1
|
Frohnmeyer H, Kodra N, Elling L. Advanced enzymatic multigram-scale production of nucleotide sugars in a continuous fed-batch membrane reactor. J Biotechnol 2024; 395:1-11. [PMID: 39241966 DOI: 10.1016/j.jbiotec.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Enzymatic production of nucleotide sugars on a multigram scale presents a challenge, as only a few processes have been reported for large-scale nucleotide sugar production. They rely primarily on batch synthesis and employ exceptional amounts of enzymes. This study introduces a novel approach for the multigram-scale production of nucleotide sugars with a continuous fed-batch membrane reactor. We successfully synthesized five main nucleotide sugars: UDP-Gal, UDP-GalNAc, UDP-GlcA, GDP-Man, and CMP-Neu5Ac on a multigram scale. Efficient biocatalyst utilization results in high performance, including space-time yield (STY, g*L-1h-1), total turnover number (TTN, g product per g enzyme), and an efficient product formation rate (g/h) suitable for industrially relevant bioprocesses. The established continuous-fed batch reactor system produced up to 8.2 g CMP-Neu5Ac in three consecutive productions in less than 15 h with satisfying TTNs of 91 gProduct/gEnzyme. Continuous production of UDP-GlcA over 28 h resulted in a final product amount of 14.8 g and TTN of 493 gP/gE. This process enables the production of nucleotide sugars with stable product formation, requiring minimal technical equipment for multigram quantities of nucleotide sugars at the laboratory scale. Notably, the system exhibited robustness and flexibility, allowing its application to various enzymatic nucleotide sugar synthesis cascades.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology, and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, Aachen 52074, Germany.
| |
Collapse
|
2
|
Frohnmeyer H, Verkade JMM, Spiertz M, Rentsch A, Hoffmann N, Sobota M, Schwede F, Tjeerdsma P, Elling L. Process Development for the Enzymatic Gram-Scale Production of the Unnatural Nucleotide Sugar UDP-6-Azido-GalNAc. CHEMSUSCHEM 2024; 17:e202400311. [PMID: 38655621 DOI: 10.1002/cssc.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Azido sugars hold great promise as substrates in numerous click-chemistry applications. However, the synthesis of activated azido sugars is limited by cost and complexity. Conventional chemical activation methods are intricate and time-consuming. In response, we have developed a process for the large-scale production of UDP-6-azido-GalNAc through enzymatic nucleotide sugar synthesis on a gram scale. Our optimization strategies encompassed refining the process parameters of an enzyme cascade featuring NahK from Bifidobacterium longum and AGX1 from Homo sapiens. Using the repetitive-batch-mode technology, we synthesized up to 2.1 g of UDP-6-azido-GalNAc, achieving yields up to 97 % in five consecutive batch cycles using a single enzyme batch. The synthesis process demonstrated to have total turnover numbers (TTNs) between 4.4-4.8 g of product per gram of enzyme (gP/gE) and STYs ranging from 1.7-2.4 g per liter per hour (g*L-1*h-1). By purification of a product solution pool containing 2.6 g (4.1 mmol) UDP-6-azido-GalNAc, 2.1 g (2,122.1 mg) UDP-6-azido-GalNAc (sodium salt) with a purity of 99.96 % (HPLC) were obtained. The overall recovery after purification was 81 % (3.32 mmol). Our work establishes a robust production platform for the gram-scale synthesis of unnatural nucleotide sugars, opening new avenues for applications in glycan engineering.
Collapse
Affiliation(s)
- Hannes Frohnmeyer
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Jorge M M Verkade
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Markus Spiertz
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Andreas Rentsch
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Niels Hoffmann
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Milan Sobota
- SeSaM-Biotech GmbH, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199, Bremen, Germany
| | - Peter Tjeerdsma
- Synaffix BV, Pivot Park, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Lothar Elling
- RWTH Aachen University, Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
3
|
Li Y, Chen Q, Liu S, Deng L, Li S, Gao R. Efficient One-Pot Synthesis of Uridine Diphosphate Galactose Employing a Trienzyme System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3644-3653. [PMID: 38335068 DOI: 10.1021/acs.jafc.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The limited availability of high-cost nucleotide sugars is a significant constraint on the application of their downstream products (glycosides and prebiotics) in the food or pharmaceutical industry. To better solve the problem, this study presented a one-pot approach for the biosynthesis of UDP-Gal using a thermophilic multienzyme system consisting of GalK, UGPase, and PPase. Under optimal conditions, a 2 h reaction resulted in a UTP conversion rate of 87.4%. In a fed-batch reaction with Gal/ATP = 20 mM:10 mM, UDP-Gal accumulated to 33.76 mM with a space-time yield (STY) of 6.36 g/L·h-1 after the second feeding. In repetitive batch synthesis, the average yield of UDP-Gal over 8 cycles reached 10.80 g/L with a very low biocatalyst loading of 0.002 genzymes/gproduct. Interestingly, Galk (Tth0595) could synthesize Gal-1P using ADP as a donor of phosphate groups, which had never been reported before. This approach possessed the benefits of high synthesis efficiency, low cost, and superior reaction system stability, and it provided new insights into the rapid one-pot synthesis of UDP-Gal and high-value glycosidic compounds.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Siyao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Lin Deng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Shichao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Enzyme cascades for the synthesis of nucleotide sugars: Updates to recent production strategies. Carbohydr Res 2023; 523:108727. [PMID: 36521208 DOI: 10.1016/j.carres.2022.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Nucleotide sugars play an elementary role in nature as building blocks of glycans, polysaccharides, and glycoconjugates used in the pharmaceutical, cosmetics, and food industries. As substrates of Leloir-glycosyltransferases, nucleotide sugars are essential for chemoenzymatic in vitro syntheses. However, high costs and the limited availability of nucleotide sugars prevent applications of biocatalytic cascades on a large industrial scale. Therefore, the focus is increasingly on nucleotide sugar synthesis strategies to make significant application processes feasible. The chemical synthesis of nucleotide sugars and their derivatives is well established, but the yields of these processes are usually low. Enzyme catalysis offers a suitable alternative here, and in the last 30 years, many synthesis routes for nucleotide sugars have been discovered and used for production. However, many of the published procedures shy away from assessing the practicability of their processes. With this review, we give an insight into the development of the (chemo)enzymatic nucleotide sugar synthesis pathways of the last years and present an assessment of critical process parameters such as total turnover number (TTN), space-time yield (STY), and enzyme loading.
Collapse
|
5
|
Frohnmeyer H, Rueben S, Elling L. Gram‐scale production of GDP‐β‐l‐fucose with multi‐enzyme cascades in a repetitive‐batch mode. ChemCatChem 2022. [DOI: 10.1002/cctc.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hannes Frohnmeyer
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering GERMANY
| | - Simon Rueben
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering GERMANY
| | - Lothar Elling
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering Pauwelsstr. 20 52074 Aachen GERMANY
| |
Collapse
|
6
|
Zheng Y, Zhang J, Meisner J, Li W, Luo Y, Wei F, Wen L. Cofactor-Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides. Angew Chem Int Ed Engl 2022; 61:e202115696. [PMID: 35212445 DOI: 10.1002/anie.202115696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Glycosylation is catalyzed by glycosyltransferases using sugar nucleotides or occasionally lipid-linked phosphosugars as donors. However, only very few common sugar nucleotides that occur in humans can be obtained readily, while the majority of sugar nucleotides that exist in bacteria, plants, archaea, or viruses cannot be synthesized in sufficient quantities by either enzymatic or chemical synthesis. The limited availability of such rare sugar nucleotides is one of the major obstacles that has greatly hampered progress in glycoscience. Herein we describe a general cofactor-driven cascade conversion strategy for the efficient synthesis of sugar nucleotides. The described strategy allows the large-scale preparation of rare sugar nucleotides from common sugars in high yields and without the need for tedious purification processes.
Collapse
Affiliation(s)
- Yuan Zheng
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
| | | | - Wanjin Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yawen Luo
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Gottschalk J, Aßmann M, Kuballa J, Elling L. Repetitive Synthesis of High-Molecular-Weight Hyaluronic Acid with Immobilized Enzyme Cascades. CHEMSUSCHEM 2022; 15:e202101071. [PMID: 34143936 PMCID: PMC9290584 DOI: 10.1002/cssc.202101071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Indexed: 05/05/2023]
Abstract
Industrial hyaluronic acid (HA) production comprises either fermentation with Streptococcus strains or extraction from rooster combs. The hard-to-control product quality is an obstacle to these processes. Enzymatic syntheses of HA were developed to produce high-molecular-weight HA with low dispersity. To facilitate enzyme recovery and biocatalyst re-use, here the immobilization of cascade enzymes onto magnetic beads was used for the synthesis of uridine-5'-diphosphate-α-d-N-acetyl-glucosamine (UDP-GlcNAc), UDP-glucuronic acid (UDP-GlcA), and HA. The combination of six enzymes in the UDP-sugar cascades with integrated adenosine-5'-triphosphate-regeneration reached yields between 60 and 100 % for 5 repetitive batches, proving the productivity. Immobilized HA synthase from Pasteurella multocida produced HA in repetitive batches for three days. Combining all seven immobilized enzymes in a one-pot synthesis, HA production was demonstrated for three days with a HA concentration of up to 0.37 g L-1 , an average MW of 2.7-3.6 MDa, and a dispersity of 1.02-1.03.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials Institute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Miriam Aßmann
- Research and Development DepartmentGALAB Laboratories GmbHAm Schleusengraben 721029HamburgGermany
| | - Jürgen Kuballa
- Research and Development DepartmentGALAB Laboratories GmbHAm Schleusengraben 721029HamburgGermany
| | - Lothar Elling
- Laboratory for Biomaterials Institute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| |
Collapse
|
8
|
Wen L, Zheng Y, Zhang J, Meisner J, Li W, Luo Y, Wei F. Cofactor‐Driven Cascade Reactions Enable the Efficient Preparation of Sugar Nucleotides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liuqing Wen
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Chemistry 501 Haike Road 30303 shanghai CHINA
| | - Yuan Zheng
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-based drug research center CHINA
| | - Jiabinq Zhang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-based drug research center CHINA
| | | | - Wanjin Li
- Shanghai Institute of Materia Medica Chinese Academy of Sciences carbohydrate-based drug research center CHINA
| | - Yawen Luo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences cArbohydrate-based drug research center CHINA
| | - Fangyu Wei
- Shanghai Institute of Materia Medica Chinese Academy of Sciences carbohydrate-based drug research center CHINA
| |
Collapse
|
9
|
Gärtner A, de Almeida Santos G, Ruff AJ, Schwaneberg U. A Screening Method for P450 BM3 Mutant Libraries Using Multiplexed Capillary Electrophoresis for Detection of Enzymatically Converted Compounds. Methods Mol Biol 2022; 2461:195-210. [PMID: 35727452 DOI: 10.1007/978-1-0716-2152-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Capillary electrophoresis (CE) is an analytical method in which charged species are separated by attraction or repulsion performed in submillimeter diameter capillaries or micro- and nanofluidic channels through the application of a high voltage electric field. When capillary electrophoresis is assembled in a multicapillary instrument such as 96-well format (multiplexed), it becomes a powerful high-throughput system with the ability to simultaneously screen several types of samples like genetic mutations, metabolomes, kinase inhibitors, or enzymatic activities to name a few. The usage of a 96-multiplexed capillary electrophoresis system (96-MP-CE) represents a new platform for product-specific high-throughput screening of enzyme mutant libraries from directed evolution campaigns providing a comprehensive view on enzyme activity through the detection of all products formed. We describe the application of 96-MP-CE to screen mutant libraries of P450 BM3. MP-CE was used in directed evolution campaigns toward benzo-1,4-dioxane and α-isophorone.
Collapse
Affiliation(s)
- Anna Gärtner
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Anna Joëlle Ruff
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
- DWI-Leibniz Institut für Interaktive Materialien, Aachen, Germany.
| |
Collapse
|
10
|
Chen M, Zeng X, Zhu Q, Wang D, Han S, Liang S, Lin Y. Effective synthesis of Rebaudioside A by whole-cell biocatalyst Pichia pastoris. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
|
12
|
Gauttam R, Desiderato CK, Radoš D, Link H, Seibold GM, Eikmanns BJ. Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Front Bioeng Biotechnol 2021; 9:748510. [PMID: 34631687 PMCID: PMC8495162 DOI: 10.3389/fbioe.2021.748510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is an acetylated amino sugar nucleotide that naturally serves as precursor in bacterial cell wall synthesis and is involved in prokaryotic and eukaryotic glycosylation reactions. UDP-GlcNAc finds application in various fields including the production of oligosaccharides and glycoproteins with therapeutic benefits. At present, nucleotide sugars are produced either chemically or in vitro by enzyme cascades. However, chemical synthesis is complex and non-economical, and in vitro synthesis requires costly substrates and often purified enzymes. A promising alternative is the microbial production of nucleotide sugars from cheap substrates. In this study, we aimed to engineer the non-pathogenic, Gram-positive soil bacterium Corynebacterium glutamicum as a host for UDP-GlcNAc production. The native glmS, glmU, and glmM genes and glmM of Escherichia coli, encoding the enzymes for UDP-GlcNAc synthesis from fructose-6-phosphate, were over-expressed in different combinations and from different plasmids in C. glutamicum GRS43, which lacks the glucosamine-6-phosphate deaminase gene (nagB) for glucosamine degradation. Over-expression of glmS, glmU and glmM, encoding glucosamine-6-phosphate synthase, the bifunctional glucosamine-1-phosphate acetyltransferase/N-acetyl glucosamine-1-phosphate uridyltransferase and phosphoglucosamine mutase, respectively, was confirmed using activity assays or immunoblot analysis. While the reference strain C. glutamicum GlcNCg1 with an empty plasmid in the exponential growth phase contained intracellularly only about 0.25 mM UDP-GlcNAc, the best engineered strain GlcNCg4 accumulated about 14 mM UDP-GlcNAc. The extracellular UDP-GlcNAc concentrations in the exponential growth phase did not exceed 2 mg/L. In the stationary phase, about 60 mg UDP-GlcNAc/L was observed extracellularly with strain GlcNCg4, indicating the potential of C. glutamicum to produce and to release the activated sugar into the culture medium. To our knowledge, the observed UDP-GlcNAc levels are the highest obtained with microbial hosts, emphasizing the potential of C. glutamicum as a suitable platform for activated sugar production.
Collapse
Affiliation(s)
- Rahul Gauttam
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | - Dušica Radoš
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gerd M. Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
13
|
Gottschalk J, Blaschke L, Aßmann M, Kuballa J, Elling L. Integration of a Nucleoside Triphosphate Regeneration System in the One‐pot Synthesis of UDP‐sugars and Hyaluronic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202100462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Lea Blaschke
- Laboratory for Biomaterials Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Miriam Aßmann
- Research and Development Department GALAB Laboratories GmbH Am Schleusengraben 7 21029 Hamburg Germany
| | - Jürgen Kuballa
- Research and Development Department GALAB Laboratories GmbH Am Schleusengraben 7 21029 Hamburg Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| |
Collapse
|
14
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
15
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
16
|
Fluorinated Galactoses Inhibit Galactose-1-Phosphate Uridyltransferase and Metabolically Induce Galactosemia-like Phenotypes in HEK-293 Cells. Cells 2020; 9:cells9030607. [PMID: 32138379 PMCID: PMC7140460 DOI: 10.3390/cells9030607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 01/24/2023] Open
Abstract
Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, we looked for ways to induce metabolically a galactosemia-like phenotype by hGALT inhibition in HEK293 cells. In kinetic studies, we provide evidence for 2-fluorinated galactose-1-phosphate (F-Gal-1-P) to competitively inhibit recombinant hGALT with a KI of 0.9 mM. Contrasting with hepatic cells, no alterations of N-glycoprofiles in MIG (metabolic induction of galactosemia)-HEK293 cells were revealed for an inducible secretory netrin-1 probe by MALDI-MS. Differential fluorescence-activated cell sorting demonstrated reduced surface expression of N-glycosylated CD109, EGFR, DPP4, and rhMUC1. Membrane raft proteomes exhibited dramatic alterations pointing to an affection of the unfolded protein response, and of targeted protein traffick. Most prominent, a negative regulation of oxidative stress was revealed presumably as a response to a NADPH pool depletion during reduction of Gal/F-Gal. Cellular perturbations induced by fluorinated galactoses in normal epithelial cells resemble proteomic changes revealed for galactosemic fibroblasts. In conclusion, the metabolic induction of galactosemia-like phenotypes in healthy epithelial/neuronal cells could support studies on the molecular pathomechanisms in classic galactosemia, in particular under conditions of low galactose stress and residual GALT activity.
Collapse
|
17
|
Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L. Key Factors for A One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid. Int J Mol Sci 2019; 20:ijms20225664. [PMID: 31726754 PMCID: PMC6888640 DOI: 10.3390/ijms20225664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
In the last decades, interest in medical or cosmetic applications of hyaluronic acid (HA) has increased. Size and dispersity are key characteristics of biological function. In contrast to extraction from animal tissue or bacterial fermentation, enzymatic in vitro synthesis is the choice to produce defined HA. Here we present a one-pot enzyme cascade with six enzymes for the synthesis of HA from the cheap monosaccharides glucuronic acid (GlcA) and N-acetylglucosamine (GlcNAc). The combination of two enzyme modules, providing the precursors UDP–GlcA and UDP–GlcNAc, respectively, with hyaluronan synthase from Pasteurella multocida (PmHAS), was optimized to meet the kinetic requirements of PmHAS for high HA productivity and molecular weight. The Mg2+ concentration and the pH value were found as key factors. The HA product can be tailored by different conditions: 25 mM Mg2+ and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)-NaOH pH 8 result into an HA product with high Mw HA (1.55 MDa) and low dispersity (1.05). Whereas with 15 mM Mg2+ and HEPES–NaOH pH 8.5, we reached the highest HA concentration (2.7 g/L) with a yield of 86.3%. Our comprehensive data set lays the basis for larger scale enzymatic HA synthesis.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
| | - Henning Zaun
- Research and Development Department, GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (H.Z.); (J.K.)
| | - Anna Eisele
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
| | - Jürgen Kuballa
- Research and Development Department, GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (H.Z.); (J.K.)
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
- Correspondence: ; Tel.: +49-241-80-28350
| |
Collapse
|
18
|
Fischöder T, Cajic S, Grote V, Heinzler R, Reichl U, Franzreb M, Rapp E, Elling L. Enzymatic Cascades for Tailored 13C 6 and 15N Enriched Human Milk Oligosaccharides. Molecules 2019; 24:E3482. [PMID: 31557948 PMCID: PMC6803985 DOI: 10.3390/molecules24193482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Raphael Heinzler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
- glyXera GmbH, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
19
|
Toward Automated Enzymatic Glycan Synthesis in a Compartmented Flow Microreactor System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Luo J, Ma L, Svec F, Tan T, Lv Y. Reversible Two‐Enzyme Coimmobilization on pH‐Responsive Imprinted Monolith for Glucose Detection. Biotechnol J 2019; 14:e1900028. [DOI: 10.1002/biot.201900028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jingyi Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Liang Ma
- Clinical LaboratoryChina–Japan Friendship Hospital Beijing 100029 China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
21
|
Fischöder T, Wahl C, Zerhusen C, Elling L. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale. Biotechnol J 2018; 14. [PMID: 30367549 DOI: 10.1002/biot.201800386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Indexed: 01/02/2023]
Abstract
The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Claudia Wahl
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Christian Zerhusen
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| |
Collapse
|
22
|
Ahmadipour S, Beswick L, Miller GJ. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases. Carbohydr Res 2018; 469:38-47. [PMID: 30265902 DOI: 10.1016/j.carres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
23
|
Gattu S, Crihfield CL, Lu G, Bwanali L, Veltri LM, Holland LA. Advances in enzyme substrate analysis with capillary electrophoresis. Methods 2018; 146:93-106. [PMID: 29499329 PMCID: PMC6098732 DOI: 10.1016/j.ymeth.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Capillary electrophoresis provides a rapid, cost-effective platform for enzyme and substrate characterization. The high resolution achievable by capillary electrophoresis enables the analysis of substrates and products that are indistinguishable by spectroscopic techniques alone, while the small volume requirement enables analysis of enzymes or substrates in limited supply. Furthermore, the compatibility of capillary electrophoresis with various detectors makes it suitable for KM determinations ranging from nanomolar to millimolar concentrations. Capillary electrophoresis fundamentals are discussed with an emphasis on the separation mechanisms relevant to evaluate sets of substrate and product that are charged, neutral, and even chiral. The basic principles of Michaelis-Menten determinations are reviewed and the process of translating capillary electrophoresis electropherograms into a Michaelis-Menten curve is outlined. The conditions that must be optimized in order to couple off-line and on-line enzyme reactions with capillary electrophoresis separations, such as incubation time, buffer pH and ionic strength, and temperature, are examined to provide insight into how the techniques can be best utilized. The application of capillary electrophoresis to quantify enzyme inhibition, in the form of KI or IC50 is detailed. The concept and implementation of the immobilized enzyme reactor is described as a means to increase enzyme stability and reusability, as well as a powerful tool for screening enzyme substrates and inhibitors. Emerging techniques focused on applying capillary electrophoresis as a rapid assay to obtain structural identification or sequence information about a substrate and in-line digestions of peptides and proteins coupled to mass spectrometry analyses are highlighted.
Collapse
Affiliation(s)
- Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Cassandra L Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lindsay M Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
24
|
Eisele A, Zaun H, Kuballa J, Elling L. In Vitro One-Pot Enzymatic Synthesis of Hyaluronic Acid from Sucrose and N
-Acetylglucosamine: Optimization of the Enzyme Module System and Nucleotide Sugar Regeneration. ChemCatChem 2018. [DOI: 10.1002/cctc.201800370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anna Eisele
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstraße 20 52074 Aachen Germany
| | - Henning Zaun
- Research and Development Department; GALAB Laboratories GmbH; Am Schleusengraben 7 21029 Hamburg Germany
| | - Jürgen Kuballa
- Research and Development Department; GALAB Laboratories GmbH; Am Schleusengraben 7 21029 Hamburg Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstraße 20 52074 Aachen Germany
| |
Collapse
|
25
|
Ohashi H, Wahl C, Ohashi T, Elling L, Fujiyama K. Effective Synthesis of Guanosine 5′-Diphospho-β-l
-galactose Using Bacterial l
-Fucokinase/Guanosine 5′-Diphosphate-l
-fucose Pyrophosphorylase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hiroyuki Ohashi
- International Center for Biotechnology; Osaka University; Suita Osaka 565-0871 Japan
| | - Claudia Wahl
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; 52074 Aachen Germany
| | - Takao Ohashi
- International Center for Biotechnology; Osaka University; Suita Osaka 565-0871 Japan
| | - Lothar Elling
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; 52074 Aachen Germany
| | - Kazuhito Fujiyama
- International Center for Biotechnology; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
26
|
Fischöder T, Laaf D, Dey C, Elling L. Enzymatic Synthesis of N-Acetyllactosamine (LacNAc) Type 1 Oligomers and Characterization as Multivalent Galectin Ligands. Molecules 2017; 22:molecules22081320. [PMID: 28796164 PMCID: PMC6152129 DOI: 10.3390/molecules22081320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galβ1, 3GlcNAc) and type 2 (Galβ1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant β1,3-galactosyltransferase from Escherichia coli and β1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3) and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA). We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Carina Dey
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B. Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 2017; 12. [PMID: 28429856 DOI: 10.1002/biot.201600557] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023]
Abstract
Natural product glycosylations by Leloir glycosyltransferases (GTs) require expensive nucleotide-activated sugars as substrates. Sucrose synthase (SuSy) converts sucrose and uridine 5'-diphosphate (UDP) into UDP-glucose. Coupling of SuSy and GT reactions in one-pot cascade transformations creates a UDP cycle, which regenerates the UDP-glucose continuously and so makes it an expedient donor for glucoside production. Here we compare SuSys with divergent kinetic characteristics for UDP-glucose recycling in the synthesis of the natural C-glucoside nothofagin. Development of a fast reversed-phase ion-pairing HPLC method, quantifying all relevant reactants from the coupled conversion in a single run, was key to dissect the main factors of recycling efficiency. Limitations due to high KM , both for UDP and sucrose, were revealed for the bacterial SuSy from Acidithiobacillus caldus. The L637M-T640V double mutant of this SuSy with a 60-fold reduced KM for UDP substantially improved UDP-glucose recycling. The SuSy from Glycine max (soybean) was nevertheless the most active enzyme at the UDP (≤ 0.5 mM) and sucrose (≤ 1 M) concentrations used. It was also unexpectedly stable at up to 50°C where spontaneous decomposition of UDP-glucose started to become problematic. The herein gained in-depth understanding of requirements for UDP-glucose regeneration supports development of efficient GT-SuSy cascades.
Collapse
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
28
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
29
|
Wahl C, Spiertz M, Elling L. Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 2017; 258:51-55. [PMID: 28347767 DOI: 10.1016/j.jbiotec.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/24/2022]
Abstract
The broad substrate spectrum of UDP-sugar pyrophosphorylases from plant salvage pathways is of high interest for the synthesis of expensive nucleotide sugars by straightforward enzyme cascade reactions in combination with monosaccharide kinases. We here present a new UDP-sugar pyrophosphorylase from Hordeum vulgare with favorable biochemical properties like broad pH and temperature tolerances as well as a broad substrate spectrum and high synthesis stability. Enzyme properties were determined and reaction conditions were optimized by high-through-put multiplexed capillary electrophoresis analysis. In combination with a galactokinase UDP-α-d-galactose (UDP-Gal) was efficiently synthesized with a space-time-yield of 17g/L*h for full conversion of 10mM substrate within 20min by 1.2U of each enzyme.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Markus Spiertz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
30
|
Pfeiffer M, Bulfon D, Weber H, Nidetzky B. A Kinase-Independent One-Pot Multienzyme Cascade for an Expedient Synthesis of Guanosine 5′-Diphospho-d-mannose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12/I A-8010 Graz Austria
| | - Dominik Bulfon
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12/I A-8010 Graz Austria
| | - Hansjoerg Weber
- Institute of Organic Chemistry; Graz University of Technology, NAWI Graz; Stremayrgasse 9/4 A-8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12/I A-8010 Graz Austria
- Austrian Center of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
| |
Collapse
|