1
|
Khan MZ, Khan A, Huang B, Wei R, Kou X, Wang X, Chen W, Li L, Zahoor M, Wang C. Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review. Antioxidants (Basel) 2024; 13:597. [PMID: 38790702 PMCID: PMC11118937 DOI: 10.3390/antiox13050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Ren Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
2
|
Zhang H, Sun K, Gao M, Xu S. Zinc Inhibits Lead-Induced Oxidative Stress and Apoptosis of ST Cells Through ROS/PTEN/PI3K/AKT Axis. Biol Trace Elem Res 2024; 202:980-989. [PMID: 37269454 DOI: 10.1007/s12011-023-03721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Lead (Pb) is a widely distributed toxic heavy metal element known to have strong male reproductive toxicity, which can result in issues such as abnormal count and morphology of sperm. Zinc (Zn) is an essential trace element for the human body that can antagonize the activity of Pb in some physiological environments, and it also possesses antioxidant and anti-inflammatory effects. However, the specific mechanism of Zn's antagonism against Pb remains largely unclear. In our study, we conducted research using swine testis cells (ST cells) and confirmed that the half maximal inhibitory concentration of Pb on ST cells was 994.4 μM, and the optimal antagonistic concentration of Zn was 10 μM. Based on this information, we treated ST cells with Pb and Zn and detected related indices such as apoptosis, oxidative stress, and the PTEN/PI3K/AKT pathway using flow cytometry, DCFH-DA staining, RT-PCR, and Western blot. Our results demonstrated that Pb exposure can generate excessive reactive oxygen species (ROS), disrupt the antioxidant system, upregulate PTEN expression, and inhibit the PI3K/AKT pathway in ST cells. In contrast, Zn significantly inhibited the overproduction of ROS, improved oxidative stress, and decreased PTEN expression, thus protecting the PI3K/AKT pathway compared to Pb-exposed ST cells. Furthermore, we found that Pb exposure exacerbated the expression of genes related to the apoptosis pathway and reduced the expression of anti-apoptotic genes. Furthermore, this situation was significantly improved when co-cultured with Pb and Zn. In summary, our study demonstrated that Zn alleviated Pb-induced oxidative stress and apoptosis through the ROS/PTEN/PI3K/AKT axis in ST cells.
Collapse
Affiliation(s)
- Haoyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
4
|
El-Kossi DMMH, Ibrahim SS, Hassanin KMA, Hamad N, Rashed NA, Elkhouly HI, Abdel-Wahab A. The protective effects of date seeds, in either conventional or nanoformulation, against bisphenol A-induced testicular toxicity: involvement of testicular expression of CYP11A1, Nrf-2 and Bax/Bcl-2 ratio. Toxicol Res (Camb) 2023; 12:930-942. [PMID: 37915476 PMCID: PMC10615815 DOI: 10.1093/toxres/tfad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Background Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), is ubiquitous in our environment and poses a significant threat to male fertility. Date seeds (DSs) are used in folk medicine due to their antioxidant activity. Aim The purpose of this study was to assess the beneficial effects of DSs, whether in powder or nanoparticle form, against BPA-induced testicular oxidative challenges and apoptosis, aided by inspection of specific genes linked to fertility, oxidative stress and intrinsic mitochondrial pathway of apoptosis. Methods Thirty-five adult male albino rats were equally divided into 5 groups including control, BPA, BPA + date seeds powder "DSP", BPA + date seed nanoparticle 1/10 (DSNP 1/10) and BPA + DSNP 1/20 groups. Results TEM showed that the ball-mill method was effective to form DSNP with an average size of 20 nm. BPA significantly impaired sperm motility, morphology, viability and concentration. It also reduced serum testosterone levels and evoked marked oxidative stress in the testes. Additionally, serum levels of triiodothyronine and thyroxine were extremely reduced. Moreover, testicular mRNA relative expression levels of CYP11A1 and Nrf-2 were markedly downregulated. Testicular apoptosis was also promoted whereas Bax/Bcl-2 ratio was profoundly elevated. Histological pictures of the testes, epididymis, seminal vesicles and prostate confirmed the unfavorable effects of BPA. Surprisingly, we first demonstrated that DSs, specifically the nanoparticle form, strongly alleviated all of BPA's negative effects, with DSNP 1/20 achieving the best results. Conclusion Therefore, DSNP in both doses could be regarded as an ideal candidate for abating the male reproductive challenges caused by BPA.
Collapse
Affiliation(s)
- Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Universities District, Seventh Avenue, New El-Minia City, El-Minia 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Shamla St. next to the Directorate of Roads and Bridges, Beni-Suef 62511, Egypt
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, Universities District, Seventh Avenue, New El-Minia City, El-Minia 61519, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Noha A Rashed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Heba I Elkhouly
- Department of Mechanical Engineering, Faculty of Engineering, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Universities District, Seventh Avenue, New El-Minia City, El-Minia 61519, Egypt
| |
Collapse
|
5
|
Chen H, Zhang Y, Qi X, Shi X, Huang X, Xu SW. Selenium deficiency aggravates bisphenol A-induced autophagy in chicken kidney through regulation of nitric oxide and adenosine monophosphate activated protein kinase/mammalian target of rapamycin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2503-2514. [PMID: 35830335 DOI: 10.1002/tox.23613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA), a phenolic compound, is harmful to humans and animals as its residue in the water threatens multiple organs, especially the kidney. Low selenium (Se) diets are consumed in many regions of the world, and poor Se status has exacerbating effect on toxicity of several environmental chemicals. Here, we described the discovery path of Se deficiency aggravation on autophagy in BPA treated chicken kidney through regulating nitric oxide (NO) and adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathways. The actual dietary Se intake for chickens was 0.30 mg/kg in control group and 0.03 mg/kg in Low-Se group, and BPA exposure concentration for chickens was 0.05 g/kg. Chicken embryo kidney (CEK) cells were used in vitro and the BPA exposure concentration for CEK cells was 150 nM. We found that BPA significantly increased levels of NO and inducible nitric oxide synthase, activated AMPK/mTOR signaling pathways, thereby triggering p62/LC3/Beclin1 signaling, resulting in formations of autophagosome and autolysosome, and finally stimulating autophagy in the chicken kidney. Additionally, Se deficiency promoted the occurrence of autophagy in BPA-treated kidneys. Altogether, our findings showed that Se deficiency exacerbates BPA-induced renal autophagy in chickens via regulation of NO and AMPK/mTOR signaling pathways. These findings will improve our understandings of the mechanisms of nephrotoxicity of BPA and detoxification by Se in chickens. In addition, further work is required to determine if Se status of exposed populations needs to be considered in future epidemiological assessments.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Wang X, Zhang X, Sun K, Wang S, Gong D. Polystyrene microplastics induce apoptosis and necroptosis in swine testis cells via ROS/MAPK/HIF1α pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2483-2492. [PMID: 35791677 DOI: 10.1002/tox.23611] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) generally refer to the plastic fragments or particles smaller than 5 mm in diameter, which are closely concerned due to their widespread presence in the environment. Recent studies have shown that MPs have a serious threat on the reproductive health of organisms. Pigs are often selected as the model animals because of their high similarity to human tissues and organs. However, there are no reports on the effects and mechanisms of MPs exposure on swine germ cells. In the present study, we established swine testis (ST) cell models exposed to 250, 500, and 1000 μg/ml polystyrene microplastics (PS-MPs, 1-10 μm), respectively. The findings revealed that PS-MPs reduced cell viability dose-dependently. Acridine orange/ethidium bromide staining and flow cytometry results indicated the occurrence of apoptosis and necrosis in ST cells under PS-MPs exposure, and the expression changes of relevant marker genes (B-cell lymphoma-2, Bcl-2 Associated X, Caspase-3, Caspase-9, Receptor-interacting protein kinase 1, Receptor-interacting protein kinase 3, Mixed lineage kinase domain-like, and Caspase-8) were clarified via quantitative real-time PCR and western blot. Further mechanistic studies found that PS-MPs treatment induced excessive intracellular reactive oxygen species (ROS) production, which promoted the phosphorylation of mitogen-activated protein kinase (MAPK) pathway-related genes (P38, c-Jun N-terminal kinase, extracellular regulated protein kinases) and activated the downstream gene hypoxia-inducible factor (HIF1α). In conclusion, our study suggests that PS-MPs treatment causes apoptosis and necroptosis in ST cells via ROS/MAPK/HIF1α signaling pathway.
Collapse
Affiliation(s)
- Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Duqiang Gong
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
7
|
Chen H, Zhang Y, Zou M, Qi X, Xu S. Bisphenol A aggravates renal apoptosis and necroptosis in selenium-deficient chickens via oxidative stress and PI3K/AKT pathway. J Cell Physiol 2022; 237:3292-3304. [PMID: 35616291 DOI: 10.1002/jcp.30781] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/17/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) in the environment can have deleterious effects on humans and animals. BPA can exert nephrotoxicity by inducing oxidative stress. Selenium (Se) deficiency can specifically impair kidney tissues and additionally show a synergistic effect on the toxicity of several environmental chemicals. However, the toxic effects of BPA on the chicken kidney and whether Se deficiency produces synergistic effects on the toxicity of BPA remain poorly understood. Herein, we established BPA exposure models and Se deficiency model in vivo and in vitro, and described the discovery path of BPA aggravation on apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) signaling pathway. We found that BPA exposure increased reactive oxygen species and malondialdehyde levels, reduced activities of catalase, GPx, and superoxide dismutase, downregulated PI3K and AKT expressions, activated Bcl/Bax-Caspase 9-Caspase 3, and receptor-interacting protein kinase 1/mixed lineage kinase domain-like protein signaling pathways, resulting in apoptosis and necroptosis in the chicken kidney. In addition, Se deficiency significantly promoted the expression of renal apoptosis and necroptosis in BPA-exposed chicken kidneys. Altogether, our results showed that BPA aggravates apoptosis and necroptosis in Se-deficient chicken kidneys via regulation of oxidative stress and PI3K/AKT signaling pathway. Our findings elucidate the mechanism of BPA nephrotoxicity and Se deficiency exacerbation toxicity in chickens and will provide great significance for the protection of the ecological environment and animal health.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mengmeng Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|