1
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
2
|
Liao W, Li Y, Liu J, Mou Y, Zhao M, Liu J, Zhang T, Sun Q, Tang J, Wang Z. Homotherapy for heteropathy: therapeutic effect of Butein in NLRP3-driven diseases. Cell Commun Signal 2024; 22:315. [PMID: 38849890 PMCID: PMC11158000 DOI: 10.1186/s12964-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.
Collapse
Affiliation(s)
- Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Mei Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tianxin Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine, Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
3
|
Kim S, Yoon H, Park SK. Butein Increases Resistance to Oxidative Stress and Lifespan with Positive Effects on the Risk of Age-Related Diseases in Caenorhabditis elegans. Antioxidants (Basel) 2024; 13:155. [PMID: 38397753 PMCID: PMC10886231 DOI: 10.3390/antiox13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Butein is a flavonoid found in many plants, including dahlia, butea, and coreopsis, and has both antioxidant and sirtuin-activating activities. In light of the postulated role of free radicals in aging, we examined the effects of butein on aging and on genetic or nutritional models of age-related diseases in Caenorhabditis elegans. Butein showed radical scavenging activity and increased resistance to oxidative stress in Caenorhabditis elegans. The mean lifespan of Caenorhabditis elegans was significantly increased by butein, from 22.7 days in the untreated control to 25.0 days in the butein-treated group. However, the lifespan-extending effect of butein was accompanied by reduced production of progeny as a trade-off. Moreover, the age-related decline in motility was delayed by butein supplementation. Genetic analysis showed that the lifespan-extending effect of butein required the autophagic protein BEC-1 and the transcription factor DAF-16 to regulate stress response and aging. At the genetic level, expression of the DAF-16 downstream target genes hsp-16.2 and sod-3 was induced in butein-treated worms. Butein additionally exhibited a preventive effect in models of age-related diseases. In an Alzheimer's disease model, butein treatment significantly delayed the paralysis caused by accumulation of amyloid-beta in muscle, which requires SKN-1, not DAF-16. In a high-glucose-diet model of diabetes mellitus, butein markedly improved survival, requiring both SKN-1 and DAF-16. In a Parkinson's disease model, dopaminergic neurodegeneration was completely inhibited by butein supplementation and the accumulation of α-synuclein was significantly reduced. These findings suggest the use of butein as a novel nutraceutical compound for aging and age-related diseases.
Collapse
Affiliation(s)
- Seona Kim
- Department of Medical Sciences, General Graduate School, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Republic of Korea
| | - Hyemin Yoon
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Sciences, General Graduate School, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Republic of Korea
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Republic of Korea
| |
Collapse
|
4
|
Zhang G, Zhang M, Pei Y, Qian K, Xie J, Huang Q, Liu S, Xue N, Zu Y, Wang H. Enhancing stability of liposomes using high molecular weight chitosan to promote antioxidative stress effects and lipid-lowering activity of encapsulated lutein in vivo and in vitro. Int J Biol Macromol 2023; 253:126564. [PMID: 37714230 DOI: 10.1016/j.ijbiomac.2023.126564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Lutein is an antioxidant with multiple beneficial functions. However, its therapeutic potential is hampered by its low water solubility and bioavailability. The goal of this study is to compare the stability of lutein-loaded liposomes (Lu-lip) and low (LC)/high molecular weight (HC) chitosan-coated Lu-lip, along with their antioxidant capacity using H2O2-induced HepG2 cells and their lipid-lowering activity using high-fat diet mice. Both LC and HC reduced the lutein degradation rate by 17.5 % and 26.72 % in a challenging environment at pH 6 and T = 4 °C. Compared to LC, the HC coating improved the size- and zeta-potential-stability of Lu-lip at 5 < pH < 7, with the best performance at pH 6. The HC coating prolonged the lutein release profile, increased the cellular uptake of Lu-lip, and reduced the reactive oxygen species (ROS) levels and the H2O2-induced necrotic cell ratios by increasing the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Animal experiments have shown that oral administration of LC and HC coated Lu-lip can significantly reduce body weight levels, total triglycerides (TG), total cholesterol (TC), and non-high-density lipoprotein (n-HDL-C) in high-fat diet mice while significantly increasing the levels of CAT, SOD and GSH-Px in the liver of mice. LC and HC coated Lu-lip can reduce fat accumulation in the liver and epididymal adipose tissue.
Collapse
Affiliation(s)
- Gaoshuai Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Meijing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yiqiao Pei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Kun Qian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China
| | - Qun Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China.
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, China; Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| | - Yujiao Zu
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, United States.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
5
|
Chang WP, Chang YP. Correlation between Component Factors of Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome in Nurses: An Observational and Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16294. [PMID: 36498367 PMCID: PMC9740878 DOI: 10.3390/ijerph192316294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to understand the correlation between non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome in nurses. Questionnaires were used to eliminate individuals with a daily drinking habit, hepatitis B or C, or incomplete data. A total of 706 valid samples were obtained. The prevalence of NAFLD among nurses was 36.8%. Nurses with a greater age (OR = 1.08, 95% CI: 1.01-1.16), obese BMI (OR = 23.30, 95% CI: 8.88-61.10), overweight BMI (OR = 3.89, 95% CI: 2.15-7.04), waist circumference exceeding the standard (OR = 2.10, 95% CI: 1.14-3.87), fasting blood glucose 100-125 mg/dL (OR = 4.09, 95% CI: 1.19-14.03), and overly low HDL-C (OR = 2.01, 95% CI: 1.05-3.85) were at greater risk of NAFLD. Furthermore, male nurses (OR = 6.42, 95% CI: 1.07-38.70), nurses with triglycerides over 150 mg/dL (OR = 4.80; 95% CI: 1.05-21.95), and nurses with HDL-C lower than the standard (OR = 5.63, 95% CI: 1.35-23.49) were at greater risk of moderate/severe NAFLD. Among younger nurses, those of greater age, male nurses, obese and overweight nurses, and those with a waist circumference exceeding the standard, 100-125 mg/dL, overly low HDL-C, and triglycerides over 150 mg/dL should consider the possibility that they have NAFLD.
Collapse
Affiliation(s)
- Wen-Pei Chang
- Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Pei Chang
- Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| |
Collapse
|
6
|
Sousa A, Ribeiro D, Fernandes E, Freitas M. The Effect of Chalcones on the Main Sources of Reactive Species Production: Possible Therapeutic Implications in Diabetes Mellitus. Curr Med Chem 2021; 28:1625-1669. [PMID: 32448100 DOI: 10.2174/0929867327666200525010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by hyperglycaemia, resulting from defects in insulin secretion, insulin action or both. There are several factors such as hyperlipidemia and oxidative stress (OS), namely the production of reactive oxygen/nitrogen species (ROS/RNS), that actively contribute to the development and worsening of DM. Chalcones, also termed as benzalacetophenone or benzylidene acetophenone, present a 1,3-diaryl-2-propen-1-one scaffold that has been shown to be highly promising in the development of new antioxidant compounds. Considering the potential interest of antioxidant therapy, the present review scrutinizes the role of the main sources of ROS/RNS production during DM. The modulatory effect of chalcones against nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, mitochondrial respiratory chain and nitric oxide synthase, is also thoroughly discussed, establishing, whenever possible, a structure-activity relationship (SAR). From the SAR analysis, it can be stated that the presence of catechol groups, hydroxyl and methoxyl substituents in the chalcones scaffold improves their modulatory activity against the main sources of ROS/RNS production in DM.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Hsu YK, Chen HY, Wu CC, Huang YC, Hsieh CP, Su PF, Huang YF. Butein induces cellular senescence through reactive oxygen species-mediated p53 activation in osteosarcoma U-2 OS cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:773-781. [PMID: 33325610 DOI: 10.1002/tox.23079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Butein is a flavonoid isolated from various medicinal plants. It is known to have different biological activities including anti-inflammation, anti-adipogenesis, and anti-angiogenesis. In the study, we demonstrated the anti-proliferative effect of butein in human osteosarcoma U-2 OS cells. Our data showed that butein significantly suppressed the viability and colony formation ability of U-2 OS cells. Further experiments revealed butein exposure resulted in a cell cycle arrest at S and G2/M phase in U-2 OS cells. Importantly, we found that butein activated the tumor suppressor p53, and trigged a p53-dependent senescence in U-2 OS cells. Knockdown of p53 suppressed the senescence and rescued the viability in butein-treated U-2 OS cells. Furthermore, we observed that butein exposure significantly enhanced reactive oxygen species (ROS) levels in U-2 OS cells. Co-administration of the ROS inhibitor NAC largely abolished the up-regulated p53 protein level, and rescued the suppressed viability and colony formation ability in butein-exposed U-2 OS cells. Taken together, our data proposed the increased ROS by butein exposure activated p53, and the activated p53 was involved in the anti-proliferative effect of butein via inducing senescence in U-2 OS cells. This report suggests that butein is a promising candidate for cancer therapy against osteosarcoma.
Collapse
Affiliation(s)
- Yung-Ken Hsu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Wu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chih Huang
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Feng Su
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Fu Huang
- Orthopedics and Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
8
|
Farias-Pereira R, Zhang Z, Park CS, Kim D, Kim KH, Park Y. Butein inhibits lipogenesis in Caenorhabditis elegans. Biofactors 2020; 46:777-787. [PMID: 32663368 DOI: 10.1002/biof.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Butein, a flavonoid found in annatto seeds and lacquer trees, may be used for many health benefits, including the prevention of obesity. However, its anti-obesity effects are not completely understood; in particular, the effects of butein on the regulation of lipid metabolism have not been explained. Thus, the goal of the current study was to determine the effects of butein on lipid metabolism in Caenorhabditis elegans, which is a multi-organ nematode used as an animal model in obesity research. Butein at 70 μM reduced triglyceride content by 27% compared to the control without altering food intake and energy expenditure. The reduced triglyceride content by butein was associated with the downregulation of sbp-1, fasn-1, and fat-7, the lipogenesis-related homologs of sterol regulatory element-binding proteins, fatty acid synthase and stearoyl-CoA desaturase, respectively. Furthermore, fat-7 and skn-1, a homolog of nuclear respiratory factors, were identified as genetic requirements for butein's effects on triglyceride content in C. elegans. The effects of butein on sbp-1 and fasn-1 were dependent on skn-1, but the downregulation of fat-7 was independent of skn-1. These results suggest that the inhibitory effects of butein on lipogenesis are via SKN-1- and FAT-7-dependent pathways in C. elegans.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
9
|
Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med 2020; 152:33-42. [PMID: 32160947 DOI: 10.1016/j.freeradbiomed.2020.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are well known for their roles as energy and metabolic factory. Mitochondrial reactive oxygen species (mtROS) refer to superoxide anion radical (•O2-) and hydrogen peroxide (H2O2). They are byproducts of electron transport in mitochondrial respiratory chain and are implicated in the regulation of physiological and pathological signal transduction. Especially when mitochondrial •O2-/H2O2 production is disturbed, this disturbance is closely related to the occurrence and development of metabolic diseases. In this review, the sources of mitochondrial •O2-/H2O2 as well as mitochondrial antioxidant mechanisms are summarized. Furthermore, we particularly emphasize the essential role of mitochondrial •O2-/H2O2 in metabolic diseases. Specifically, perturbed mitochondrial •O2-/H2O2 regulation aggravates the progression of metabolic diseases, including diabetes, gout and nonalcoholic fatty liver disease (NAFLD). Given the deleterious effect of mitochondrial •O2-/H2O2 in the development of metabolic diseases, antioxidants targeting mitochondrial •O2-/H2O2 might be an attractive therapeutic approach for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Abstract
Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression. Murine 3T3-L1 or 3T3-F442A preadipocytes were differentiated into mature adipocytes in the presence of butein or vehicle. At regular time intervals RNA was collected for gene expression studies. Male hemizygous mice for Tg(Ucp1-luc2,-tdTomato)1Kajim (ThermoMouse) were exposed to butein or vehicle, after which ATs were analyzed for Adamts5 and uncoupling protein-1 (Ucp-1) mRNA level changes. During preadipocyte differentiation, butein (25 – 50 mM) did not affect Adamts5 or Ucp-1 expression. Oil Red O analysis and monitoring of differentiation markers failed to demonstrate effects of butein on the differentiation extent. Furthermore, butein administration to the ThermoMouse (10 or 20 mg/kg, 4 days) or to the C57BL6/Rj mice (20 mg/kg, 4 weeks) did not enhance Adamts5 or Ucp-1 expression. Thus, we could not demonstrate marked effects of butein on the preadipocyte differentiation extent or AT development and browning, nor on Adamts5 or Ucp-1 gene expression during these processes.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dries Bauters
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:E2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
12
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
13
|
Di S, Fan C, Ma Z, Li M, Guo K, Han D, Li X, Mu D, Yan X. PERK/eIF-2α/CHOP Pathway Dependent ROS Generation Mediates Butein-induced Non-small-cell Lung Cancer Apoptosis and G2/M Phase Arrest. Int J Biol Sci 2019; 15:1637-1653. [PMID: 31360107 PMCID: PMC6643215 DOI: 10.7150/ijbs.33790] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Butein, a member of the chalcone family, is a potent anticarcinogen against multiple cancers, but its specific anti-NSCLC mechanism remains unknown. The present study examined the effects of butein treatment on NSCLC cell lines and NSCLC xenografts. Butein markedly decreased NSCLC cell viability; inhibited cell adhesion, migration, invasion, and colony forming ability; and induced cell apoptosis and G2/M phase arrest in NSCLC cells. Moreover, butein significantly inhibited PC-9 xenograft growth. Both in vivo and in vitro studies verified that butein exerted anti-NSCLC effect through activating endoplasmic reticulum (ER) stress-dependent reactive oxygen species (ROS) generation. These pro-apoptotic effects were reversed by the use of 4- phenylbutyric acid (4-PBA), CHOP siRNA, N-acetyl-L-cysteine (NAC) and Z-VAD-FMK (z-VAD) in vitro. Moreover, inhibition of ER stress markedly reduced ROS generation. In addition, in vivo studies further confirmed that inhibition of ER stress or oxidative stress partially abolished the butein-induced inhibition of tumor growth. Therefore, butein is a potential therapeutic agent for NSCLC, and its anticarcinogenic action might be mediated by ER stress-dependent ROS generation and the apoptosis pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Mingyang Li
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
14
|
Ren SX, Zhan B, Lin Y, Ma DS, Yan H. Selenium Nanoparticles Dispersed in Phytochemical Exert Anti-Inflammatory Activity by Modulating Catalase, GPx1, and COX-2 Gene Expression in a Rheumatoid Arthritis Rat Model. Med Sci Monit 2019; 25:991-1000. [PMID: 30718447 PMCID: PMC6373223 DOI: 10.12659/msm.912545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Literature shows that serum selenium concentration is low in rheumatoid arthritis (RA) patients. Biochemical properties of nanoparticles (NPs) are depend in its medium dispersed. Biochemical properties could effectively alter the therapeutic potential of NPs. Phytochemicals could serve as suitable medium for dispersion of NPs. P-Coumaric acid (CA) known to have anti-inflammatory activity. MATERIAL AND METHODS In the present experiment, we investigated the anti-inflammatory effect of SeNPs dispersed in 1% CA against Complete Freund's adjuvant induced RA. Celecoxib was used as a reference drug. RESULTS Selenium NPs (SeNPs) size is maintained in 1% CA solution. We observed that supplementation with 500 μg/Kg body weight (b.w.) eNPs significantly restored the levels of thiobarbituric acid reactive substances, COX-2 activity, different antioxidant enzyme activities, and inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) in RA rats. The mRNA expression of antioxidant enzymes such as MnSOD, Cu/ZnSOD, ECSOD, CAT, and GPx1 was found to be downregulated, whereas COX-2 was upregulated in RA rats; however, the mRNA expression of CAT, GPx1, and COX-2 reverted back to near normal levels in SeNPs-treated animals. CONCLUSIONS The therapeutic potential of SeNPs was confirmed through histological observation of angle joints in different experimental animals. Our results collectively suggest that SeNPs dispersed in CA can be an effective therapeutic agent for inflammatory disorders like acute gouty arthritis.
Collapse
Affiliation(s)
- Shi-Xiang Ren
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Bo Zhan
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Yuan Lin
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - De-Si Ma
- Department of Orthopedics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Hui Yan
- Department of Orthopedics, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| |
Collapse
|