1
|
Yamagishi K, Ike M, Tokuyasu K. Construction of a genome-editing system for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain. Biosci Biotechnol Biochem 2024; 89:80-87. [PMID: 39533823 DOI: 10.1093/bbb/zbae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Kenji Yamagishi
- Institute of Food Research, National Agriculture and Food Research Organization, Japan
| | - Masakazu Ike
- Institute of Food Research, National Agriculture and Food Research Organization, Japan
| | - Ken Tokuyasu
- Institute of Food Research, National Agriculture and Food Research Organization, Japan
| |
Collapse
|
2
|
Xue F, Ma X, Luo C, Li D, Shi G, Li Y. Construction of a bacteriophage-derived recombinase system in Bacillus licheniformis for gene deletion. AMB Express 2023; 13:89. [PMID: 37633871 PMCID: PMC10460339 DOI: 10.1186/s13568-023-01589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 08/28/2023] Open
Abstract
Bacillus licheniformis and its related strains have found extensive applications in diverse industries, agriculture, and medicine. However, the current breeding methods for this strain primarily rely on natural screening and traditional mutagenesis. The limited availability of efficient genetic engineering tools, particularly recombination techniques, has hindered further advancements in its applications. In this study, we conducted a comprehensive investigation to identify and characterize a recombinase, RecT, derived from a Bacillus phage. Remarkably, the recombinase exhibited a 105-fold enhancement in the recombination efficiency of the strain. To facilitate genome editing, we developed a system based on the conditional expression of RecT using a rhamnose-inducible promoter (Prha). The efficacy of this system was evaluated by deleting the amyL gene, which encodes an α-amylase. Our findings revealed that the induction time and concentration of rhamnose, along with the generation time of the strain, significantly influenced the editing efficiency. Optimal conditions for genome editing were determined as follows: the wild-type strain was initially transformed with the genome editing plasmid, followed by cultivation and induction with 1.5% rhamnose for 8 h. Subsequently, the strain was further cultured for an additional 24 h, equivalent to approximately three generations. Consequently, the recombination efficiency reached an impressive 16.67%. This study represents a significant advancement in enhancing the recombination efficiency of B. licheniformis through the utilization of a RecT-based recombination system. Moreover, it provides a highly effective genome editing tool for genetic engineering applications in this strain.
Collapse
Affiliation(s)
- Fang Xue
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, P. R. China
| | - Xufan Ma
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Cheng Luo
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, P. R. China
| | - Dongliang Li
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, P. R. China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.
| |
Collapse
|
3
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
4
|
Zhou D, Huang G, Xu G, Xiang L, Huang S, Chen X, Zhang Y, Wang D. CRISPRi-Mediated Gene Suppression Reveals Putative Reverse Transcriptase Gene PA0715 to Be a Global Regulator of Pseudomonas aeruginosa. Infect Drug Resist 2022; 15:7577-7599. [PMID: 36579125 PMCID: PMC9792118 DOI: 10.2147/idr.s384980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is a common pathogen of infection in burn and trauma patients, and multi-drug resistant P. aeruginosa has become an increasingly important pathogen. Essential genes are key to the development of novel antibiotics. The PA0715 gene is a novel unidentified essential gene that has attracted our interest as a potential antibiotic target. Our study aims to determine the exact role of PA0715 in cell physiology and bacterial pathogenicity, providing important clues for antibiotic development. Patients and Methods The shuttle vector pHERD20T containing an arabinose inducible promoter was used to construct the CRISPRi system. Alterations in cellular physiology and bacterial pathogenicity of P. aeruginosa PAO1 after PA0715 inhibition were characterized. High-throughput RNA-seq was performed to gain more insight into the mechanisms by which PA0715 regulates the vital activity of P. aeruginosa. Results We found that down-regulation of PA0715 significantly reduced PAO1 growth rate, motility and chemotaxis, antibiotic resistance, pyocyanin and biofilm production. In addition, PA0715 inhibition reduced the pathogenicity of PAO1 to the greater galleria mellonella larvae. Transcriptional profiling identified 1757 genes including those related to amino acid, carbohydrate, ketone body and organic salt metabolism, whose expression was directly or indirectly controlled by PA0715. Unexpectedly, genes involved in oxidative phosphorylation also varied with PA0715 levels, and these findings support a hitherto unrecognized critical role for PA0715 in oxidative respiration in P. aeruginosa. Conclusion We identified PA0715 as a global regulator of the metabolic network that is indispensable for the survival and reproduction of P. aeruginosa. Our results provide a basis for future studies of potential antibiotic targets for P. aeruginosa and offer new ideas for P. aeruginosa infection control.
Collapse
Affiliation(s)
- Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Lijuan Xiang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| | - Siyi Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xinchong Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
5
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
6
|
Microbial Remediation: A Promising Tool for Reclamation of Contaminated Sites with Special Emphasis on Heavy Metal and Pesticide Pollution: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heavy metal and pesticide pollution have become an inevitable part of the modern industrialized environment that find their way into all ecosystems. Because of their persistent nature, recalcitrance, high toxicity and biological enrichment, metal and pesticide pollution has threatened the stability of the environment as well as the health of living beings. Due to the environmental persistence of heavy metals and pesticides, they get accumulated in the environs and consequently lead to food chain contamination. Therefore, remediation of heavy metals and pesticide contaminations needs to be addressed as a high priority. Various physico-chemical approaches have been employed for this purpose, but they have significant drawbacks such as high expenses, high labor, alteration in soil properties, disruption of native soil microflora and generation of toxic by-products. Researchers worldwide are focusing on bioremediation strategies to overcome this multifaceted problem, i.e., the removal, immobilization and detoxification of pesticides and heavy metals, in the most efficient and cost-effective ways. For a period of millions of evolutionary years, microorganisms have become resistant to intoxicants and have developed the capability to remediate heavy metal ions and pesticides, and as a result, they have helped in the restoration of the natural state of degraded environs with long term environmental benefits. Keeping in view the environmental and health concerns imposed by heavy metals and pesticides in our society, we aimed to present a generalized picture of the bioremediation capacity of microorganisms. We explore the use of bacteria, fungi, algae and genetically engineered microbes for the remediation of both metals and pesticides. This review summarizes the major detoxification pathways and bioremediation technologies; in addition to that, a brief account is given of molecular approaches such as systemic biology, gene editing and omics that have enhanced the bioremediation process and widened its microbiological techniques toward the remediation of heavy metals and pesticides.
Collapse
|
7
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
8
|
Kashojiya S, Lu Y, Takayama M, Komatsu H, Minh LHT, Nishida K, Shirasawa K, Miura K, Nonaka S, Masuda JI, Kondo A, Ezura H, Ariizumi T. Modification of tomato breeding traits and plant hormone signaling by target-AID, the genome-editing system inducing efficient nucleotide substitution. HORTICULTURE RESEARCH 2022; 9:uhab004. [PMID: 35043178 PMCID: PMC8795821 DOI: 10.1093/hr/uhab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/19/2022] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Target activation-induced cytidine deaminase (Target-AID), a novel CRISPR/Cas9-based genome-editing tool, confers the base-editing capability on the Cas9 genome-editing system. It involves the fusion of cytidine deaminase (CDA), which catalyzes cytidine (C) to uridine (U) substitutions, to the mutated nickase-type nCas9 or deactivated-type dCas9. To confirm and extend the applicability of the Target-AID genome-editing system in tomatoes (Solanum lycopersicum L.), we transformed the model tomato cultivar "Micro-Tom" and commercial tomato cultivars using this system by targeting SlDELLA, which encodes a negative regulator of the plant phytohormone gibberellic acid (GA) signaling pathway. We confirmed that the nucleotide substitutions were induced by the Target-AID system, and we isolated mutants showing high GA sensitivity in both "Micro-Tom" and the commercial cultivars. Moreover, by successfully applying this system to ETHYLENE RECEPTOR 1 (SlETR1) with single sgRNA targeting, double sgRNA targeting, as well as dual-targeting of both SlETR1 and SlETR2 with a single sgRNA, we demonstrated that the Target-AID genome-editing system is a promising tool for molecular breeding in tomato crops. This study highlights an important aspect of the scientific and agricultural potential of the combinatorial use of the Target-AID and other base-editing systems.
Collapse
Affiliation(s)
- Sachiko Kashojiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
- Japan Society for Promotion of Science, 5-3-1, Kojimachi, Tokyo 102-0083, Japan
| | - Yu Lu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
- Japan Society for Promotion of Science, 5-3-1, Kojimachi, Tokyo 102-0083, Japan
| | - Mariko Takayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroki Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
| | - Luyen Hieu Thi Minh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 7-1-49, Minatojima Minami Machi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoko Nonaka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
| | - Jun-ichiro Masuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 7-1-49, Minatojima Minami Machi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
9
|
Dong H, Cui Y, Zhang D. CRISPR/Cas Technologies and Their Applications in Escherichia coli. Front Bioeng Biotechnol 2021; 9:762676. [PMID: 34858961 PMCID: PMC8632213 DOI: 10.3389/fbioe.2021.762676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have revolutionized genome editing and greatly promoted the development of biotechnology. However, these systems unfortunately have not been developed and applied in bacteria as extensively as in eukaryotic organism. Here, the research progress on the most widely used CRISPR/Cas tools and their applications in Escherichia coli is summarized. Genome editing based on homologous recombination, non-homologous DNA end-joining, transposons, and base editors are discussed. Finally, the state of the art of transcriptional regulation using CRISPRi is briefly reviewed. This review provides a useful reference for the application of CRISPR/Cas systems in other bacterial species.
Collapse
Affiliation(s)
- Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yali Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang Y, Yang J, Yang S, Zhang J, Chen J, Tao R, Jiang Y, Yang J, Yang S. Programming Cells by Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. CRISPR J 2021; 4:350-359. [PMID: 34152213 DOI: 10.1089/crispr.2021.0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Directed evolution and targeted genome editing have been deployed to create genetic variants with usefully altered phenotypes. However, these methods are limited to high-throughput screening methods or serial manipulation of single genes. In this study, we implemented multicopy chromosomal integration using CRISPR-associated transposases (MUCICAT) to simultaneously target up to 11 sites on the Escherichia coli chromosome for multiplex gene interruption and/or insertion, generating combinatorial genomic diversity. The MUCICAT system was improved by replacing the isopropyl-beta-D-thiogalactoside (IPTG)-dependent promoter to decouple gene editing and product synthesis and truncating the right end to reduce the leakage expression of cargo. We applied MUCICAT to engineer and optimize the N-acetylglucosamine (GlcNAc) biosynthesis pathway in E. coli to overproduce the industrially important GlcNAc in only 8 days. Two rounds of transformation, the first round for disruption of two degradation pathways related gene clusters and the second round for multiplex integration of the GlcNAc gene cassette, would generate a library with 1-11 copies of the GlcNAc cassette. We isolated a best variant with five copies of GlcNAc cassettes, producing 11.59 g/L GlcNAc, which was more than sixfold than that of the strain containing the pET-GNAc plasmid. Our multiplex approach MUCICAT has potential to become a powerful tool of cell programing and can be widely applied in many fields such as synthetic biology.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jiawei Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Siqi Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA; and Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Rongsheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institutes for Biological Sciences, Huzhou, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| |
Collapse
|
11
|
CRISPR-Cas systems for genome editing of mammalian cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:15-30. [PMID: 34127192 DOI: 10.1016/bs.pmbts.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past decade, ZFNs and TALENs have been used for targeted genome engineering and have gained scientific attention. It has demonstrated huge potential for gene knockout, knock-in, and indels in desired locations of genomes to understand molecular mechanism of diseases and also discover therapy. However, both the genome engineering techniques are still suffering from design, screening and validation in cell and higher organisms. CRISPR-Cas9 is a rapid, simple, specific, and versatile technology and it has been applied in many organisms including mammalian cells. CRISPR-Cas9 has been used for animal models to modify animal cells for understanding human disease for novel drug discovery and therapy. Additionally, base editing has also been discussed herewith for conversion of C/G-to-T/A or A/T-to-G/C without DNA cleavage or donor DNA templates for correcting mutations or altering gene functions. In this chapter, we highlight CRISPR-Cas9 and base editing for desired genome editing in mammalian cells for a better understanding of molecular mechanisms, and biotechnological and therapeutic applications.
Collapse
|
12
|
Arazoe T. CRISPR-based pathogenic fungal genome editing for control of infection and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:161-196. [PMID: 33785176 DOI: 10.1016/bs.pmbts.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungi play important roles in many aspects of human life, such as in various food, beverage, agricultural, chemical, and pharmaceutical industries. Meanwhile, some fungal species cause several severe diseases in plants, humans and animals. Fungal and fungal-like diseases pose a severe threat to human health, food security, and ecosystem health worldwide. This chapter introduces CRISPR-based genome editing technologies for pathogenic fungi and their application in controlling fungal diseases.
Collapse
Affiliation(s)
- Takayuki Arazoe
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda-shi, Chiba, Japan.
| |
Collapse
|
13
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
14
|
Singhvi M, Kim BS. Lignin valorization using biological approach. Biotechnol Appl Biochem 2020; 68:459-468. [PMID: 32725827 DOI: 10.1002/bab.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 11/06/2022]
Abstract
Due to the structural complexity and recalcitrance nature of lignin, its depolymerization into monomeric units becomes one of the biggest challenges in the bioconversion of lignin into value-added products. Depolymerization of lignin produces a blend of many compounds that are problematic for isolating components in a cost-effective way. Lignin valorization using a biological approach facilitates sustainable and commercially viable biorefineries. The use of microbes for the conversion of depolymerized lignin compounds into target products can be a solution to the heterogeneity issue. Several studies have been carried out to develop robust strains that can utilize all relevant lignin-derived compounds, but constructing these strains is difficult. As an alternative, designing multiple microbes to convert a mixture of various compounds into the desired product seems realistic. This review provides an overview of lignin bioconversion using various approaches such as metabolic engineering and synthetic biology. Ligninolytic strains have a broad enzymatic machine for depolymerization of lignin and its conversion into intermediates such as catechol or protocatechuate. These intermediates can be further converted to metabolite products such as polyhydroxyalkanoates and triacylglycerol. Synthetic biology offers encouraging methodologies to construct pathways for lignin conversion and to engineer ligninolytic microbes as prospective strains for lignin bioconversion.
Collapse
Affiliation(s)
- Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Sun J, Lu LB, Liang TX, Yang LR, Wu JP. CRISPR-Assisted Multiplex Base Editing System in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2020; 8:905. [PMID: 32850749 PMCID: PMC7413065 DOI: 10.3389/fbioe.2020.00905] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas putida (P. putida) KT2440 is a paradigmatic environmental-bacterium that possesses significant potential in synthetic biology, metabolic engineering and biodegradation applications. However, most genome editing methods of P. putida KT2440 depend on heterologous repair proteins and the provision of donor DNA templates, which is laborious and inefficient. In this report, an efficient cytosine base editing system was established by using cytidine deaminase (APOBEC1), enhanced specificity Cas9 nickase (eSpCas9ppD10A) and the uracil DNA glycosylase inhibitor (UGI). This constructed base editor converts C-G into T-A in the absence of DNA strands breaks and donor DNA templates. By introducing a premature stop codon in target spacers, we successfully applied this system for gene inactivation with an efficiency of 25–100% in various Pseudomonas species, including P. putida KT2440, P. aeruginosa PAO1, P. fluorescens Pf-5 and P. entomophila L48. We engineered an eSpCas9ppD10A-NG variant with a NG protospacer adjacent motif to expand base editing candidate sites. By modifying the APOBEC1 domain, we successfully narrowed the editable window to increase gene inactivation efficiency in cytidine-rich spacers. Additionally, multiplex base editing in double and triple loci was achieved with mutation efficiencies of 90–100% and 25–35%, respectively. Taken together, the establishment of a fast, convenient and universal base editing system will accelerate the pace of future research undertaken with P. putida KT2440 and other Pseudomonas species.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li-Bing Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tian-Xin Liang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li-Rong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian-Ping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Wang Y, Liu Y, Zheng P, Sun J, Wang M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol 2020; 39:165-180. [PMID: 32680590 DOI: 10.1016/j.tibtech.2020.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Genome engineering is crucial for answering fundamental questions about, and exploring practical applications of, microorganisms. Various microbial genome-engineering tools, including CRISPR/Cas-enhanced homologous recombination (HR), have been developed, with ever-improving simplicity, efficiency, and applicability. Recently, a powerful emerging technology based on CRISPR/Cas-nucleobase deaminase fusions, known as base editing, opened new avenues for microbial genome engineering. Base editing enables nucleotide transition without inducing lethal double-stranded (ds)DNA cleavage, adding foreign donor DNA, or depending on inefficient HR. Here, we review ongoing efforts to develop and apply base editing to engineer industrially and clinically relevant microorganisms. We also summarize bioinformatics tools that would greatly facilitate guide (g)RNA design and sequencing data analysis and discuss the future challenges and prospects associated with this technology.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
17
|
Zhao Y, Tian J, Zheng G, Chen J, Sun C, Yang Z, Zimin AA, Jiang W, Deng Z, Wang Z, Lu Y. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1053-1062. [PMID: 31872379 DOI: 10.1007/s11427-019-1559-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
CRISPR/Cas-mediated genome editing has greatly facilitated the study of gene function in Streptomyces. However, it could not be efficiently employed in streptomycetes with low homologous recombination (HR) ability. Here, a deaminase-assisted base editor dCas9-CDA-ULstr was developed in Streptomyces, which comprises the nuclease-deficient Cas9 (dCas9), the cytidine deaminase from Petromyzon marinus (PmCDA1), the uracil DNA glycosylase inhibitor (UGI) and the protein degradation tag (LVA tag). Using dCas9-CDA-ULstr, we achieved single-, double- and triple-point mutations (cytosine-to-thymine substitutions) at target sites in Streptomyces coelicolor with efficiency up to 100%, 60% and 20%, respectively. This base editor was also demonstrated to be highly efficient for base editing in the industrial strain, Streptomyces rapamycinicus, which produces the immunosuppressive agent rapamycin. Compared with base editors derived from the cytidine deaminase rAPOBEC1, the PmCDA1-assisted base editor dCas9-CDA-ULstr could edit cytosines preceded by guanosines with high efficiency, which is a great advantage for editing Streptomyces genomes (with high GC content). Collectively, the base editor dCas9-CDA-ULstr could be employed for efficient multiplex genome editing in Streptomyces. Since the dCas9-CDA-ULstr-based genome editing is independent of HR-mediated DNA repair, we believe this technology will greatly facilitate functional genome research and metabolic engineering in Streptomyces strains with weak HR ability.
Collapse
Affiliation(s)
- Yawei Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinzhong Tian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guosong Zheng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chuanwen Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhongyi Yang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Andrei A Zimin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China. .,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Adiego-Pérez B, Randazzo P, Daran JM, Verwaal R, Roubos JA, Daran-Lapujade P, van der Oost J. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 2020; 366:5489186. [PMID: 31087001 PMCID: PMC6522427 DOI: 10.1093/femsle/fnz086] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
Collapse
Affiliation(s)
- Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Paola Randazzo
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - René Verwaal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Johannes A Roubos
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
19
|
Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020; 10:biom10050734. [PMID: 32397082 PMCID: PMC7278167 DOI: 10.3390/biom10050734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The genome of Streptomyces encodes a high number of natural product (NP) biosynthetic gene clusters (BGCs). Most of these BGCs are not expressed or are poorly expressed (commonly called silent BGCs) under traditional laboratory experimental conditions. These NP BGCs represent an unexplored rich reservoir of natural compounds, which can be used to discover novel chemical compounds. To activate silent BGCs for NP discovery, two main strategies, including the induction of BGCs expression in native hosts and heterologous expression of BGCs in surrogate Streptomyces hosts, have been adopted, which normally requires genetic manipulation. So far, various genome editing technologies have been developed, which has markedly facilitated the activation of BGCs and NP overproduction in their native hosts, as well as in heterologous Streptomyces hosts. In this review, we summarize the challenges and recent advances in genome editing tools for Streptomyces genetic manipulation with a focus on editing tools based on clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein (Cas) systems. Additionally, we discuss the future research focus, especially the development of endogenous CRISPR/Cas-based genome editing technologies in Streptomyces.
Collapse
|
20
|
Liow LT, Go MK, Chang MW, Yew WS. Toolkit Development for Cyanogenic and Gold Biorecovery Chassis Chromobacterium violaceum. ACS Synth Biol 2020; 9:953-961. [PMID: 32160465 DOI: 10.1021/acssynbio.0c00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chromobacterium violaceum has been of interest recently due to its cyanogenic ability and its potential role in environmental sustainability via the biorecovery of gold from electronic waste. However, as with many nonmodel bacteria, there are limited genetic tools to implement the use of this Gram-negative chassis in synthetic biology. We propose a system that involves assaying spontaneous antibiotic resistances and using broad host range vectors to develop episomal vectors for nonmodel Gram-negative bacteria. These developed vectors can subsequently be used to characterize inducible promoters for gene expressions and implementing CRISPRi to inhibit endogenous gene expression for further studies. Here, we developed the first episomal genetic toolkit for C. violaceum consisting of two origins of replication, three antibiotic resistance genes, and four inducible promoter systems. We examined the occurrences of spontaneous resistances of the bacterium to the chosen selection markers to prevent incidences of false positives. We also tested broad host range vectors from four different incompatibility groups and characterized four inducible promoter systems, which potentially can be applied in other Gram-negative nonmodel bacteria. CRISPRi was also implemented to inhibit violacein pigment production in C. violaceum. This systematic toolkit will aid future genetic circuitry building in this chassis and other nonmodel bacteria for synthetic biology and biotechnological applications.
Collapse
Affiliation(s)
- Lu Ting Liow
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, 28 Medical Drive, 117456, Singapore
| | - Maybelle Kho Go
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, 28 Medical Drive, 117456, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, 28 Medical Drive, 117456, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
21
|
Krumbach K, Sonntag CK, Eggeling L, Marienhagen J. CRISPR/Cas12a Mediated Genome Editing To Introduce Amino Acid Substitutions into the Mechanosensitive Channel MscCG of Corynebacterium glutamicum. ACS Synth Biol 2019; 8:2726-2734. [PMID: 31790583 PMCID: PMC6994057 DOI: 10.1021/acssynbio.9b00361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Against the background of a growing demand for the implementation
of environmentally friendly production processes, microorganisms are
engineered for the large-scale biosynthesis of chemicals, fuels, or
food and feed additives from sustainable resources. Since strain development
is expensive and time-consuming, continuous improvement of molecular
tools for the genetic modification of the microbial production hosts
is absolutely vital. Recently, the CRISPR/Cas12a technology for the
engineering of Corynebacterium glutamicum as an important
platform organism for industrial amino acid production has been introduced.
Here, this system was advanced by designing an easy-to-construct crRNA
delivery vector using simple oligonucleotides. In combination with
a C. glutamicum strain engineered for the chromosomal
expression of the β-galactosidase-encoding lacZ gene, this new plasmid was used to investigate CRISPR/Cas12a targeting
and editing at various positions relative to the PAM site. Finally,
we used this system to perform codon saturation mutagenesis at critical
positions in the mechanosensitive channel MscCG to identify new gain-of-function
mutations for increased l-glutamate export. The mutations
obtained can be explained by particular demands of the channel on
its immediate lipid environment to allow l-glutamate efflux.
Collapse
Affiliation(s)
- Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | - Lothar Eggeling
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| |
Collapse
|
22
|
Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, Adiego-Perez B, Kengen SWM, Weusthuis RA, van der Oost J. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microb Cell Fact 2019; 18:204. [PMID: 31767004 PMCID: PMC6876111 DOI: 10.1186/s12934-019-1255-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering target for R. sphaeroides. However, the lack of efficient markerless genome editing tools for R. sphaeroides is a bottleneck for fundamental studies and biotechnological exploitation. The Cas9 RNA-guided DNA-endonuclease from the type II CRISPR-Cas system of Streptococcus pyogenes (SpCas9) has been extensively employed for the development of genome engineering tools for prokaryotes and eukaryotes, but not for R. sphaeroides. Results Here we describe the development of a highly efficient SpCas9-based genomic DNA targeting system for R. sphaeroides, which we combine with plasmid-borne homologous recombination (HR) templates developing a Cas9-based markerless and time-effective genome editing tool. We further employ the tool for knocking-out the uracil phosphoribosyltransferase (upp) gene from the genome of R. sphaeroides, as well as knocking it back in while altering its start codon. These proof-of-principle processes resulted in editing efficiencies of up to 100% for the knock-out yet less than 15% for the knock-in. We subsequently employed the developed genome editing tool for the consecutive deletion of the two predicted acetoacetyl-CoA reductase genes phaB and phbB in the genome of R. sphaeroides. The culturing of the constructed knock-out strains under PHB producing conditions showed that PHB biosynthesis is supported only by PhaB, while the growth of the R. sphaeroides ΔphbB strains under the same conditions is only slightly affected. Conclusions In this study, we combine the SpCas9 targeting activity with the native homologous recombination (HR) mechanism of R. sphaeroides for the development of a genome editing tool. We further employ the developed tool for the elucidation of the PHB production pathway of R. sphaeroides. We anticipate that the presented work will accelerate molecular research with R. sphaeroides.
Collapse
Affiliation(s)
- Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mohammad Rifqi Ghiffary
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wilbert Post
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Alberto de Maria
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Systems and Synthetic Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Belén Adiego-Perez
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
24
|
Streamlined Genetic Manipulation of Diverse Bacteroides and Parabacteroides Isolates from the Human Gut Microbiota. mBio 2019; 10:mBio.01762-19. [PMID: 31409684 PMCID: PMC6692515 DOI: 10.1128/mbio.01762-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have entered an era when studies of the gut microbiota are transitioning from basic questions of composition and host effects to understanding the microbial molecules that underlie compositional shifts and mediate health and disease processes. The importance of the gut Bacteroidales to human health and disease and their potential as a source of engineered live biotherapeutics make these bacteria of particular interest for in-depth mechanistic study. However, there are still barriers to the genetic analysis of diverse Bacteroidales strains, limiting our ability to study important host and community phenotypes identified in these strains. Here, we have overcome many of these obstacles by constructing a series of vectors that allow easy genetic manipulation in diverse gut Bacteroides and Parabacteroides strains. These constructs fill a critical need and allow streamlined allelic replacement in diverse gut Bacteroidales, including the growing number of multiantibiotic-resistant strains present in the modern-day human intestine. Studies of the gut microbiota have dramatically increased in recent years as the importance of this microbial ecosystem to human health and disease is better appreciated. The Bacteroidales are the most abundant order of bacteria in the healthy human gut and induce both health-promoting and disease-promoting effects. There are more than 55 species of gut Bacteroidales with extensive intraspecies genetic diversity, especially in regions involved in the synthesis of molecules that interact with other bacteria, the host, and the diet. This property necessitates the study of diverse species and strains. In recent years, the genetic toolkit to study these bacteria has greatly expanded, but we still lack a facile system for creating deletion mutants and allelic replacements in diverse strains, especially with the rapid increase in resistance to the two antibiotics used for genetic manipulation. Here, we present a new versatile and highly efficient vector suite that allows the creation of allelic deletions and replacements in multiresistant strains of Bacteroides and Parabacteroides using a gain-of-function system based on polysaccharide utilization. These vectors also allow for easy counterselection independent of creating a mutant background strain, using a toxin from a type VI secretion system of Bacteroides fragilis. Toxin production during counterselection is induced with one of two different molecules, providing flexibility based on strain phenotypes. This family of vectors greatly facilitates functional genetic analyses and extends the range of gut Bacteroidales strains that can be genetically modified to include multiresistant strains that are currently genetically intractable with existing genetic tools.
Collapse
|
25
|
Jiao X, Zhang Y, Liu X, Zhang Q, Zhang S, Zhao ZK. Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides. Biotechnol J 2019; 14:e1900036. [PMID: 31066204 DOI: 10.1002/biot.201900036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Indexed: 12/25/2022]
Abstract
The basidiomycetous yeast Rhodosporidium toruloides (R. toruloides) has been explored as a promising host for the production of lipids and carotenoids. However, the rational manipulation of this yeast remains difficult due to lack of efficient genetic tools. Here, the development of a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas9) system for genome editing in R. toruloides is described. First, R. toruloides strains are generated with sufficient production of the Cas9 protein of Staphylococcus aureus origin by integrating a cassette containing a codon-optimized Cas9 gene into the genome. In parallel, two U6 genes are identified, predicting two U6 promoters and confirming better transcription of single-guide RNA (sgRNA) with the U6b promoter. Next, sgRNA cassettes are designed targeting CRTI, CAR2, and CLYBL gene, respectively, transforming into those Cas9-expressed strains, and finding over 60% transformants with successful insertion and deletion (indel) mutations. Furthermore, when the sgRNA cassette includes donor DNA flanked by two homologous arms of the gene CRTI, gene knockout occurs via homologous recombination. Thus, the CRISPR/Cas9 system is now established as a powerful genome-editing tool in R. toruloides, which should facilitate functional genomic study and advanced cell factory development.
Collapse
Affiliation(s)
- Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjian Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qi Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
26
|
Jaiswal S, Singh DK, Shukla P. Gene Editing and Systems Biology Tools for Pesticide Bioremediation: A Review. Front Microbiol 2019; 10:87. [PMID: 30853940 PMCID: PMC6396717 DOI: 10.3389/fmicb.2019.00087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Bioremediation is the degradation potential of microorganisms to dissimilate the complex chemical compounds from the surrounding environment. The genetics and biochemistry of biodegradation processes in datasets opened the way of systems biology. Systemic biology aid the study of interacting parts involved in the system. The significant keys of system biology are biodegradation network, computational biology, and omics approaches. Biodegradation network consists of all the databases and datasets which aid in assisting the degradation and deterioration potential of microorganisms for bioremediation processes. This review deciphers the bio-degradation network, i.e., the databases and datasets (UM-BBD, PAN, PTID, etc.) aiding in assisting the degradation and deterioration potential of microorganisms for bioremediation processes, computational biology and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation experiments. Besides, the present review also describes the gene editing tools like CRISPR Cas, TALEN, and ZFNs which can possibly make design microbe with functional gene of interest for degradation of particular recalcitrant for improved bioremediation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
27
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Alper HS, Beisel CL. Advances in CRISPR Technologies for Microbial Strain Engineering. Biotechnol J 2018; 13:e1800460. [PMID: 30175907 DOI: 10.1002/biot.201800460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 07/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hal S Alper
- H. Alper, The University of Texas at Austin, USA
| | - Chase L Beisel
- Chase Beisel , Helmholtz Institute for RNA-based Infection Research, Germany
| |
Collapse
|