the phase of coupled bone remodeling. BMP-9 was above OA before surgery followed by a decrease to basal level on day 1 after surgery and a renewed increase to a plateau above controls lasting from 6 W until returning to the level of healthy at 18Y postsurgery, i.e., throughout the phases of cartilage formation, cartilage hypertrophy and remodeling, bone formation and coupled bone remodeling. TGF-β1 was above controls presurgery before decreasing to baseline shortly after surgery followed by a renewed increase at 6 M to a peak at 2Y during cartilage hypertrophy/remodeling followed by a gradual return to baseline at 10Y during early osteoblastogenesis. TGF-β2 was at control level from presurgery until the phase of cartilage remodeling at 5Y when it increased sharply to a peak at 7Y with a gradual return to baseline at 18Y postsurgery. TGF-β3 remained at control level throughout the study. Conclusion This study shows that the involvement of BMPs and TGF-βs in endochondral bone repair is a process of stepwise recruitment of individual biomarkers characterized by distinct, yet overlaping, spatiotemporal patterns that extend from the early phase of pre-chondrocyte recruitment until the late phase of coupled bone remodeling.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
5
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
6
|
Glatt V, O'Toole R, Mehta S, Kandemir U, Ricci W, Nauth A, Schemitsch E, Hast MW. Great debates in trauma biomechanics. OTA Int 2023; 6:e249. [PMID: 37168029 PMCID: PMC10166369 DOI: 10.1097/oi9.0000000000000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 05/13/2023]
Abstract
At the 2021 annual meeting of the Orthopaedic Trauma Association, the Basic Science Focus Forum hosted its first ever debate-style symposium focused on biomechanics and fracture repair. The 3 subjects of debate were "Mechanics versus Biology-Which is 'More Important' to Consider?" "Locked Plate versus Forward Dynamization versus Reverse Dynamization-Which Way Should I Go?" and "Sawbones versus Cadaver Models-What Should I Believe Most?" These debates were held because fracture healing is a highly organized synergistic response between biological factors and the local mechanical environment. Multiple studies have demonstrated that both factors play roles in governing bone healing responses, and the causal relationships between the 2 remain unclear. The lack of clarity in this space has led to a spectrum of research with the common goal of helping surgeons make good decisions. Before reading further, the reader should understand that the questions posed in the debate titles are unanswerable and might represent a false choice. Instead, the reader should appreciate that the debates were held to gain a more thorough understanding of these topics based on the current state of the art of experimental and clinical studies, by using an engaging and thought-provoking format.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Robert O'Toole
- Department of Orthopaedic Surgery, University of Maryland Medical System, Baltimore, MD
| | - Samir Mehta
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - Utku Kandemir
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA
| | - William Ricci
- Department of Orthopaedic Surgery, Hospital for Special Surgery and New York Presbyterian Hospital, New York, NY
| | - Aaron Nauth
- Department of Orthopaedic Surgery, University of Toronto, Toronto, ON, Canada; and
| | - Emil Schemitsch
- Department of Orthopaedic Surgery, Western University, London, ON, Canada
| | - Michael W. Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Wang Y, Gan Y, Dong Y, Zhou J, Zhu E, Yuan H, Li X, Wang B. Tax1 binding protein 3 regulates osteogenic and adipogenic differentiation through inactivating Wnt/β-catenin signalling. J Cell Mol Med 2023; 27:950-961. [PMID: 36892460 PMCID: PMC10064035 DOI: 10.1111/jcmm.17702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Tax1 binding protein 3 (Tax1bp3) is a PDZ domain-containing protein that is overexpressed in cancer. Previous studies recognized Tax1bp3 as an inhibitor of β-catenin. Till now it is not known whether Tax1bp3 regulates osteogenic and adipogenic differentiation of mesenchymal progenitor cells. In the current study, the data showed that Tax1bp3 was expressed in bone and was increased in the progenitor cells when induced toward osteoblast and adipocyte differentiation. The overexpression of Tax1bp3 in the progenitor cells inhibited osteogenic differentiation and conversely stimulated adipogenic differentiation, and the knockdown of Tax1bp3 affected the differentiation of the progenitor cells oppositely. Ex vivo experiments using the primary calvarial osteoblasts from osteoblast-specific Tax1bp3 knock-in mice also demonstrated the anti-osteogenic and pro-adipogenic function of Tax1bp3. Mechanistic investigations revealed that Tax1bp3 inhibited the activation of canonical Wnt/β-catenin and bone morphogenetic proteins (BMPs)/Smads signalling pathways. Taken together, the current study has provided evidences demonstrating that Tax1bp3 inactivates Wnt/β-catenin and BMPs/Smads signalling pathways and reciprocally regulates osteogenic and adipogenic differentiation from mesenchymal progenitor cells. The inactivation of Wnt/β-catenin signalling may be involved in the reciprocal role of Tax1bp3.
Collapse
Affiliation(s)
- Yi Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Yuan Dong
- College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Xiaoxia Li
- College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Omi M, Koneru T, Lyu Y, Haraguchi A, Kamiya N, Mishina Y. Increased BMP-Smad signaling does not affect net bone mass in long bones. Front Physiol 2023; 14:1145763. [PMID: 37064883 PMCID: PMC10101206 DOI: 10.3389/fphys.2023.1145763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function. On the other hand, hemizygous constitutively active (ca) mutations for BMPR1A (caBmpr1awt/+) in osteoblasts result in higher bone morphogenetic protein signaling activity and no overt skeletal changes in adult mice. Here, we further bred mice for heterozygous null for Bmpr1a (Bmpr1a+/−) and homozygous mutations of caBmpr1a (caBmpr1a+/+) crossed with Osterix-Cre transgenic mice to understand how differences in the levels of bone morphogenetic protein signaling activity specifically in osteoblasts contribute to bone phenotype. We found that Bmpr1a+/−, caBmpr1awt/+ and caBmpr1a+/+ mice at 3 months of age showed no overt bone phenotypes in tibiae compared to controls by micro-CT and histological analysis although BMP-Smad signaling is increased in both caBmpr1awt/+ and caBmpr1a+/+ tibiae and decreased in the Bmpr1a+/− mice compared to controls. Gene expression analysis demonstrated that slightly higher levels of bone formation markers and resorption markers along with levels of bone morphogenetic protein-Smad signaling, however, there was no significant changes in TRAP positive cells in tibiae. These findings suggest that changes in bone morphogenetic protein signaling activity within differentiating osteoblasts does not affect net bone mass in the adult stage, providing insights into the concerns in the clinical setting such as high-dose and unexpected side effects of bone morphogenetic protein application.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Tejaswi Koneru
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Yishan Lyu
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ai Haraguchi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Nobuhiro Kamiya
- Department of Budo and Sport Studies, Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- *Correspondence: Yuji Mishina,
| |
Collapse
|
9
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res 2023; 13:419-432. [PMID: 35994158 DOI: 10.1007/s13346-022-01222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/β-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.
Collapse
|
11
|
Wang M, Fan J, Wang A, Jin X, Zhang Z, Hu X, Liu L, Zhao Y, Li Y. Effect of local application of bone morphogenetic protein -2 on experimental tooth movement and biological remodeling in rats. Front Physiol 2023; 14:1111857. [PMID: 37143931 PMCID: PMC10151543 DOI: 10.3389/fphys.2023.1111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Background: This study attempts to detect the potential effects of local bone morphogenetic protein -2 (BMP-2) on orthodontic tooth movement and periodontal tissue remodeling. Methods: Forty adult SD rats were randomly divided into four groups: blank control group, unilateral injection of BMP-2 on the pressure side or tension side of orthodontic teeth and bilateral injection of BMP-2. Their maxillary first molar was moved by a 30 g constant force closed coil spring. 60 μL of BMP-2 with a concentration of 0.5 μg/mL was injected into each part at a time. In addition, three rats were selected as healthy control rats without any intervention. Fluorescent labeled BMP-2 was used to observe the distribution of exogenous BMP-2 in tissues. Micro-CT was used to measure the microscopic parameters of tooth displacement, trabecular bone and root absorption volume. Three different histological methods were used to observe the changes of tissue remodeling, and then the number of osteoclasts and the content of collagen fibers were calculated. Results: Compared with the blank control group, BMP-2 injection reduced the movement distance and increased the collagen fiber content and bone mass (p < 0.01). There was no significant difference in tooth movement distance, BV/TV ratio and BMD between injection sites in unilateral injection group (p > 0.05). In the case of bilateral injection of BMP-2, the osteogenesis is enhanced. Unilateral injection of BMP-2 did not promote root resorption, but double injection showed root resorption (p < 0.01). Conclusion: Our study does show that the osteogenesis of BMP-2 is dose-dependent rather than site-dependent when a certain amount of BMP-2 is applied around orthodontic teeth. Local application of BMP-2 around orthodontic teeth in an appropriate way can enhance bone mass and tooth anchorage without increasing the risk of root absorption volume. However, high levels of BMP-2 may cause aggressive root resorption. These findings are of great significance, that is, BMP-2 is an effective target for regulating orthodontic tooth movement.
Collapse
Affiliation(s)
- Menglin Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jiadong Fan
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Aoao Wang
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiang Jin
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhenbao Zhang
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiantong Hu
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Liu
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Le Liu, ; Yantao Zhao, ; Yanfeng Li,
| | - Yantao Zhao
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, China
- State Key Laboratory of Military Stomatology, Xi’an, China
- *Correspondence: Le Liu, ; Yantao Zhao, ; Yanfeng Li,
| | - Yanfeng Li
- Medical School of Chinese PLA, Beijing, China
- Department of Stomatology, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Le Liu, ; Yantao Zhao, ; Yanfeng Li,
| |
Collapse
|
12
|
The association of polymorphisms in BMP2/MYO1H and skeletal Class II div.1 maxillary and mandibular dimensions. A preliminary ‘report. Saudi J Biol Sci 2022; 29:103405. [PMID: 36039325 PMCID: PMC9418592 DOI: 10.1016/j.sjbs.2022.103405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The genetic impact directly or indirectly predefines maxillofacial dimensions, potentially leading to an inappropriate relationship of the jaws and subsequently skeletal malocclusion. Previous studies focused mainly on genetic polymorphisms and class III malocclusion. This study was set out to investigate the association between genetic polymorphisms in two genes BMP2 (rs235768) and MYO1H (rs11066446) with Class II division 1 malocclusion, skeletal variation in vertical plane, and maxillary and mandibular jaws length. Subjects and methods Sixty patients classified as Skeletal Class I (n = 30) and Class II division 1 (n = 30) were recruited. DNA was extracted from saliva and analyzed by Sanger sequencing. Lateral cephalometric radiographs were measured for the anterio-posterior relationship of maxillary and mandibular arch using digital tracing. Hardy-Weinberg equilibrium analysis of genotype frequencies was performed using Chi-square test to compare genotype distribution among groups and multiple logistic regression analysis adjusted by gender was also performed. Results The rs235768 polymorphism in BMP2 was associated with hypodivergent face, increased maxillary length, and decreased mandibular length. Meanwhile, the rs11066446 polymorphism in MYO1H was associated with decreased mandibular length. New polymorphism was identified in MYO1H (rs10850090) in association with decreased mandibular length. Conclusion A potential association between polymorpisms in BMP2 rs235768 and MOY1H rs11066446 and rs10850090 and Class II division 1 skeletal malocclusion related phenotypes exists, however, the degree of it has to be further investigated and yet to be discovered.
Collapse
|
13
|
Peng Z, Mai Z, Xiao F, Liu G, Wang Y, Xie S, Ai H. MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:683. [PMID: 35845505 PMCID: PMC9279817 DOI: 10.21037/atm-22-2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation. Methods In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a. Results Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway. Conclusions MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.
Collapse
Affiliation(s)
- Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yixuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xie
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
15
|
Cerqueni G, Scalzone A, Licini C, Gentile P, Mattioli-Belmonte M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112433. [PMID: 34702518 DOI: 10.1016/j.msec.2021.112433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022]
Abstract
The presence of Reactive Oxygen Species (ROS) in bone can influence resident cells behaviour as well as the extra-cellular matrix composition and the tissue architecture. Aging, in addition to excessive overloads, unbalanced diet, smoking, predisposing genetic factors, lead to an increase of ROS and, if it is accompanied with an inappropriate production of scavengers, promotes the generation of oxidative stress that encourages bone catabolism. Furthermore, bone injuries can be triggered by numerous events such as road and sports accidents or tumour resection. Although bone tissue possesses a well-known repair and regeneration capacity, these mechanisms are inefficient in repairing large size defects and bone grafts are often necessary. ROS play a fundamental role in response after the implant introduction and can influence its success. This review provides insights on the mechanisms of oxidative stress generated by an implant in vivo and suitable ways for its modulation. The local delivery of active molecules, such as polyphenols, enhanced bone biomaterial integration evidencing that the management of the oxidative stress is a target for the effectiveness of an implant. Polyphenols have been widely used in medicine for cardiovascular, neurodegenerative, bone disorders and cancer, thanks to their antioxidant and anti-inflammatory properties. In addition, the perspective of new smart biomaterials and molecular medicine for the oxidative stress modulation in a programmable way, by the use of ROS responsive materials or by the targeting of selective molecular pathways involved in ROS generation, will be analysed and discussed critically.
Collapse
Affiliation(s)
- Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 204, 10129 Torino, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy.
| |
Collapse
|
16
|
Jeon HH, Teixeira H, Tsai A. Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. J Clin Med 2021; 10:jcm10081733. [PMID: 33923725 PMCID: PMC8072633 DOI: 10.3390/jcm10081733] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Alveolar bone remodeling in orthodontic tooth movement (OTM) is a highly regulated process that coordinates bone resorption by osteoclasts and new bone formation by osteoblasts. Mechanisms involved in OTM include mechano-sensing, sterile inflammation-mediated osteoclastogenesis on the compression side and tensile force-induced osteogenesis on the tension side. Several intracellular signaling pathways and mechanosensors including the cilia and ion channels transduce mechanical force into biochemical signals that stimulate formation of osteoclasts or osteoblasts. To date, many studies were performed in vitro or using human gingival crevicular fluid samples. Thus, the use of transgenic animals is very helpful in examining a cause and effect relationship. Key cell types that participate in mediating the response to OTM include periodontal ligament fibroblasts, mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Intercellular signals that stimulate cellular processes needed for orthodontic tooth movement include receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α (TNF-α), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), sclerostin, transforming growth factor beta (TGF-β), and bone morphogenetic proteins (BMPs). In this review, we critically summarize the current OTM studies using transgenic animal models in order to provide mechanistic insight into the cellular events and the molecular regulation of OTM.
Collapse
|
17
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
18
|
BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging (Albany NY) 2021; 13:9646-9664. [PMID: 33744859 PMCID: PMC8064147 DOI: 10.18632/aging.202708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
In this study, we using the in vivo destabilization of the medial meniscus (DMM) mouse model to investigate the role of bone morphogenetic protein 5 (BMP5) in osteoarthritis (OA) progression mediated via chondrocyte senescence and apoptosis. BMP5 expression was significantly higher in knee articular cartilage tissues of OA patients and DMM model mice than the corresponding controls. The Osteoarthritis Research Society International scores based on histological staining of knee articular cartilage sections were lower in DMM mice where BMP5 was knocked down in chondrocytes than the corresponding controls 4 weeks after DMM surgery. DMM mice with BMP5-deficient chondrocytes showed reduced levels of matrix-degrading enzymes such as MMP13 and ADAMTS5 as well as reduced cartilage destruction. BMP5 knockdown also decreased chondrocyte apoptosis and senescence by suppressing the activation of p38 and ERK MAP kinases. These findings demonstrate that BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as OA progression by downregulating activity in the p38/ERK signaling pathway.
Collapse
|
19
|
Lin YC, Niceta M, Muto V, Vona B, Pagnamenta AT, Maroofian R, Beetz C, van Duyvenvoorde H, Dentici ML, Lauffer P, Vallian S, Ciolfi A, Pizzi S, Bauer P, Grüning NM, Bellacchio E, Del Fattore A, Petrini S, Shaheen R, Tiosano D, Halloun R, Pode-Shakked B, Albayrak HM, Işık E, Wit JM, Dittrich M, Freire BL, Bertola DR, Jorge AAL, Barel O, Sabir AH, Al Tenaiji AMJ, Taji SM, Al-Sannaa N, Al-Abdulwahed H, Digilio MC, Irving M, Anikster Y, Bhavani GSL, Girisha KM, Haaf T, Taylor JC, Dallapiccola B, Alkuraya FS, Yang RB, Tartaglia M. SCUBE3 loss-of-function causes a recognizable recessive developmental disorder due to defective bone morphogenetic protein signaling. Am J Hum Genet 2021; 108:115-133. [PMID: 33308444 PMCID: PMC7820739 DOI: 10.1016/j.ajhg.2020.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, Taipei Medical University, 110301 Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, 115201 Taipei, Taiwan
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Otolaryngology - Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | | | - Hermine van Duyvenvoorde
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Peter Lauffer
- Department of Paediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Sadeq Vallian
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, 8174673441 Isfahan, Iran
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | | | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Del Fattore
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, 11211 Riyadh, Saudi Arabia; Qatar Biomedical Research Institute, Hamad Bin Khalifa University, 34110 Doha, Qatar
| | - Dov Tiosano
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, 352540 Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, 352540 Haifa, Israel
| | - Rana Halloun
- Pediatric Endocrinology Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, 352540 Haifa, Israel
| | - Ben Pode-Shakked
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Hatice Mutlu Albayrak
- Department of Pediatric Endocrinology, Gaziantep Cengiz Gökcek Maternity & Children's Hospital, 27010 Gaziantep, Turkey
| | - Emregül Işık
- Department of Pediatric Endocrinology, Gaziantep Cengiz Gökcek Maternity & Children's Hospital, 27010 Gaziantep, Turkey
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Institute of Bioinformatics, Julius Maximilians University, 97070 Würzburg, Germany
| | - Bruna L Freire
- Unidade de Endocrinologia Genética, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 01246903 Sao Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403000 Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, 01246903 Sao Paulo, Brazil
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, 52621 Tel-Hashomer, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, 52621 Tel-Hashomer, Israel
| | - Ataf H Sabir
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, SE1 9RT London, UK; Birmingham Women's and Children's NHS Foundation Trust, University of Birmingham, B4 6NH Birmingham, UK
| | - Amal M J Al Tenaiji
- Department of Paediatrics, Sheikh Khalifa Medical City, 51900 Abu Dhabi, United Arab Emirates
| | - Sulaima M Taji
- Department of Paediatrics, Sheikh Khalifa Medical City, 51900 Abu Dhabi, United Arab Emirates
| | | | | | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, SE1 9RT London, UK
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel; Wohl Institute for Translational Medicine, Sheba Medical Center, 52621 Tel-Hashomer, Israel
| | - Gandham S L Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, 11211 Riyadh, Saudi Arabia
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 115201 Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 110301 Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112304, Taipei, Taiwan.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
20
|
Küchler EC, Reis CLB, Carelli J, Scariot R, Nelson-Filho P, Coletta RD, Paza AO, Matsumoto MAN, Proff P, Kirschneck C. Potential interactions among single nucleotide polymorphisms in bone- and cartilage-related genes in skeletal malocclusions. Orthod Craniofac Res 2020; 24:277-287. [PMID: 33068497 DOI: 10.1111/ocr.12433] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate SNPs in bone- and cartilage-related genes and their interaction in the aetiology of sagittal and vertical skeletal malocclusions. SETTINGS AND SAMPLE POPULATION This study included 143 patients and classified as follows: skeletal class I (n = 77), class II (n = 47) and class III (n = 19); maxillary retrusion (n = 39), protrusion (n = 52) and well-positioned maxilla (n = 52); mandibular retrognathism (n = 50), prognathism (n = 50) and well-positioned mandible (n = 43); normofacial (n = 72), dolichofacial (n = 55) and brachyfacial (n = 16). MATERIALS AND METHODS Steiner's ANB, SNA, SNB angles and Ricketts' NBa-PtGn angle were measured to determine the skeletal malocclusion and the vertical pattern. Nine SNPs in BMP2, BMP4, SMAD6, RUNX2, WNT3A and WNT11 were genotyped. Chi-squared test was used to compare genotypes among the groups. Multifactor dimensionality reduction (MDR) and binary logistic regression analysis, both using gender and age as co-variables, were also used. We performed Bonferroni correction for multiple testing. RESULTS Significant associations at P < .05 were observed for SNPs rs1005464 (P = .042) and rs235768 (P = .021) in BMP2 with mandibular retrognathism and for rs59983488 (RUNX2) with maxillary protrusion (P = .04) as well as for rs708111 (WNT3A) with skeletal class III (P = .02; dominant model), rs1533767 (WNT11) with a brachyfacial skeletal pattern (P = .01, OR = 0.10; dominant model) and for rs3934908 (SMAD6) with prognathism (P = .02; recessive model). After the Bonferroni correction, none of the SNPs remained associated. The MDR predicted some interaction for skeletal class II, dolichofacial and brachyfacial phenotypes. CONCLUSION Our results suggest that SNPs in BMP2, BMP4, SMAD6, RUNX2, WNT3A and WNT11 could be involved in the aetiology of sagittal and vertical malocclusions.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Caio Luiz Bitencourt Reis
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
| | - Julia Carelli
- Department of Dentistry, School of Dentistry, Univille (Joinville University), Joinville, Brazil
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Curitiba, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, USP - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Campinas, Brazil
| | - Aleysson Olimpio Paza
- Department of Dentistry, School of Dentistry, Univille (Joinville University), Joinville, Brazil
| | - Mírian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, USP - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Kamiya N, Atsawasuwan P, Joiner DM, Waldorff EI, Goldstein S, Yamauchi M, Mishina Y. Controversy of physiological vs. pharmacological effects of BMP signaling: Constitutive activation of BMP type IA receptor-dependent signaling in osteoblast lineage enhances bone formation and resorption, not affecting net bone mass. Bone 2020; 138:115513. [PMID: 32603910 PMCID: PMC7423725 DOI: 10.1016/j.bone.2020.115513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) were first described over 50 years ago as potent inducers of ectopic bone formation when administrated subcutaneously. Preclinical studies have extensively examined the osteoinductive properties of BMPs in vitro and new bone formation in vivo. BMPs (BMP-2, BMP-7) have been used in orthopedics over 15 years. While osteogenic function of BMPs has been widely accepted, our previous studies demonstrated that loss-of-function of BMP receptor type IA (BMPR1A), a potent receptor for BMP-2, increased net bone mass by significantly inhibiting bone resorption in mice, indicating a positive role of BMP signaling in bone resorption. The physiological role of BMPs (i.e. osteogenic vs. osteoclastogenic) is still largely unknown. The purpose of this study was to investigate the physiological role of BMP signaling in endogenous long bones during adult stages. For this purpose, we conditionally and constitutively activated the Smad-dependent canonical BMP signaling thorough BMPR1A in osteoblast lineage cells using the mutant mice (Col1CreER™:caBmpr1a). Because trabecular bones were largely increased in the loss-of-function mouse study for BMPR1A, we hypothesized that the augmented BMP signaling would affect endogenous trabecular bones. In the mutant bones, the Smad phosphorylation was enhanced within physiological level three-fold while the resulting gross morphology, bodyweights, bone mass/shape/length, serum calcium/phosphorus levels, collagen cross-link patterns, and healing capability were all unchanged. Interestingly, we found; 1) increased expressions of both bone formation and resorption markers in femoral bones, 2) increased osteoblast and osteoclast numbers together with dynamic bone formation parameters by trabecular bone histomorphometry, 3) modest bone architectural phenotype with reduced bone quality (i.e. reduced trabecular bone connectivity, larger diametric size but reduced cortical bone thickness, and reduced bone mechanical strength), and 4) increased expression of SOST, a downstream target of the Smad-dependent BMPR1A signaling, in the mutant bones. This study is clinically insightful because gain-of-function of BMP signaling within a physiological window does not increase bone mass while it alters molecular and cellular aspects of osteoblast and osteoclast functions as predicted. These findings help explain the high-doses of BMPs (i.e. pharmacological level) in clinical settings required to substantially induce a bone formation, concurrent with potential unexpected side effects (i.e. bone resorption, inflammation) presumably due to a broader population of cell-types exposed to the high-dose BMPs rather than osteoblastic lineage cells.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; Faculty of Budo and Sport Studies, Tenri University, Nara 6320071, Japan; Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA.
| | - Phimon Atsawasuwan
- School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA; College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
22
|
Zhang H, Zhang Y, Terajima M, Romanowicz G, Liu Y, Omi M, Bigelow E, Joiner DM, Waldorff EI, Zhu P, Raghavan M, Lynch M, Kamiya N, Zhang R, Jepsen KJ, Goldstein S, Morris MD, Yamauchi M, Kohn DH, Mishina Y. Loss of BMP signaling mediated by BMPR1A in osteoblasts leads to differential bone phenotypes in mice depending on anatomical location of the bones. Bone 2020; 137:115402. [PMID: 32360900 PMCID: PMC7354232 DOI: 10.1016/j.bone.2020.115402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - Genevieve Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yangjia Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Maiko Omi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Peizhi Zhu
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mekhala Raghavan
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Tenri University, Nara, Japan
| | - Rongqing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Michael D Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
23
|
Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. Int J Biol Macromol 2020; 143:30-40. [DOI: 10.1016/j.ijbiomac.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
|
24
|
Scimeca M, Bonfiglio R, Menichini E, Albonici L, Urbano N, De Caro MT, Mauriello A, Schillaci O, Gambacurta A, Bonanno E. Microcalcifications Drive Breast Cancer Occurrence and Development by Macrophage-Mediated Epithelial to Mesenchymal Transition. Int J Mol Sci 2019; 20:E5633. [PMID: 31718020 PMCID: PMC6888678 DOI: 10.3390/ijms20225633] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aims to investigate: (a) the putative association between the presence of microcalcifications and the expression of both epithelial-to-mesenchymal transition and bone biomarkers, (b) the role of microcalcifications in the breast osteoblast-like cells (BOLCs) formation, and (c) the association between microcalcification composition and breast cancer progression. METHODS We collected 174 biopsies on which we performed immunohistochemical and ultrastructural analysis. In vitro experiments were performed to demonstrate the relationship among microcalcification, BOLCs development, and breast cancer occurrence. Ex vivo investigations demonstrated the significant increase of breast osteoblast-like cells in breast lesions with microcalcifications with respect to those without microcalcifications. RESULTS In vitro data displayed that in the presence of calcium oxalate and activated monocytes, breast cancer cells undergo epithelial to mesenchymal transition. Also, in this condition, cells acquired an osteoblast phenotype, thus producing hydroxyapatite. To further confirm in vitro data, we studied 15 benign lesions with microcalcification from patients that developed a malignant condition in the same breast quadrant. Immunohistochemical analysis showed macrophages' polarization in benign lesions with calcium oxalate. CONCLUSIONS Altogether, our data shed new light about the role of microcalcifications in breast cancer occurrence and progression.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milan, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Erika Menichini
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Maria Teresa De Caro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
- “Diagnostica Medica” and “Villa dei Platani”, 83100 Avellino, Italy
| |
Collapse
|
25
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
A combination insecticide at sub-lethal dose debilitated the expression pattern of crucial signalling molecules that facilitate craniofacial patterning in domestic chick Gallus domesticus. Neurotoxicol Teratol 2019; 76:106836. [PMID: 31593814 DOI: 10.1016/j.ntt.2019.106836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Pesticides despite being agents that protect the plants and humans from noxious pests, are infamous for their potential to cause detrimental health issues in nontargeted species. In order to ascertain the latter, a set of experiments were conducted by exposing early chick embryos to a widely used combination insecticide (Ci, 50% chlorpyrifos and 5% cypermethrin). The results revealed a myriad of congenital defects pertaining to craniofacial development such as anophthalmia, microphthalmia, exencephaly as well as deformed beak and cranial structures. These teratological manifestations could be attributed to the Ci induced alteration in the titre of major regulators of neurulation and ossification. Therefore, the mRNA and/or the protein level expression pattern of genes which are reported to be involved in the craniofacial development were studied at selected time points of embryonic development. The analysis of the result showed that there have been significant alternations in the expression patterns of the signalling molecules such as SHH, WNTs, CDH1, CDH2, L1CAM, PAX6, HOX, PCNA, GLI3, BMP7, FGF8, GLIs, SOX9, RUNX2, DLX5, COL10A1, CASPASE3 etc. on embryonic days 2, 4 and/or 10. Concurrently, on day 10, whole-mount skeletal staining and biochemical estimation of hydroxyproline were carried out in the cranial tissues of the embryos. The overall result of the current study indicates that exposure to Ci during early development impede the crucial regulatory signals that orchestrate the morphogenesis of cranial neural crest cells thereby hindering the normal progression of neural tube and endochondral ossification which collectively lead to craniofacial dysmorphism in domestic chicks.
Collapse
|
27
|
Kim JS, Lee H, Nirmala FS, Jung CH, Jang YJ, Ha TY, Ahn J. Dry-Fermented Soybean Food (Cheonggukjang) Ameliorates Senile Osteoporosis in the Senescence-Accelerated Mouse Prone 6 Model. J Med Food 2019; 22:1047-1057. [PMID: 31566516 DOI: 10.1089/jmf.2018.4335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Senile osteoporosis increases the risk of skeletal fractures with age. Cheonggukjang (CGJ), a traditional Korean dry fermented soybean product, has numerous therapeutic effects; however, its effects on bone mineral density (BMD) and bone metabolism in senile osteoporosis are unclear. In this study, we treated the senescence-accelerated mouse prone 6 (SAMP6) model of senile osteoporosis with CGJ to determine its potential for ameliorating and preventing osteoporosis progression. High-performance liquid chromatography analysis for isoflavone profiles revealed that short-term fermentation significantly increased the isoflavone aglycone content in soybeans. Thereafter, we fed 6-week-old SAMP6 mice with experimental diets containing 5% or 10% CGJ for 15 weeks. Microcomputed tomography revealed that CGJ supplementation effectively increased the BMD and relative bone length. In vitro, CGJ increased the osteopontin reactivity and upregulated the expression of Alp, Col1a1, Fak, Bmp2/4, Smad1/5/8, and Runx2 in osteoblasts, and decreased Cathepsin K reactivity and downregulated Rankl and Nfatc1 expression in osteoclasts. In addition, CGJ increased the osteoprotegerin/Rankl ratio. Collectively, these results demonstrate that CGJ can ameliorate the detrimental effects of senile osteoporosis by improving osteogenesis and decreasing osteoclast activity.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyunjung Lee
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Farida Sukma Nirmala
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Chang Hwa Jung
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Young-Jin Jang
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Tae-Youl Ha
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| | - Jiyun Ahn
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
28
|
Lahr CA, Wagner F, Shafiee A, Rudert M, Hutmacher DW, Holzapfel BM. Recombinant Human Bone Morphogenetic Protein 7 Exerts Osteo-Catabolic Effects on Bone Grafts That Outweigh Its Osteo-Anabolic Capacity. Calcif Tissue Int 2019; 105:331-340. [PMID: 31214730 DOI: 10.1007/s00223-019-00574-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effects of recombinant human bone morphogenetic protein (rhBMP-7) on human cancellous bone grafts (BGs) while differentiating between anabolic and catabolic events. Human BGs alone or supplemented with rhBMP-7 were harvested 14 weeks after subcutaneous implantation into NOD/Scid mice, and studied via micro-CT, histomorphometry, immunohistochemistry and flow cytometry. Immunohistochemical staining for human-specific proteins made it possible to differentiate between grafted human bone and newly formed murine bone. Only BGs implanted with rhBMP-7 formed an ossicle containing a functional hematopoietic compartment. The total ossicle volume in the BMP+ group was higher than in the BMP- group (835 mm3 vs. 365 mm3, respectively, p < 0.001). The BMP+ group showed larger BM spaces (0.47 mm vs. 0.28 mm, p = 0.002) and lower bone volume-to-total volume ratio (31% vs. 47%, p = 0.002). Immunohistochemical staining for human-specific proteins confirmed a higher ratio of newly formed bone area (murine) to total area (0.12 vs. 0.001, p < 0.001) in the BMP+ group, while the ratio of grafted bone (human) area to total area was smaller (0.14 vs. 0.34, p = 0.004). The results demonstrate that rhBMP-7 induces BG resorption at a higher rate than new bone formation while creating a haematopoietic niche. Clinicians therefore need to consider the net catabolic effect when rhBMP-7 is used with BGs. Overall, this model indicates its promising application to further decipher BMPs action on BGs and its potential in complex bone tissue regeneration.
Collapse
Affiliation(s)
- Christoph A Lahr
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstrasse 11, 97074, Wuerzburg, Germany
| | - Ferdinand Wagner
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Abbas Shafiee
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Maximilian Rudert
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Dietmar W Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstrasse 11, 97074, Wuerzburg, Germany.
| |
Collapse
|
29
|
Han L, Jiang Y, Lv C, Gan D, Wang K, Ge X, Lu X. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces 2019; 179:470-478. [DOI: 10.1016/j.colsurfb.2019.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
30
|
Marquetti I, Desai S. Orientation effects on the nanoscale adsorption behavior of bone morphogenetic protein-2 on hydrophilic silicon dioxide. RSC Adv 2019; 9:906-916. [PMID: 35517634 PMCID: PMC9059500 DOI: 10.1039/c8ra09165j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Bone Morphogenetic Protein-2 (BMP-2) is a growth factor associated with different developmental functions in regenerative medicine and tissue engineering. Because of its favorable properties for the development of bone and cartilage tissue, BMP-2 promotes the biocompatibility of medical implants. In this research, molecular dynamics simulations were implemented to simulate the interaction of BMP-2 with a flat hydrophilic silicon dioxide substrate, an important biomaterial for medical applications. We considered the influence of four orthogonal protein orientations on the adsorption behavior. Results showed that arginine and lysine were the main residues to interact with the silicon dioxide substrate, directly adsorbing onto the surface and overcoming water layers. However, between these charged residues, we observed a preference for arginine to adsorb. Orientations with the α-helix loop closer to the surface at the beginning of the simulations had greater loss of secondary structure as compared to the other configurations. Among all the orientations, the end-on B configuration had favorable adsorption characteristics with a binding energy of 14 000 kJ mol-1 and retention of 21.7% β-sheets as confirmed by the Ramachandran plots. This research provides new insights into the nanoscale interaction of BMP-2 and silicon dioxide substrate with applications in orthopedic implants and regenerative medicine.
Collapse
Affiliation(s)
- Izabele Marquetti
- Department of Industrial & Systems Engineering, North Carolina A&T State University Greensboro NC 27411 USA
| | - Salil Desai
- Department of Industrial & Systems Engineering, North Carolina A&T State University Greensboro NC 27411 USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine Winston-Salem NC 27157 USA
| |
Collapse
|
31
|
Almehmadi A, Ohyama Y, Kaku M, Alamoudi A, Husein D, Katafuchi M, Mishina Y, Mochida Y. VWC2 Increases Bone Formation Through Inhibiting Activin Signaling. Calcif Tissue Int 2018; 103:663-674. [PMID: 30074079 PMCID: PMC6549224 DOI: 10.1007/s00223-018-0462-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
By a bioinformatics approach, we have identified a novel cysteine knot protein member, VWC2 (von Willebrand factor C domain containing 2) previously known as Brorin. Since Brorin has been proposed to function as a bone morphogenetic protein (BMP) antagonist, we investigated the binding of Brorin/VWC2 to several BMPs; however, none of the BMPs tested were bound to VWC2. Instead, the βA subunit of activin was found as a binding partner among transforming growth factor (TGF)-β superfamily members. Here, we show that Vwc2 gene expression is temporally upregulated early in osteoblast differentiation, VWC2 protein is present in bone matrix, and localized at osteoblasts/osteocytes. Activin A-induced Smad2 phosphorylation was inhibited in the presence of exogenous VWC2 in MC3T3-E1 osteoblast cell line and primary osteoblasts. The effect of VWC2 on ex vivo cranial bone organ cultures treated with activin A was investigated, and bone morphometric parameters decreased by activin A were restored with VWC2. When we further investigated the biological mechanism how VWC2 inhibited the effects of activin A on bone formation, we found that the effects of activin A on osteoblast cell growth, differentiation, and mineralization were reversed by VWC2. Taken together, a novel secretory protein, VWC2 promotes bone formation by inhibiting Activin-Smad2 signaling pathway.
Collapse
Affiliation(s)
- Ahmad Almehmadi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Periodontology and Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Departoment of Maxillofacial Surgery, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ahmed Alamoudi
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dina Husein
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Michitsuna Katafuchi
- Department of Oral Rehabilitation, Section of Fixed Prosthodontics, Fukuoka Dental College, Fukuoka, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair. Bone Res 2018; 6:30. [PMID: 30345151 PMCID: PMC6193039 DOI: 10.1038/s41413-018-0031-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells (MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein (BMP) signalling and depend on BMP-mediated Indian hedgehog (IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand (RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog (Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMP-mediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair. Understanding the signaling mechanisms regulating cells in cranial sutures could help develop strategies for repairing skull defects or fractures. Little is known about how osteoblasts, osteoclasts and mesenchymal stem cells (MSCs) in cranial sutures regulate the homeostasis and repair of skull bones. Yang Chai at the University of Southern California, United States, and colleagues show that preventing the expression of bone morphogenetic protein receptor type IA (Bmpr1a) in MSCs leads to defective cranial sutures in which osteogenic activity is increased and osteoclast activity is reduced. Stimulating the Hedgehog signaling pathway not only partially rescued the defective sutures but also promoted skull bone healing after injury in Bmpr1a mutant mice, highlighting the importance of BMP-mediated Hedgehog signaling for balancing skull bone formation and resorption.
Collapse
|
33
|
Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone. Int J Biol Macromol 2018; 109:338-349. [DOI: 10.1016/j.ijbiomac.2017.12.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
|
34
|
An Y, Song Y, Wang Z, Wang J, Wu G, Zhu G, Chen L. Effect of low-intensity pulsed ultrasound on the biological behaviors of bone marrow mesenchymal stem cells on titanium with different surface topographies. Am J Transl Res 2018; 10:67-76. [PMID: 29422994 PMCID: PMC5801347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 06/08/2023]
Abstract
The use of low-intensity pulsed ultrasound (LIPUS) is a promising approach to promote osteogenesis. However, few studies have reported the influence of this technique on the osseointegration of endosseous implants, especially regarding different implant topographies. We focused on how the initial interaction between cells and the titanium surface is enhanced by LIPUS and the potential regulatory mechanisms. The bone marrow mesenchymal stem cells (BMSCs) of rats were cultured on two types of titanium surfaces (polished surface, Flat and large grain blast acid etched, SLA) under LIPUS stimulation or control conditions. The cell proliferation on the implant surfaces was significantly promoted by LIPUS, which stimulated the increase in the number of microfilaments, pseudopodia formed and extracellular matrix mineralization nodules compared with those in the control group. The expression of osteogenesis-related genes, including OPN, OCN, BMP-2, ALP, Runx2 and Col-1, were up-regulated on all the surfaces by LIPUS stimulation. Our findings suggest that LIPUS enhances osteoblast differentiation from BMSCs on titanium surfaces. The use of LIPUS might be a potential adjuvant treatment to improve the osseointegration process.
Collapse
Affiliation(s)
- Yanxin An
- Department of Orthodontics, School of Stomatology, Shandong UniversityJinan, Shandong Province, People’s Republic of China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong UniversityWenhua Xi Road No. 44-1, Jinan 250012, Shandong Province, People’s Republic of China
- Department of General Surgery, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Yan Song
- Department of Stomatology, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Zhaoling Wang
- Department of Stomatology, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Jing Wang
- Department of Stomatology, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Gaoyi Wu
- Department of Stomatology, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Guoxiong Zhu
- Department of Stomatology, Jinan Military General HospitalJinan 250031, Shandong Province, People’s Republic of China
| | - Lei Chen
- Department of Orthodontics, School of Stomatology, Shandong UniversityJinan, Shandong Province, People’s Republic of China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong UniversityWenhua Xi Road No. 44-1, Jinan 250012, Shandong Province, People’s Republic of China
| |
Collapse
|
35
|
Janečková E, Bíliková P, Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J Histochem Cytochem 2018; 66:47-58. [PMID: 29091523 PMCID: PMC5761947 DOI: 10.1369/0022155417739283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic
| |
Collapse
|
36
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
37
|
Pan H, Zhang H, Abraham P, Komatsu Y, Lyons K, Kaartinen V, Mishina Y. BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development. Dev Biol 2017. [PMID: 28641928 DOI: 10.1016/j.ydbio.2017.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses.
Collapse
Affiliation(s)
- Haichun Pan
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ponnu Abraham
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA; Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Karen Lyons
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vesa Kaartinen
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Zhang Y, McNerny EG, Terajima M, Raghavan M, Romanowicz G, Zhang Z, Zhang H, Kamiya N, Tantillo M, Zhu P, Scott GJ, Ray MK, Lynch M, Ma PX, Morris MD, Yamauchi M, Kohn DH, Mishina Y. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments. Bone 2016; 88:74-84. [PMID: 27113526 PMCID: PMC4899267 DOI: 10.1016/j.bone.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 03/26/2016] [Accepted: 04/22/2016] [Indexed: 01/23/2023]
Abstract
Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments.
Collapse
Affiliation(s)
- Yanshuai Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - Mekhala Raghavan
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Genevieve Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Zhanpeng Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA; Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Margaret Tantillo
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Peizhi Zhu
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Gregory J Scott
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Manas K Ray
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michelle Lynch
- Office of Research, School of Dentistry, University of Michigan, MI, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michael D Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
39
|
Yi T, Jun CM, Kim SJ, Yun JH. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model. Tissue Eng Part A 2016; 22:501-12. [DOI: 10.1089/ten.tea.2015.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- TacGhee Yi
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Choong-Man Jun
- Division of Periodontology, Department of Dentistry, Inha University School of Medicine, Incheon, Republic of Korea
| | - Su Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
40
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
41
|
Iura A, McNerny EG, Zhang Y, Kamiya N, Tantillo M, Lynch M, Kohn DH, Mishina Y. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts. PLoS One 2015; 10:e0141345. [PMID: 26489086 PMCID: PMC4619208 DOI: 10.1371/journal.pone.0141345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 01/22/2023] Open
Abstract
Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO) of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs), in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.
Collapse
Affiliation(s)
- Ayaka Iura
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erin Gatenby McNerny
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yanshuai Zhang
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nobuhiro Kamiya
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margaret Tantillo
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle Lynch
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David H. Kohn
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Zu Y, Liang X, Du J, Zhou S, Yang C. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling. J Biomech 2015; 48:3950-4. [PMID: 26475222 DOI: 10.1016/j.jbiomech.2015.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells.
Collapse
Affiliation(s)
- Yan Zu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xudong Liang
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China; Department of Mechanical and Aerospace Engineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jing Du
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
| | - Shuai Zhou
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
| | - Chun Yang
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
43
|
Zeng Z, Yin X, Zhang X, Jing D, Feng X. Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1. Int J Mol Med 2015; 36:1273-81. [PMID: 26647760 PMCID: PMC4601743 DOI: 10.3892/ijmm.2015.2354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Substantial evidence has indicated that osteoblastic differentiation may be regulated by mechanical loads or bone morphogenetic protein-2 (BMP-2). BMP-2-induced in vivo osteogenesis can be significantly enhanced in the presence of mechanical stimuli, revealing the therapeutic potential of the combined application of BMP-2 and mechanical loads in clinical bone diseases (e.g., bone fractures and osteoporosis); however, the underlying mechanisms remain elusive. In this study, we found that cyclic stretch or BMP-2 alone increased the expression of osteoblastic differentiation markers, including alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), as shown by RT-qPCR, western blot analysis and ALP activity test. Furthermore, our results revealed that cyclic mechanical stretch with 10% elongation at 0.1 Hz significantly enhanced the BMP-2-induced upregulation of ALP and Runx2 expression in osteoblast-like MC3T3-E1 cells. Cyclic stretch also inhibited the BMP-2-induced upregulation of Hes-related family bHLH transcription factor with YRPW motif 1 (Hey1, measured by RT-qPCR and immunofluorescence staining), a potent negative regulator of osteogenesis. Moreover, the transient transfection of a Hey1 expression plasmid (pcDNA3.1-Hey1) significantly reversed the effects of cyclic stretch on the BMP-2-induced upregulation of differentiation markers in the MC3T3-E1 cells. This revealed the importance of Hey1 in modulating BMP-2-induced osteoblastic differentiation in response to cyclic stretch. Taken together, our results demonstrated that cyclic stretch enhanced the BMP-2-induced osteoblastic differentiation through the inhibition of Hey1. The present study broadens our fundamental knowledge of osteoblastic mechanotransduction and also sheds new insight into the mechanisms through which the combined application of BMP-2 and mechanical load promotes osteogenesis.
Collapse
Affiliation(s)
- Zhaobin Zeng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiao Yin
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Da Jing
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
44
|
Sheng X, Chen Y, Jia Y, Qi X, Feng Y, Huang Z, Guo Y. The identification of loci for polydactyly in chickens using a genome-wide association study. Gene 2015; 568:176-80. [PMID: 26003297 DOI: 10.1016/j.gene.2015.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Polydactyly is a commonly observed limb malformation in humans and other vertebrates. The Beijing-You chicken expressing the polydactyly phenotype provides an opportunity to investigate the potential cause for polydactyly. Here we extensively exploited genetic determinants of the chicken polydactyly in a genome wide association study using over 580,000 SNPs characterized in a Beijing-You × Lohmann F1 cross, consisting of 79 animals. A total of 10 loci clustered on the short arm of chromosome 2 were identified to be significantly associated with the trait. Among the 10 significant SNPs, 7 were located in a linkage disequilibrium block of 1737kb. The strongest association signal (rs317674023, P=5.48×10(-8)) residing nearby Bone Morphogenetic Protein Receptor-Associated Molecule 1 (BRAM1) was identified in the genomic region. Our results provide insights to the genetic basis underlying chicken polydactyly and may facilitate studies of the limb malformation in humans and other species.
Collapse
Affiliation(s)
- Xihui Sheng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100026, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing 100001, China
| | - Yaxiong Jia
- Beijing Municipal General Station of Animal Science, Beijing 100001, China
| | - Xiaolong Qi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100026, China
| | - Yun Feng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100026, China
| | - Zhen Huang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100026, China
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 100026, China.
| |
Collapse
|
45
|
During A, Penel G, Hardouin P. Understanding the local actions of lipids in bone physiology. Prog Lipid Res 2015; 59:126-46. [PMID: 26118851 DOI: 10.1016/j.plipres.2015.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022]
Abstract
The adult skeleton is a metabolically active organ system that undergoes continuous remodeling to remove old and/or stressed bone (resorption) and replace it with new bone (formation) in order to maintain a constant bone mass and preserve bone strength from micro-damage accumulation. In that remodeling process, cellular balances--adipocytogenesis/osteoblastogenesis and osteoblastogenesis/osteoclastogenesis--are critical and tightly controlled by many factors, including lipids as discussed in the present review. Interest in the bone lipid area has increased as a result of in vivo evidences indicating a reciprocal relationship between bone mass and marrow adiposity. Lipids in bones are usually assumed to be present only in the bone marrow. However, the mineralized bone tissue itself also contains small amounts of lipids which might play an important role in bone physiology. Fatty acids, cholesterol, phospholipids and several endogenous metabolites (i.e., prostaglandins, oxysterols) have been purported to act on bone cell survival and functions, the bone mineralization process, and critical signaling pathways. Thus, they can be regarded as regulatory molecules important in bone health. Recently, several specific lipids derived from membrane phospholipids (i.e., sphingosine-1-phosphate, lysophosphatidic acid and different fatty acid amides) have emerged as important mediators in bone physiology and the number of such molecules will probably increase in the near future. The present paper reviews the current knowledge about: (1°) bone lipid composition in both bone marrow and mineralized tissue compartments, and (2°) local actions of lipids on bone physiology in relation to their metabolism. Understanding the roles of lipids in bone is essential to knowing how an imbalance in their signaling pathways might contribute to bone pathologies, such as osteoporosis.
Collapse
Affiliation(s)
- Alexandrine During
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France.
| | - Guillaume Penel
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France
| | - Pierre Hardouin
- Université Lille 2, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Faculté de Chirurgie dentaire, Lille, France; Université ULCO, Laboratoire de Physiopathologie des maladies osseuses inflammatoires (PMOI), EA4490, Boulogne-sur-Mer, France
| |
Collapse
|
46
|
Osta B, Roux JP, Lavocat F, Pierre M, Ndongo-Thiam N, Boivin G, Miossec P. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol 2015; 6:151. [PMID: 25904914 PMCID: PMC4387961 DOI: 10.3389/fimmu.2015.00151] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/21/2015] [Indexed: 11/24/2022] Open
Abstract
Objective TNF-α and IL-17A act on fibroblast-like synoviocytes (FLS) and contribute to cytokine production, inflammation, and tissue destruction in rheumatoid arthritis (RA). The aim of this study was to compare their effects on osteogenic differentiation of isolated FLS and on whole bone explants from RA and osteoarthritis (OA) patients. Methods Fibroblast-like synoviocytes and bone explants were cultured in the presence or absence of TNF-α and/or IL-17A. Mineralization of extracellular matrix of FLS was measured by alizarin red and alkaline phosphatase activity (ALP). mRNA expression was analyzed by qRT-PCR for Wnt5a, BMP2, and RUNX2, key genes associated with osteogenesis. IL-6 and IL-8 levels were measured by enzyme-linked immunosorbent assays. Bone explant structure was quantified by histomorphometry. Results In isolated OA and RA FLS, the combination of TNF-α and IL-17A induced matrix mineralization, increased ALP activity and expression of the osteogenesis-associated genes Wnt5a, BMP2, and Runx2, indicating an osteogenic differentiation. Wnt5a levels increased with TNF-α alone and in combination with IL-17A. BMP2 expression decreased with IL-17A and TNF-α after 12 h with OA FLS and 24 h with RA FLS. Runx2 expression decreased only with combination of TNF-α and IL-17A in OA FLS and with cytokines alone and combined in RA FLS. IL-6 and IL-8 production increased with IL-17A and/or TNF-α in both FLS and bone samples, especially from RA. Treatment of bone explants with cytokine combination increased ALP in OA but not RA samples. A decrease in bone volume was seen with cytokine combination, especially with RA explants. Conclusion Differences were observed for the effects of IL-17A and TNF-α on osteogenic differentiation. In isolated FLS, increased osteoblastogenesis was observed, contrasting with the inhibitory effect in whole bone, specifically in RA. The net effect of IL-17A and TNF-α appears to depend on the disease state and the presence of other cells.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Jean-Paul Roux
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Marlène Pierre
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Ndieme Ndongo-Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Georges Boivin
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
47
|
Tsubakihara Y, Hikita A, Yamamoto S, Matsushita S, Matsushita N, Oshima Y, Miyazawa K, Imamura T. Arkadia enhances BMP signalling through ubiquitylation and degradation of Smad6. J Biochem 2015; 158:61-71. [PMID: 25762727 DOI: 10.1093/jb/mvv024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/17/2015] [Indexed: 02/02/2023] Open
Abstract
Arkadia, a positive regulator of Smad-dependent signalling via the transforming growth factor-β (TGF-β) family, is an E3 ubiquitin ligase that induces ubiquitylation and proteasome-dependent degradation of TGF-β suppressors such as Smad7, c-Ski and SnoN. In this study, we examined the effects of Arkadia on bone morphogenetic protein (BMP)-induced osteoblast differentiation. Knockdown of Arkadia reduced mineralization and expression of osteoblast differentiation markers. Furthermore, we showed that Smad6, a BMP-specific inhibitory Smad, is a target of Arkadia: wild-type (WT) Arkadia, but not the C937A (CA) mutant lacking E3 ubiquitin-ligase activity, induced ubiquitylation and proteasome-dependent degradation of Smad6. Accordingly, protein levels of Smad6, Smad7 and c-Ski were elevated in MEFs from Arkadia KO mice. Finally, expression of Arkadia attenuated blockade of BMP signalling by Smad6 in a transcriptional reporter assay. These results demonstrate that Smad6 is a novel target of Arkadia, and that Arkadia positively regulates BMP signalling via degradation of Smad6, Smad7 and c-Ski/SnoN.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsuhiko Hikita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shin Yamamoto
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Sachi Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Natsuki Matsushita
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yusuke Oshima
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| | - Keiji Miyazawa
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-imaging, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo; Department of Gastroenterology and Metabiology, Ehime University, Shitsukawa, Toon, Ehime; Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime; and Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime; Division of Bio-im
| |
Collapse
|
48
|
Pregizer SK, Mortlock DP. Dynamics and cellular localization of Bmp2, Bmp4, and Noggin transcription in the postnatal mouse skeleton. J Bone Miner Res 2015; 30:64-70. [PMID: 25043193 PMCID: PMC4818007 DOI: 10.1002/jbmr.2313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023]
Abstract
Transcription of BMPs and their antagonists in precise spatiotemporal patterns is essential for proper skeletal development, maturation, maintenance, and repair. Nevertheless, transcriptional activity of these molecules in skeletal tissues beyond embryogenesis has not been well characterized. In this study, we used several transgenic reporter mouse lines to define the transcriptional activity of two potent BMP ligands, Bmp2 and Bmp4, and their antagonist, Noggin, in the postnatal skeleton. At 3 to 4 weeks of age, Bmp4 and Noggin reporter activity was readily apparent in most cells of the osteogenic or chondrogenic lineages, respectively, whereas Bmp2 reporter activity was strongest in terminally differentiated cells of both lineages. By 5 to 6 months, activity of the reporters had generally abated; however, the Noggin and Bmp2 reporters remained remarkably active in articular chondrocytes and persisted there indefinitely. We further found that endogenous Bmp2, Bmp4, and Noggin transcript levels in postnatal bone and cartilage mirrored the activity of their respective reporters in these tissues. Finally, we found that the activity of the Bmp2, Bmp4, and Noggin reporters in bone and cartilage at 3 to 4 weeks could be recapitulated in both osteogenic and chondrogenic culture models. These results reveal that Bmp2, Bmp4, and Noggin transcription persists to varying degrees in skeletal tissues postnatally, with each gene exhibiting its own cell type-specific pattern of activity. Illuminating these patterns and their dynamics will guide future studies aimed at elucidating both the causes and consequences of aberrant BMP signaling in the postnatal skeleton.
Collapse
Affiliation(s)
- Steven K Pregizer
- Center for Human Genetics Research, Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
49
|
Osta B, Lavocat F, Eljaafari A, Miossec P. Effects of Interleukin-17A on Osteogenic Differentiation of Isolated Human Mesenchymal Stem Cells. Front Immunol 2014; 5:425. [PMID: 25228904 PMCID: PMC4151036 DOI: 10.3389/fimmu.2014.00425] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is characterized by defective bone repair and excessive destruction and ankylosing spondylitis (AS) by increased ectopic bone formation with syndesmophytes. Since TNF-α and IL-17A are involved in both diseases, this study investigated their effects on the osteogenic differentiation of isolated human bone marrow-derived mesenchymal stem cells (hMSCs). METHODS Differentiation of hMSCs into osteoblasts was induced in the presence or absence of IL-17A and/or TNF-α. Matrix mineralization (MM) was evaluated by alizarin red staining and alkaline phosphatase (ALP) activity. mRNA expression was measured by qRT-PCR for bone morphogenetic protein (BMP)-2 and Runx2, genes associated with osteogenesis, DKK-1, a negative regulator of osteogenesis, Schnurri-3 and receptor activator of nuclear factor kappa B ligand (RANKL), associated with the cross talk with osteoclasts, and TNF-α receptor type I and TNF-α receptor type II (TNFRII). RESULTS TNF-α alone increased both MM and ALP activity. IL-17A alone increased ALP but not MM. Their combination was more potent. TNF-α alone increased BMP2 mRNA expression at 6 and 12 h. These levels decreased in combination with IL-17A at 6 h only. DKK-1 mRNA expression was inhibited by TNF-α and IL-17A either alone or combined. Supporting an imbalance toward osteoblastogenesis, RANKL expression was inhibited by TNF-α and IL-17A. However, TNF-α but not IL-17 alone decreased Runx2 mRNA expression at 6 h. In parallel, TNF-α but not IL-17 alone increased Schnurri-3 expression with a synergistic effect with their combination. This may be related to an increase of TNFRII overexpression. CONCLUSION IL-17 increased the effects of TNF-α on bone matrix formation by hMSCs. However, IL-17 decreased the TNF-α-induced BMP2 inhibition. Synergistic interactions between TNF-α and IL-17 were seen for RANKL inhibition and Schnurri-3 induction. Such increase of Schnurri-3 may in turn activate osteoclasts leading to bone destruction as in RA. Conversely, in the absence of osteoclasts, this could promote ectopic bone formation as in AS.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Assia Eljaafari
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
50
|
Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 2014; 325:138-47. [PMID: 24509233 DOI: 10.1016/j.yexcr.2014.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/17/2014] [Indexed: 01/08/2023]
Abstract
Neural crest cells appear early during embryogenesis and give rise to many structures in the mature adult. In particular, a specific population of neural crest cells migrates to and populates developing cranial tissues. The ensuing differentiation of these cells via individual complex and often intersecting signaling pathways is indispensible to growth and development of the craniofacial complex. Much research has been devoted to this area of development with particular emphasis on cell signaling events required for physiologic development. Understanding such mechanisms will allow researchers to investigate ways in which they can be exploited in order to treat a multitude of diseases affecting the craniofacial complex. Knowing how these multipotent cells are driven towards distinct fates could, in due course, allow patients to receive regenerative therapies for tissues lost to a variety of pathologies. In order to realize this goal, nucleotide sequencing advances allowing snapshots of entire genomes and exomes are being utilized to identify molecular entities associated with disease states. Once identified, these entities can be validated for biological significance with other methods. A crucial next step is the integration of knowledge gleaned from observations in disease states with normal physiology to generate an explanatory model for craniofacial development. This review seeks to provide a current view of the landscape on cell signaling and fate determination of the neural crest and to provide possible avenues of approach for future research.
Collapse
|