1
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Hu L, Qiu H, Huang L, Zhang F, Tran VG, Yuan J, He N, Cao M. Emerging nonmodel eukaryotes for biofuel production. Curr Opin Biotechnol 2023; 84:103015. [PMID: 37913603 DOI: 10.1016/j.copbio.2023.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Microbial synthesis of biofuels offers a promising solution to the global environmental and energy concerns. However, the main challenge of microbial cell factories is their high fermentation costs. Model hosts, such as Escherichia coli and Saccharomyces cerevisiae, are typically used for proof-of-concept studies of producing different types of biofuels, however, they have a limited potential for biofuel production at an industrially relevant scale due to the weak stability/robustness and narrow substrate scope. With the advancements of synthetic biology and metabolic engineering, nonmodel eukaryotes, with naturally favorable phenotypic and metabolic features, have been emerging as promising biofuel producers. Here, we introduce the emerging nonmodel eukaryotes for the biofuel production and discuss their specific advantages, especially those with the capacity of producing cellulosic ethanol, higher alcohols, and fatty acid-/terpene-derived biofuel molecules. We also propose the challenges and prospects for developing nonmodel eukaryotic as the ideal hosts for future biofuel production.
Collapse
Affiliation(s)
- Lin Hu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Huihui Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Liuheng Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Fujian 361005, China.
| |
Collapse
|
3
|
Shokravi H, Heidarrezaei M, Shokravi Z, Ong HC, Lau WJ, Din MFM, Ismail AF. Fourth generation biofuel from genetically modified algal biomass for bioeconomic development. J Biotechnol 2022; 360:23-36. [PMID: 36272575 DOI: 10.1016/j.jbiotec.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
Biofuels from microalgae have promising potential for a sustainable bioeconomy. Algal strains' oil content and biomass yield are the most influential cost drivers in the fourth generation biofuel (FGB) production. Genetic modification is the key to improving oil accumulation and biomass yield, consequently developing the bioeconomy. This paper discusses current practices, new insights, and emerging trends in genetic modification and their bioeconomic impact on FGB production. It was demonstrated that enhancing the oil and biomass yield could significantly improve the probability of economic success and the net present value of the FGB production process. The techno-economic and socioeconomic burden of using genetically modified (GM) strains and the preventive control strategies on the bioeconomy of FGB production is reviewed. It is shown that the fully lined open raceway pond could cost up to 25% more than unlined ponds. The cost of a plastic hoop air-supported greenhouse covering cultivation ponds is estimated to be US 60,000$ /ha. The competitiveness and profitability of large-scale cultivation of GM biomass are significantly locked to techno-economic and socioeconomic drivers. Nonetheless, it necessitates further research and careful long-term follow-up studies to understand the mechanism that affects these parameters the most.
Collapse
Affiliation(s)
- Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mahshid Heidarrezaei
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, 1477893855, Iran
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
| | - Woei Jye Lau
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Fadhil Md Din
- Centre for Environmental Sustainability and Water Security (IPASA), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
4
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, Lau WJ, Ismail AF. Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. CHEMOSPHERE 2021; 285:131535. [PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
Collapse
Affiliation(s)
- Hoofar Shokravi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, Iran
| | - Mahshid Heidarrezaei
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Woei Jye Lau
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. ENERGIES 2021. [DOI: 10.3390/en14196011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent progress in the design and application of microbial biofuels, assessing the advancement of genetic engineering undertakings and their marketability, and lignocellulosic biomass pretreatment issues. Municipal solid waste (MSW) is a promising sustainable biofuel feedstock due to its high content of lignocellulosic fiber. In this review, we compared the production of fatty alcohols, alkanes, and n-butanol from residual biogenic waste and the environmental/economic parameters to that of conventional biofuels. New synthetic biology tools can be used to engineer fermentation pathways within micro-organisms to produce long-chain alcohols, isoprenoids, long-chain fatty acids, and esters, along with alkanes, as substitutes to petroleum-derived fuels. Biotechnological advances have struggled to address problems with bioethanol, such as lower energy density compared to gasoline and high corrosive and hygroscopic qualities that restrict its application in present infrastructure. Biofuels derived from the organic fraction of municipal solid waste (OFMSW) may have less environmental impacts compared to traditional fuel production, with the added benefit of lower production costs. Unfortunately, current advanced biofuel production suffers low production rates, which hinders commercial scaling-up efforts. Microbial-produced biofuels can address low productivity while increasing the spectrum of produced bioenergy molecules.
Collapse
|
7
|
Zhang Z, Liu L, Liu C, Sun Y, Zhang D. New aspects of microbial vitamin K2 production by expanding the product spectrum. Microb Cell Fact 2021; 20:84. [PMID: 33849534 PMCID: PMC8042841 DOI: 10.1186/s12934-021-01574-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin K2 (menaquinone, MK) is an essential lipid-soluble vitamin with critical roles in blood coagulation and bone metabolism. Chemically, the term vitamin K2 encompasses a group of small molecules that contain a common naphthoquinone head group and a polyisoprenyl side chain of variable length. Among them, menaquinone-7 (MK-7) is the most potent form. Here, the biosynthetic pathways of vitamin K2 and different types of MK produced by microorganisms are briefly introduced. Further, we provide a new aspect of MK-7 production, which shares a common naphthoquinone ring and polyisoprene biosynthesis pathway, by analyzing strategies for expanding the product spectrum. We review the findings of metabolic engineering strategies targeting the shikimate pathway, polyisoprene pathway, and menaquinone pathway, as well as membrane engineering, which provide comprehensive insights for enhancing the yield of MK-7. Finally, the current limitations and perspectives of microbial menaquinone production are also discussed. This article provides in-depth information on metabolic engineering strategies for vitamin K2 production by expanding the product spectrum.
Collapse
Affiliation(s)
- Zimeng Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Chuan Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Garabedian BM, Meadows CW, Mingardon F, Guenther JM, de Rond T, Abourjeily R, Lee TS. An automated workflow to screen alkene reductases using high-throughput thin layer chromatography. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:184. [PMID: 33292503 PMCID: PMC7653764 DOI: 10.1186/s13068-020-01821-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic biology efforts often require high-throughput screening tools for enzyme engineering campaigns. While innovations in chromatographic and mass spectrometry-based techniques provide relevant structural information associated with enzyme activity, these approaches can require cost-intensive instrumentation and technical expertise not broadly available. Moreover, complex workflows and analysis time can significantly impact throughput. To this end, we develop an automated, 96-well screening platform based on thin layer chromatography (TLC) and use it to monitor in vitro activity of a geranylgeranyl reductase isolated from Sulfolobus acidocaldarius (SaGGR). RESULTS Unreduced SaGGR products are oxidized to their corresponding epoxide and applied to thin layer silica plates by acoustic printing. These derivatives are chromatographically separated based on the extent of epoxidation and are covalently ligated to a chromophore, allowing detection of enzyme variants with unique product distributions or enhanced reductase activity. Herein, we employ this workflow to examine farnesol reduction using a codon-saturation mutagenesis library at the Leu377 site of SaGGR. We show this TLC-based screen can distinguish between fourfold differences in enzyme activity for select mutants and validated those results by GC-MS. CONCLUSIONS With appropriate quantitation methods, this workflow can be used to screen polyprenyl reductase activity and can be readily adapted to analyze broader catalyst libraries whose products are amenable to TLC analysis.
Collapse
Affiliation(s)
- Brett M Garabedian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Corey W Meadows
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Joel M Guenther
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Tristan de Rond
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Raya Abourjeily
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400, Courbevoie, France
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Liu SC, Liu Z, Wei LJ, Hua Q. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. J Biotechnol 2020; 319:74-81. [PMID: 32533992 DOI: 10.1016/j.jbiotec.2020.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Farnesene is a typical sesquiterpene with applications as fragrance, flavor and precursor for the synthesis of vitamin E/K1. In this study, a series of strategies were employed to facilitate α-farnesene accumulation in Yarrowia lipolytica. Among them, the promoter optimization of OptFSLERG20, Sc-tHMG1 and IDI resulted in more than 62 % increase in α-farnesene production. Together with the overexpression of Yl-HMGR and ERG19, α-farnesene content was significantly improved by more than 3.5 times. The best metabolic engineered strain obtained was therefore used for a uniform design in shake flasks to determine the optimal medium compositions. Furthermore, a maximum α-farnesene production of approximately 2.57 g/L (34 mg/g DCW) was obtained in fed-batch fermentation where glycerol was supplemented as the feeding carbon source when initial glucose was depleted. This study has laid a good foundation for the development of Y. lipolytica as a promising chassis microbial cell for heterologous biosynthesis of α-farnesene and other sesquiterpenes.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Sun L, Alper HS. Non-conventional hosts for the production of fuels and chemicals. Curr Opin Chem Biol 2020; 59:15-22. [PMID: 32348879 DOI: 10.1016/j.cbpa.2020.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Biotechnology offers a green alternative for the production of fuels and chemicals using microbes. Although traditional model hosts such as Escherichia coli and Saccharomyces cerevisiae have been widely studied and used, they may not be the best hosts for industrial application. In this review, we explore recent advances in the use of nonconventional hosts for the production of a variety of fuel, cosmetics, perfumes, food, and pharmaceuticals. Specifically, we highlight twenty-seven popular molecules with a special focus on recent progress and metabolic engineering strategies to enable improved production of fuels and chemicals. These examples demonstrate the promise of nonconventional host engineering.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, United States.
| |
Collapse
|
11
|
Guo S, Liu R, Wang W, Hu H, Li Z, Zhang X. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine N-Oxide in Pseudomonas chlororaphis HT66. ACS Synth Biol 2020; 9:883-892. [PMID: 32197042 DOI: 10.1021/acssynbio.9b00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aromatic N-oxides are valuable due to their versatile chemical, pharmaceutical, and agricultural applications. Natural phenazine N-oxides possess potent biological activities and can be applied in many ways; however, few N-oxides have been identified. Herein, we developed a microbial system to synthesize phenazine N-oxides via an artificial pathway. First, the N-monooxygenase NaphzNO1 was predicted and screened in Nocardiopsis sp. 13-12-13 through a product comparison and gene sequencing. Subsequently, according to similarities in the chemical structures of substrates, an artificial pathway for the synthesis of a phenazine N-oxide in Pseudomonas chlororaphis HT66 was designed and established using three heterologous enzymes, a monooxygenase (PhzS) from P. aeruginosa PAO1, a monooxygenase (PhzO) from P. chlororaphis GP72, and the N-monooxygenase NaphzNO1. A novel phenazine derivative, 1-hydroxyphenazine N'10-oxide, was obtained in an engineered strain, P. chlororaphis HT66-SN. The phenazine N-monooxygenase NaphzNO1 was identified by metabolically engineering the phenazine-producing platform P. chlororaphis HT66. Moreover, the function of NaphzNO1, which can catalyze the conversion of 1-hydroxyphenazine but not that of 2-hydroxyphenazine, was confirmed in vitro. Additionally, 1-hydroxyphenazine N'10-oxide demonstrated substantial cytotoxic activity against two human cancer cell lines, MCF-7 and HT-29. Furthermore, the highest microbial production of 1-hydroxyphenazine N'10-oxide to date was achieved at 143.4 mg/L in the metabolically engineered strain P3-SN. These findings demonstrate that P. chlororaphis HT66 has the potential to be engineered as a platform for phenazine-modifying gene identification and derivative production. The present study also provides a promising alternative for the sustainable synthesis of aromatic N-oxides with unique chemical structures by N-monooxygenase.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongfeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Kang A, Mendez-Perez D, Goh EB, Baidoo EE, Benites VT, Beller HR, Keasling JD, Adams PD, Mukhopadhyay A, Lee TS. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metab Eng 2019; 56:85-96. [DOI: 10.1016/j.ymben.2019.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
|
13
|
Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories. Sci Rep 2019; 9:13713. [PMID: 31548626 PMCID: PMC6757031 DOI: 10.1038/s41598-019-50261-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
Use of microbes to produce liquid transportation fuels is not yet economically viable. A key point to reduce production costs is the design a cell factory that combines the continuous production of drop-in fuel molecules with the ability to recover products from the cell culture at low cost. Medium-chain hydrocarbons seem ideal targets because they can be produced from abundant fatty acids and, due to their volatility, can be easily collected in gas phase. However, pathways used to produce hydrocarbons from fatty acids require two steps, low efficient enzymes and/or complex electron donors. Recently, a new hydrocarbon-forming route involving a single enzyme called fatty acid photodecarboxylase (FAP) was discovered in microalgae. Here, we show that in illuminated E. coli cultures coexpression of FAP and a medium-chain fatty acid thioesterase results in continuous release of volatile hydrocarbons. Maximum hydrocarbon productivity was reached under low/medium light while higher irradiance resulted in decreased amounts of FAP. It was also found that the production rate of hydrocarbons was constant for at least 5 days and that 30% of total hydrocarbons could be collected in the gas phase of the culture. This work thus demonstrates that the photochemistry of the FAP can be harnessed to design a simple cell factory that continuously produces hydrocarbons easy to recover and in pure form.
Collapse
|
14
|
Bai W, Geng W, Wang S, Zhang F. Biosynthesis, regulation, and engineering of microbially produced branched biofuels. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:84. [PMID: 31011367 PMCID: PMC6461809 DOI: 10.1186/s13068-019-1424-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 05/13/2023]
Abstract
The steadily increasing demand on transportation fuels calls for renewable fuel replacements. This has attracted a growing amount of research to develop advanced biofuels that have similar physical, chemical, and combustion properties with petroleum-derived fossil fuels. Early generations of biofuels, such as ethanol, butanol, and straight-chain fatty acid-derived esters or hydrocarbons suffer from various undesirable properties and can only be blended in limited amounts. Recent research has shifted to the production of branched-chain biofuels that, compared to straight-chain fuels, have higher octane values, better cold flow, and lower cloud points, making them more suitable for existing engines, particularly for diesel and jet engines. This review focuses on several types of branched-chain biofuels and their immediate precursors, including branched short-chain (C4-C8) and long-chain (C15-C19)-alcohols, alkanes, and esters. We discuss their biosynthesis, regulation, and recent efforts in their overproduction by engineered microbes.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Weitao Geng
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
15
|
Meadows CW, Mingardon F, Garabedian BM, Baidoo EEK, Benites VT, Rodrigues AV, Abourjeily R, Chanal A, Lee TS. Discovery of novel geranylgeranyl reductases and characterization of their substrate promiscuity. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:340. [PMID: 30607175 PMCID: PMC6309074 DOI: 10.1186/s13068-018-1342-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Geranylgeranyl reductase (GGR) is a flavin-containing redox enzyme that hydrogenates a variety of unactivated polyprenyl substrates, which are further processed mostly for lipid biosynthesis in archaea or chlorophyll biosynthesis in plants. To date, only a few GGR genes have been confirmed to reduce polyprenyl substrates in vitro or in vivo. RESULTS In this work, we aimed to expand the confirmed GGR activity space by searching for novel genes that function under amenable conditions for microbial mesophilic growth in conventional hosts such as Escherichia coli or Saccharomyces cerevisiae. 31 putative GGRs were selected to test for potential reductase activity in vitro on farnesyl pyrophosphate, geranylgeranyl pyrophosphate, farnesol (FOH), and geranylgeraniol (GGOH). We report the discovery of several novel GGRs exhibiting significant activity toward various polyprenyl substrates under mild conditions (i.e., pH 7.4, T = 37 °C), including the discovery of a novel bacterial GGR isolated from Streptomyces coelicolor. In addition, we uncover new mechanistic insights within several GGR variants, including GGR-mediated phosphatase activity toward polyprenyl pyrophosphates and the first demonstration of completely hydrogenated GGOH and FOH substrates. CONCLUSION These collective results enhance the potential for metabolic engineers to manufacture a variety of isoprenoid-based biofuels, polymers, and chemical feedstocks in common microbial hosts such as E. coli or S. cerevisiae.
Collapse
Affiliation(s)
- Corey W. Meadows
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | | | - Brett M. Garabedian
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Veronica T. Benites
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Andria V. Rodrigues
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Raya Abourjeily
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400 Courbevoie, France
| | - Angelique Chanal
- Total Raffinage Chimie, 2 Pl. Jean Millier, 92400 Courbevoie, France
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
16
|
Guo D, Kong S, Zhang L, Pan H, Wang C, Liu Z. Biosynthesis of advanced biofuel farnesyl acetate using engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 269:577-580. [PMID: 30181019 DOI: 10.1016/j.biortech.2018.08.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Diminishing petroleum reserves and the rapid accumulation of greenhouse gases lead to increasing interest in microbial biofuels. In this study, a heterologous farnesyl acetate biosynthesis pathway was constructed in Escherichia coli for the first time. Firstly, the AtoB, ERG13, tHMG1, ERG12, ERG8, MVD1, Idi, IspA and PgpB were expressed to accumulate farnesol in the E. coli cells. Then the alcohol acetyltransferase (ATF1) was heterologous overexpressed for the subsequent esterification farnesol to farnesyl acetate. The engineered strain DG 106 accumulated 128 ± 10.5 mg/L of farnesyl acetate. Finally, the isopentenyl-diphosphate isomerase was further overexpressed, and the recombinant strain DG107 produced 201 ± 11.7 mg/L of farnesyl acetate. This study shows the novel method for the biosynthesis of the advanced biofuel farnesyl acetate directly from glucose and highlight the enormous designing strategies for metabolic engineering of bioproducts.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Sijia Kong
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lihua Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
17
|
Göbel U, Zhu J. Methods and Advances on Antibodies, Metabolic Engineering, 3D Models, Diagnostics, Imaging, and More. Biotechnol J 2018; 13. [DOI: 10.1002/biot.201700709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|