1
|
Neumann S, Kuteykin-Teplyakov K, Heumann R. Neuronal Protection by Ha-RAS-GTPase Signaling through Selective Downregulation of Plasmalemmal Voltage-Dependent Anion Channel-1. Int J Mol Sci 2024; 25:3030. [PMID: 38474278 DOI: 10.3390/ijms25053030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.
Collapse
Affiliation(s)
- Sebastian Neumann
- Department of Biochemistry II-Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Konstantin Kuteykin-Teplyakov
- Department of Biochemistry II-Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Rolf Heumann
- Department of Biochemistry II-Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Vitamin C versus Cancer: Ascorbic Acid Radical and Impairment of Mitochondrial Respiration? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1504048. [PMID: 32411317 PMCID: PMC7201545 DOI: 10.1155/2020/1504048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/14/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Vitamin C as a cancer therapy has a controversial history. Much of the controversy arises from the lack of predictive biomarkers for stratification of patients, as well as a clear understanding of the mechanism of action and its multiple targets underlying the anticancer effect. Our review expands the analysis of cancer vulnerabilities for high-dose vitamin C, based on several facts, illustrating the cytotoxic potential of the ascorbyl free radical (AFR) via impairment of mitochondrial respiration and the mechanisms of its elimination in mammals by the membrane-bound NADH:cytochrome b5 oxidoreductase 3 (Cyb5R3). This enzyme catalyzes rapid conversion of AFR to ascorbate, as well as reduction of other redox-active compounds, using NADH as an electron donor. We propose that vitamin C can function in “protective mode” or “destructive mode” affecting cellular homeostasis, depending on the intracellular “steady-state” concentration of AFR and differential expression/activity of Cyb5R3 in cancerous and normal cells. Thus, a specific anticancer effect can be achieved at high doses of vitamin C therapy. The review is intended for a wide audience of readers—from students to specialists in the field.
Collapse
|
3
|
Tedesco I, Moccia S, Volpe S, Alfieri G, Strollo D, Bilotto S, Spagnuolo C, Di Renzo M, Aquino RP, Russo GL. Red wine activates plasma membrane redox system in human erythrocytes. Free Radic Res 2016; 50:557-69. [PMID: 26866566 DOI: 10.3109/10715762.2016.1152629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.
Collapse
Affiliation(s)
- Idolo Tedesco
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Stefania Moccia
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Silvestro Volpe
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | - Giovanna Alfieri
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | | | - Stefania Bilotto
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | | | - Rita P Aquino
- d Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| |
Collapse
|
4
|
Martel C, Wang Z, Brenner C. VDAC phosphorylation, a lipid sensor influencing the cell fate. Mitochondrion 2014; 19 Pt A:69-77. [DOI: 10.1016/j.mito.2014.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
|
5
|
Nikiforova AB, Saris NEL, Kruglov AG. External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radic Biol Med 2014; 74:74-84. [PMID: 24945955 DOI: 10.1016/j.freeradbiomed.2014.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
Abstract
It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Anna B Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Nils-Erik L Saris
- Department of Food and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Alexey G Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
6
|
Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics 2014; 6:691-705. [DOI: 10.1586/epr.09.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Gonzalez-Gronow M, Ray R, Wang F, Pizzo SV. The voltage-dependent anion channel (VDAC) binds tissue-type plasminogen activator and promotes activation of plasminogen on the cell surface. J Biol Chem 2012; 288:498-509. [PMID: 23161549 DOI: 10.1074/jbc.m112.412502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The voltage-dependent anion channel (VDAC), a major pore-forming protein in the outer membrane of mitochondria, is also found in the plasma membrane of a large number of cells where in addition to its role in regulating cellular ATP release and volume control it is important for maintaining redox homeostasis. Cell surface VDAC is a receptor for plasminogen kringle 5, which promotes partial closure of the channel. In this study, we demonstrate that VDAC binds tissue-type plasminogen activator (t-PA) on human neuroblastoma SK-N-SH cells. Binding of t-PA to VDAC induced a decrease in K(m) and an increase in the V(max) for activation of its substrate, plasminogen (Pg). This resulted in accelerated Pg activation when VDAC, t-PA, and Pg were bound together. VDAC is also a substrate for plasmin; hence, it mimics fibrin activity. Binding of t-PA to VDAC occurs between a t-PA fibronectin type I finger domain located between amino acids Ile(5) and Asn(37) and a VDAC region including amino acids (20)GYGFG(24). These VDAC residues correspond to a GXXXG repeat motif commonly found in amyloid β peptides that is necessary for aggregation when these peptides form fibrillar deposits on the cell surface. Furthermore, we also show that Pg kringle 5 is a substrate for the NADH-dependent reductase activity of VDAC. This ternary complex is an efficient proteolytic complex that may facilitate removal of amyloid β peptide deposits from the normal brain and cell debris from injured brain tissue.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
8
|
Sridharan M, Bowles EA, Richards JP, Krantic M, Davis KL, Dietrich KA, Stephenson AH, Ellsworth ML, Sprague RS. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel. Am J Physiol Heart Circ Physiol 2011; 302:H553-9. [PMID: 22159995 DOI: 10.1152/ajpheart.00998.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythrocytes have been implicated as controllers of vascular caliber by virtue of their ability to release the vasodilator ATP in response to local physiological and pharmacological stimuli. The regulated release of ATP from erythrocytes requires activation of a signaling pathway involving G proteins (G(i) or G(s)), adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator as well as a final conduit through which this highly charged anion exits the cell. Although pannexin 1 has been shown to be the final conduit for ATP release from human erythrocytes in response to reduced oxygen tension, it does not participate in transport of ATP following stimulation of the prostacyclin (IP) receptor in these cells, which suggests that an additional protein must be involved. Using antibodies directed against voltage-dependent anion channel (VDAC)1, we confirm that this protein is present in human erythrocyte membranes. To address the role of VDAC in ATP release, two structurally dissimilar VDAC inhibitors, Bcl-x(L) BH4(4-23) and TRO19622, were used. In response to the IP receptor agonists, iloprost and UT-15C, ATP release was inhibited by both VDAC inhibitors although neither iloprost-induced cAMP accumulation nor total intracellular ATP concentration were altered. Together, these findings support the hypothesis that VDAC is the ATP conduit in the IP receptor-mediated signaling pathway in human erythrocytes. In addition, neither the pannexin inhibitor carbenoxolone nor Bcl-x(L) BH4(4-23) attenuated ATP release in response to incubation of erythrocytes with the β-adrenergic receptor agonist isoproterenol, suggesting the presence of yet another channel for ATP release from human erythrocytes.
Collapse
Affiliation(s)
- Meera Sridharan
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, Missouri, MO 63104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sabirov RZ, Merzlyak PG. Plasmalemmal VDAC controversies and maxi-anion channel puzzle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1570-80. [PMID: 21986486 DOI: 10.1016/j.bbamem.2011.09.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 12/14/2022]
Abstract
The maxi-anion channel has been observed in many cell types from the very beginning of the patch-clamp era. The channel is highly conductive for chloride and thus can modulate the resting membrane potential and play a role in fluid secretion/absorption and cell volume regulation. A wide nanoscopic pore of the maxi-anion channel permits passage of excitatory amino acids and nucleotides. The channel-mediated release of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression and physiological/pathophysiological significance, the molecular identity of the maxi-anion channel is still obscure. VDAC is primarily a mitochondrial protein; however several groups detected it on the cellular surface. VDAC in lipid bilayers reproduced the most important biophysical properties of the maxi-anion channel, such as a wide nano-sized pore, closure in response to moderately high voltages, ATP-block and ATP-permeability. However, these similarities turned out to be superficial, and the hypothesis of plasmalemmal VDAC as the maxi-anion channel did not withstand the test by genetic manipulations of VDAC protein expression. VDAC on the cellular surface could also function as a ferricyanide reductase or a receptor for plasminogen kringle 5 and for neuroactive steroids. These ideas, as well as the very presence of VDAC on plasmalemma, remain to be scrutinized by genetic manipulations of the VDAC protein expression. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Laboratory of Molecular Physiology, Institute of Pysiology and Biphysics, Academy of Science, RUz, Tashkent, Uzbekistan.
| | | |
Collapse
|
10
|
Rao RP, Prakasa Rao J. Evidence for functional interaction of plasma membrane electron transport, voltage-dependent anion channel and volume-regulated anion channel in frog aorta. J Biosci 2010; 35:519-24. [DOI: 10.1007/s12038-010-0059-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
De Pinto V, Messina A, Lane DJ, Lawen A. Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett 2010; 584:1793-9. [DOI: 10.1016/j.febslet.2010.02.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
12
|
Jiang W, Du B, Chi Z, Ma L, Wang S, Zhang X, Wu W, Wang X, Xu G, Guo C. Preliminary explorations of the role of mitochondrial proteins in refractory epilepsy: some findings from comparative proteomics. J Neurosci Res 2008; 85:3160-70. [PMID: 17893921 DOI: 10.1002/jnr.21384] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Approximately 20-30% of patients with epilepsy continue to have seizures despite carefully monitored treatment with antiepileptic drugs. The mechanisms that underlie why some patients are responsive and others prove resistant to antiepileptic drugs are poorly understood. Increasing evidence supports a role for altered mitochondrial function in the pathogenesis of epilepsy. To gain greater molecular insight in the pathogenesis of intractable epilepsy, we undertook a global analysis of protein expressions in a pharmacoresistant epileptic model selected by phenytoin in electrical amygdala-kindled rats by using two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF-TOF). We identified five increased proteins and 14 decreased proteins including voltage-dependent anion channel 1 (VDAC1) with a 2.82-fold increased level (P < 0.05) and voltage-dependent anion channel 2 (VDAC2) with a 3.97-fold decreased level (P < 0.05) in hippocampus of pharmacoresistant rats. The increased VDAC1 and decreased VDAC2 were confirmed by Western blot analysis and immunohistochemistry. Vascular mitochondria and apoptosis neurons were observed through electron microscopy. Energy contents, the adenine nucleotides, were measured by high-performance liquid chromatography (HPLC). The correlation analyses were carried out between VDAC and the energy charge. These findings indicate that the increase of VDAC1 and the decrease of VDAC2 play an important role during the process and provide new molecular evidence in understanding mechanism of refractory epilepsy.
Collapse
Affiliation(s)
- WenJing Jiang
- Department of Cadre Healthcare, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rish KR, Swartzlander R, Sadikot TN, Berridge MV, Smith A. Interaction of heme and heme-hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1107-17. [PMID: 17643387 DOI: 10.1016/j.bbabio.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022]
Abstract
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.
Collapse
Affiliation(s)
- Kimberly R Rish
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | | | | | |
Collapse
|
14
|
Navas P, Villalba JM, Lenaz G. Coenzyme Q-dependent functions of plasma membrane in the aging process. AGE (DORDRECHT, NETHERLANDS) 2005; 27:139-146. [PMID: 23598620 PMCID: PMC3458499 DOI: 10.1007/s11357-005-1632-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 06/13/2005] [Indexed: 06/02/2023]
Abstract
Coenzyme Q (Q) is reduced in plasma membrane and mitochondria by NAD(P)H-dependent reductases providing reducing equivalents to maintain both respiratory chain and antioxidant protection. Reactive oxygen species (ROS) are accumulated in the aging process originating mainly in mitochondria but also in other membranes, such as plasma membrane partially by the loss of electrons from the semiquinone. The reduction of Q by NAD(P)H-dependent reductases in plasma membrane is responsible for providing its antioxidant capacity, preventing both the lipid peroxidation chain and the activation of the ceramide-dependent apoptosis pathway. Both Q content and its reductases are decreased in plasma membrane of aging mammals. Calorie restriction, which extends mammal life span, increases the content of Q in the plasma membrane and also activates Q reductases in this membrane. Both lipid peroxidation and ceramide production are decreased in the plasma membrane in calorie-restricted animals. Plasma membrane is, then, an important cellular component to control the aging process through its concentration and redox state of Q.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Giorgio Lenaz
- Departimento di Biochimica ‘G. Moruzzi’, Università di Bologna, 40126 Bologna, Italy
| |
Collapse
|
15
|
Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod 2005; 73:334-42. [PMID: 15858218 DOI: 10.1095/biolreprod.104.037960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lucigenin-dependent chemiluminescence together with 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1) reduction can be detected following addition of NADH to many cell types, including human sperm suspensions. Although many reports suggest that such a phenomenon is due to reactive oxygen species production, other oxygen detecting metabolite probes, such as MCLA and luminol, do not produce a chemiluminescent signal in this model system. The enzyme responsible for NADH-dependent lucigenin chemiluminescence was purified and identified as cytochrome-b5 reductase. In support of this concept, COS-7 cells overexpressing cytochrome-b5 reductase displayed at least a 3-fold increase in the previously mentioned activity compared with mock-transfected cells. Fractions containing cytochrome-b5 reductase were capable of inducing both lucigenin-dependent chemiluminescence and WST-1 reduction. Oxygen radicals clearly did not mediate the cytochrome b5-mediated activation of these probes in vitro since neither luminol nor MCLA gave a chemiluminescence response in the presence of the enzyme and the cofactor NADH. These results emphasize the importance of the direct NADH-dependent reduction of these putative superoxide-sensitive probes by cytochrome-b5 reductase even though this enzyme does not, on its own accord, produce reactive oxygen species.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, and Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | |
Collapse
|
16
|
Malik SG, Vaillant F, Lawen A. Plasma membrane NADH-oxidoreductase in cells carrying mitochondrial DNA G11778A mutation and in cells devoid of mitochondrial DNA (rho0). Biofactors 2004; 20:189-98. [PMID: 15706055 DOI: 10.1002/biof.5520200402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian plasma membrane (PM) NADH-oxidoreductase (PMOR) system is a multi-enzyme complex located in the plasma membrane of all eukaryotic cells, harboring at least two distinct activities, the plasma membrane NADH-ferricyanide reductase and the NADH-oxidase. To assess the behaviour of the two activities of the PMOR system, we measured the NADH-ferricyanide reductase and NADH-oxidase activities in fibroblast cell lines derived from patients carrying a mitochondrial DNA (mtDNA) G11778A mutation. We also measured the two activities in other cell lines, the HL-60 and HeLa (S3) lines, as well as in rho0 cells (cells devoid of mtDNA) generated from those lines and the fibroblast cells. These rho0 cells consequently lack oxidative phosphorylation and rely on anaerobic glycolysis for their ATP need. We have proposed that in rho0 cells, at least in part, up-regulation of the PMOR is a necessity to maintain the NAD+/NADH ratio, and a pre-requisite for cell growth and viability. We show here that the PM NADH-ferricyanide reductase activity was up-regulated in HL-AV2 (HL-60 rho0) cell lines, but not in the other rho0 and mtDNA mutant lines. The plasma membrane NADH oxidase activity was found to be up-regulated in both HL-AV2 and HeLa rho0 cell lines, but not significantly in the fibroblast rho0 and G11778A lines.
Collapse
Affiliation(s)
- Safarina G Malik
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Wellington Road, Melbourne, VIC 3800, Australia
| | | | | |
Collapse
|