1
|
Fries A, Moldes CA, Mazzaferro LS. Cost-efficient analysis of cannabinoids in therapeutic oils using HPLC with UV and mass spectrometry detection. Nat Prod Res 2024:1-9. [PMID: 39671430 DOI: 10.1080/14786419.2024.2439024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Cannabis oil, derived from Cannabis sativa plants, is increasingly used for therapeutic purposes across a wide range of diseases. Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain. This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA. Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines' requirements for selectivity, linearity, precision, accuracy, and matrix effects. Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.
Collapse
Affiliation(s)
- Alexander Fries
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Carlos Alberto Moldes
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| | - Laura S Mazzaferro
- INCITAP-CONICET, FCEyN-Universidad Nacional de La Pampa (UNLPam), Santa Rosa, La Pampa, Argentina
| |
Collapse
|
2
|
Ribeiro de Novais Júnior L, Vicente da Silva T, da Silva LM, Metzker de Andrade F, da Silva AR, Meneguzzo V, de Souza Ramos S, Michielin Lopes C, Bernardo Saturnino A, Inserra A, de Bitencourt RM. Repeated Administration of a Full-Spectrum Cannabidiol Product, Not a Cannabidiol Isolate, Reverses the Lipopolysaccharide-Induced Depressive-Like Behavior and Hypolocomotion in a Rat Model of Low-Grade Subchronic Inflammation. Cannabis Cannabinoid Res 2024. [PMID: 39347620 DOI: 10.1089/can.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background: Mounting evidence suggests that the phytocannabinoid cannabidiol (CBD) holds promise as an antidepressant agent in conditions underlined by inflammation. Full-spectrum CBD extracts might provide greater behavioral efficacy than CBD-only isolates and might require lower doses to achieve the same outcomes due to the presence of other cannabinoids, terpenes, and flavonoids. However, investigations in this area remain limited. Methods: We evaluated the behavioral response to the administration for 7 days of 15 and 30 mg/kg of a CBD isolate and a full-spectrum CBD product in a rat model of subchronic lipopolysaccharide (LPS, 0.5 mg/kg/day/7 days, intraperitoneal)-induced depressive-like and sickness behavior. The forced swim test was used to assess depressive-like behavior, the open field test (OFT) to assess locomotion, and the elevated plus maze to assess anxiety-like behavior. Results: The full-spectrum CBD extract at both doses, but not the CBD isolate, reversed the LPS-induced depressive-like behavior in the forced swim test. Moreover, the full-spectrum CBD extract at the higher dose but not the CBD isolate restored the subchronic LPS-induced hypolocomotion in the OFT. Repeated administration of both formulations elicited an anxiogenic-like trend in the elevated plus maze. Conclusion: Full-spectrum CBD products might have greater therapeutic efficacy in resolving inflammation-induced depressive and sickness behavior compared to a CBD-only isolate.
Collapse
Affiliation(s)
| | - Tiago Vicente da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | | | - Alisson Reuel da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Cyntia Michielin Lopes
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Artur Bernardo Saturnino
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
- Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
3
|
Ekambaram S, Wang J, Dokholyan NV. CANDI: A Web Server for Predicting Molecular Targets and Pathways of Cannabis-Based Therapeutics. RESEARCH SQUARE 2024:rs.3.rs-4744915. [PMID: 39149470 PMCID: PMC11326374 DOI: 10.21203/rs.3.rs-4744915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Cannabis sativa with a rich history of traditional medicinal use, has garnered significant attention in contemporary research for its potential therapeutic applications in various human diseases, including pain, inflammation, cancer, and osteoarthritis. However, the specific molecular targets and mechanisms underlying the synergistic effects of its diverse phytochemical constituents remain elusive. Understanding these mechanisms is crucial for developing targeted, effective cannabis-based therapies. Methods To investigate the molecular targets and pathways involved in the synergistic effects of cannabis compounds, we utilized DRIFT, a deep learning model that leverages attention-based neural networks to predict compound-target interactions. We considered both whole plant extracts and specific plant-based formulations. Predicted targets were then mapped to the Reactome pathway database to identify the biological processes affected. To facilitate the prediction of molecular targets and associated pathways for any user-specified cannabis formulation, we developed CANDI (Cannabis-derived compound Analysis and Network Discovery Interface), a web-based server. This platform offers a user-friendly interface for researchers and drug developers to explore the therapeutic potential of cannabis compounds. Results Our analysis using DRIFT and CANDI successfully identified numerous molecular targets of cannabis compounds, many of which are involved in pathways relevant to pain, inflammation, cancer, and other diseases. The CANDI server enables researchers to predict the molecular targets and affected pathways for any specific cannabis formulation, providing valuable insights for developing targeted therapies. Conclusions By combining computational approaches with knowledge of traditional cannabis use, we have developed the CANDI server, a tool that allows us to harness the therapeutic potential of cannabis compounds for the effective treatment of various disorders. By bridging traditional pharmaceutical development with cannabis-based medicine, we propose a novel approach for botanical-based treatment modalities.
Collapse
|
4
|
Khaspekov LG, Illarioshkin SN. Therapeutic Application of Modulators of Endogenous Cannabinoid System in Parkinson's Disease. Int J Mol Sci 2024; 25:8520. [PMID: 39126088 PMCID: PMC11312457 DOI: 10.3390/ijms25158520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson's disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD. However, fine regulation of the ECS is quite a complex task due to the functional diversity of CBRs in the basal ganglia and other parts of the central nervous system. In this review, the effects of ECS modulators in various experimental models of PD in vivo and in vitro, as well as in patients with PD, are analyzed. Prospects for the development of new cannabinoid drugs for the treatment of motor and non-motor symptoms in PD are presented.
Collapse
Affiliation(s)
- Leonid G. Khaspekov
- Brain Science Institute, Research Center of Neurology, Volokolamskoye Road, 80, 125367 Moscow, Russia
| | | |
Collapse
|
5
|
Gholamalizadeh H, Amiri-Shahri M, Rasouli F, Ansari A, Baradaran Rahimi V, Reza Askari V. DNA Methylation in Autism Spectrum Disorders: Biomarker or Pharmacological Target? Brain Sci 2024; 14:737. [PMID: 39199432 PMCID: PMC11352561 DOI: 10.3390/brainsci14080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disabilities with persistent impairments in cognition, communication, and social behavior. Although environmental factors play a role in ASD etiopathogenesis, a growing body of evidence indicates that ASD is highly inherited. In the last two decades, the dramatic rise in the prevalence of ASD has interested researchers to explore the etiologic role of epigenetic marking and incredibly abnormal DNA methylation. This review aimed to explain the current understanding of the association between changes in DNA methylation signatures and ASD in patients or animal models. We reviewed studies reporting alterations in DNA methylation at specific genes as well as epigenome-wide association studies (EWASs). Finally, we hypothesized that specific changes in DNA methylation patterns could be considered a potential biomarker for ASD diagnosis and prognosis and even a target for pharmacological intervention.
Collapse
Affiliation(s)
- Hanieh Gholamalizadeh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran;
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | - Maedeh Amiri-Shahri
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Fatemeh Rasouli
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Arina Ansari
- Student Research Committee, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran; (M.A.-S.); (F.R.); (A.A.)
- Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| |
Collapse
|
6
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
7
|
Ivraghi MS, Zamanian MY, Gupta R, Achmad H, Alsaab HO, Hjazi A, Romero‐Parra RM, Alwaily ER, Hussien BM, Hakimizadeh E. Neuroprotective effects of gemfibrozil in neurological disorders: Focus on inflammation and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14473. [PMID: 37904726 PMCID: PMC10916451 DOI: 10.1111/cns.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPβ in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-β, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA UniversityMathuraIndia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of DentistryHasanuddin UniversityMakassarIndonesia
| | - Hashem O. Alsaab
- Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Enas R. Alwaily
- Microbiology Research GroupCollege of Pharmacy, Al‐Ayen UniversityThi‐QarIraq
| | - Beneen M. Hussien
- Medical Laboratory Technology DepartmentCollege of Medical Technology, The Islamic UniversityNajafIraq
| | - Elham Hakimizadeh
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
8
|
Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Cannabigerolic Acid (CBGA) Inhibits the TRPM7 Ion Channel Through its Kinase Domain. FUNCTION 2023; 5:zqad069. [PMID: 38162115 PMCID: PMC10757070 DOI: 10.1093/function/zqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Clay Wakano
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
9
|
Choi K, Lee Y, Kim C. An In Silico Study for Expanding the Utility of Cannabidiol in Alzheimer's Disease Therapeutic Development. Int J Mol Sci 2023; 24:16013. [PMID: 37959001 PMCID: PMC10648567 DOI: 10.3390/ijms242116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychoactive component of the cannabis plant, has shown therapeutic potential in Alzheimer's disease (AD). In this study, we identified potential CBD targets associated with AD using a drug-target binding affinity prediction model and generated CBD analogs using a genetic algorithm combined with a molecular docking system. As a result, we identified six targets associated with AD: Endothelial NOS (ENOS), Myeloperoxidase (MPO), Apolipoprotein E (APOE), Amyloid-beta precursor protein (APP), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), and Presenilin-1 (PSEN1). Furthermore, we generated CBD analogs for each target that optimize for all desired drug-likeness properties and physicochemical property filters, resulting in improved pIC50 values and docking scores compared to CBD. Molecular dynamics (MD) simulations were applied to analyze each target's CBD and highest-scoring CBD analogs. The MD simulations revealed that the complexes of ENOS, MPO, and ADAM10 with CBD exhibited high conformational stability, and the APP and PSEN1 complexes with CBD analogs demonstrated even higher conformational stability and lower interaction energy compared to APP and PSEN1 complexes with CBD. These findings demonstrated the capable binding of the six identified targets with CBD and the enhanced binding stability achieved with the developed CBD analogs for each target.
Collapse
Affiliation(s)
- Kyudam Choi
- Heerae Co., Ltd., Seoul 06253, Republic of Korea;
| | - Yurim Lee
- Department of Software, Sejong University, Seoul 05006, Republic of Korea;
| | - Cheongwon Kim
- Department of Software, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
10
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
11
|
Khan F, Qiu H. Amyloid-β: A potential mediator of aging-related vascular pathologies. Vascul Pharmacol 2023; 152:107213. [PMID: 37625763 DOI: 10.1016/j.vph.2023.107213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Aging is one of the most promising risk factors for vascular diseases, however, the precise mechanisms mediating aging-related pathologies are not fully understood. Amyloid beta (Aβ), a peptide produced by the proteolytic processing of amyloid precursor protein (APP), is known as a key mediator of brain damage involved in the pathogenesis of Alzheimer's disease (AD). Recently, it was found that the accumulation of Aβ in the vascular wall is linked to a range of aging-related vascular pathologies, indicating a potential role of Aβ in the pathogenesis of aging-associated vascular diseases. In the present review, we have updated the molecular regulation of Aβ in vascular cells and tissues, summarized the relevance of the Aβ deposition with vascular aging and diseases, and the role of Aβ dysregulation in aging-associated vascular pathologies, including the impaired vascular response, endothelial dysfunction, oxidative stress, and inflammation. This review will provide advanced information in understanding aging-related vascular pathologies and a new avenue to explore therapeutic targets.
Collapse
Affiliation(s)
- Fazlullah Khan
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA.
| |
Collapse
|
12
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Pacheco-Sánchez B, Tovar R, Ben Rabaa M, Sánchez-Salido L, Vargas A, Suárez J, Rodríguez de Fonseca F, Rivera P. Sex-Dependent Altered Expression of Cannabinoid Signaling in Hippocampal Astrocytes of the Triple Transgenic Mouse Model of Alzheimer's Disease: Implications for Controlling Astroglial Activity. Int J Mol Sci 2023; 24:12598. [PMID: 37628778 PMCID: PMC10454447 DOI: 10.3390/ijms241612598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. In AD-associated neuroinflammation, astrocytes play a key role, finding glial activation both in patients and in animal models. The endocannabinoid system (ECS) is a neurolipid signaling system with anti-inflammatory and neuroprotective properties implicated in AD. Astrocytes respond to external cannabinoid signals and also have their own cannabinoid signaling. Our main objective is to describe the cannabinoid signaling machinery present in hippocampal astrocytes from 3×Tg-AD mice to determine if they are actively involved in the neurodegenerative process. Primary cultures of astrocytes from the hippocampus of 3×Tg-AD and non-Tg offspring were carried out. We analyzed the gene expression of astrogliosis markers, the main components of the ECS and Ca2+ signaling. 3×Tg-AD hippocampal astrocytes show low inflammatory activity (Il1b, Il6, and Gls) and Ca2+ flow (P2rx5 and Mcu), associated with low cannabinoid signaling (Cnr1 and Cnr2). These results were more evident in females. Our study corroborates glial involvement in AD pathology, in which cannabinoid signaling plays an important role. 3×Tg-AD mice born with hippocampal astrocytes with differential gene expression of the ECS associated with an innate attenuation of their activity. In addition, we show that there are sex differences from birth in this AD animal, which should be considered when investigating the pathogenesis of the disease.
Collapse
Affiliation(s)
- Beatriz Pacheco-Sánchez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Rubén Tovar
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Meriem Ben Rabaa
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Molecular Biotechnology, FH Campus Wien, University for Applied Sciences, Favoritenstraße 222, 1100 Vienna, Austria
| | - Lourdes Sánchez-Salido
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| |
Collapse
|
14
|
Gugliandolo A, Blando S, Salamone S, Pollastro F, Mazzon E, D’Angiolini S. Transcriptome Highlights Cannabinol Modulation of Mitophagy in a Parkinson's Disease In Vitro Model. Biomolecules 2023; 13:1163. [PMID: 37627228 PMCID: PMC10452113 DOI: 10.3390/biom13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein aggregates, known as Lewy bodies. It is known that mitochondria dysfunctions, including impaired localization, transport and mitophagy, represent features of PD. Cannabinoids are arising as new therapeutic strategies against neurodegenerative diseases. In this study, we aimed to evaluate the potential protective effects of cannabinol (CBN) pre-treatment in an in vitro PD model, namely retinoic acid-differentiated SH-SY5Y neuroblastoma cells treated with 1-methyl-4-phenylpyridinium (MPP+). With this aim, we performed a transcriptomic analysis through next-generation sequencing. We found that CBN counteracted the loss of cell viability caused by MPP+ treatment. Then, we focused on biological processes relative to mitochondria functions and found that CBN pre-treatment was able to attenuate the MPP+-induced changes in the expression of genes involved in mitochondria transport, localization and protein targeting. Notably, MPP+ treatment increased the expression of the genes involved in PINK1/Parkin mitophagy, while CBN pre-treatment reduced their expression. The results suggested that CBN can exert a protection against MPP+ induced mitochondria impairment.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.G.); (S.B.); (S.D.)
| |
Collapse
|
15
|
Suzuki S, Fleig A, Penner R. CBGA ameliorates inflammation and fibrosis in nephropathy. Sci Rep 2023; 13:6341. [PMID: 37072467 PMCID: PMC10113213 DOI: 10.1038/s41598-023-33507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Cannabidiol (CBD) is thought to have multiple biological effects, including the ability to attenuate inflammatory processes. Cannabigerols (CBGA and its decarboxylated CBG molecule) have pharmacological profiles similar to CBD. The endocannabinoid system has recently emerged to contribute to kidney disease, however, the therapeutic properties of cannabinoids in kidney disease remain largely unknown. In this study, we determined whether CBD and CBGA can attenuate kidney damage in an acute kidney disease model induced by the chemotherapeutic cisplatin. In addition, we evaluated the anti-fibrosis effects of these cannabinoids in a chronic kidney disease model induced by unilateral ureteral obstruction (UUO). We find that CBGA, but not CBD, protects the kidney from cisplatin-induced nephrotoxicity. CBGA also strongly suppressed mRNA of inflammatory cytokines in cisplatin-induced nephropathy, whereas CBD treatment was only partially effective. Furthermore, both CBGA and CBD treatment significantly reduced apoptosis through inhibition of caspase-3 activity. In UUO kidneys, both CBGA and CBD strongly reduced renal fibrosis. Finally, we find that CBGA, but not CBD, has a potent inhibitory effect on the channel-kinase TRPM7. We conclude that CBGA and CBD possess reno-protective properties, with CBGA having a higher efficacy, likely due to its dual anti-inflammatory and anti-fibrotic effects paired with TRPM7 inhibition.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI, 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| |
Collapse
|
16
|
Deciphering Complex Interactions in Bioactive Lipid Signaling. Molecules 2023; 28:molecules28062622. [PMID: 36985594 PMCID: PMC10057854 DOI: 10.3390/molecules28062622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipids are usually viewed as metabolic fuel and structural membrane components. Yet, in recent years, different families of lipids able to act as authentic messengers between cells and/or intracellularly have been discovered. Such lipid signals have been shown to exert their biological activity via specific receptors that, by triggering distinct signal transduction pathways, regulate manifold pathophysiological processes in our body. Here, endogenous bioactive lipids produced from arachidonic acid (AA) and other poly-unsaturated fatty acids will be presented, in order to put into better perspective the relevance of their mutual interactions for health and disease conditions. To this end, metabolism and signal transduction pathways of classical eicosanoids, endocannabinoids and specialized pro-resolving mediators will be described, and the intersections and commonalities of their metabolic enzymes and binding receptors will be discussed. Moreover, the interactions of AA-derived signals with other bioactive lipids such as shingosine-1-phosphate and steroid hormones will be addressed.
Collapse
|
17
|
Chronic exposure to a synthetic cannabinoid alters cerebral brain metabolism and causes long-lasting behavioral deficits in adult mice. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02607-8. [PMID: 36853560 PMCID: PMC10374737 DOI: 10.1007/s00702-023-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
In recent years, there has been growing evidence that cannabinoids have promising medicinal and pharmacological effects. However, the growing interest in medical cannabis highlights the need to better understand brain alterations linking phytocannabinoids or synthetic cannabinoids to clinical and behavioral phenotypes. Therefore, the aim of this study was to investigate the effects of long-term WIN 55,212-2 treatment-with and without prolonged abstinence-on cerebral metabolism and memory function in healthy wildtype mice. Adult C57BI/6J mice were divided into two treatment groups to study the acute effects of WIN 55,212-2 treatment as well the effects of WIN 55,212-2 treatment after an extended washout phase. We could demonstrate that 3 mg/kg WIN 55,212-2 treatment in early adulthood leads to a hypometabolism in several brain regions including the hippocampus, cerebellum, amygdala and midbrain, even after prolonged abstinence. Furthermore, prolonged acute WIN 55,212-2 treatment in 6-months-old mice reduced the glucose metabolism in the hippocampus and midbrain. In addition, Win 55,212-2 treatment during adulthood lead to spatial memory and recognition memory deficits without affecting anxiety behavior. Overall we could demonstrate that treatment with the synthetic CB1/CB2 receptor aganist Win 55,212-2 during adulthood causes persistent memory deficits, especially when mice were treated in early adulthood. Our findings highlight the risks of prolonged WIN 55,212-2 use and provide new insights into the mechanisms underlying the effects of chronic cannabinoid exposure on the brain and behavior.
Collapse
|