1
|
Leong J, Tang WQ, Chng J, Ler WX, Manan NA, Sim LC, Zheng ZY, Zhang W, Walsh I, Zijlstra G, Pennings M, Ng SK. Biomass specific perfusion rate as a control lever for the continuous manufacturing of biosimilar monoclonal antibodies from CHO cell cultures. Biotechnol J 2024; 19:e2400092. [PMID: 38987222 DOI: 10.1002/biot.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.
Collapse
Affiliation(s)
- Jiayu Leong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wen Qin Tang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jake Chng
- BiosanaProcess Pte. Ltd., Singapore, Republic of Singapore
| | - Wei Xuan Ler
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Lyn Chiin Sim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Zi Ying Zheng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Gerben Zijlstra
- Sartorius Stedim Netherlands B.V., Rotterdam, The Netherlands
| | | | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
2
|
Zhang M, Zhao X, Li Y, Ye Q, Wu Y, Niu Q, Zhang Y, Fan G, Chen T, Xia J, Wu Q. Advances in serum-free media for CHO cells: From traditional serum substitutes to microbial-derived substances. Biotechnol J 2024; 19:e2400251. [PMID: 39031790 DOI: 10.1002/biot.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
The Chinese hamster ovary (CHO) cell is an epithelial-like cell that produces proteins with post-translational modifications similar to human glycosylation. It is widely used in the production of recombinant therapeutic proteins and monoclonal antibodies. Culturing CHO cells typically requires the addition of a certain proportion of fetal bovine serum (FBS) to maintain cell proliferation and passaging. However, serum is characterized by its complex composition, batch-to-batch variability, high cost, and potential risk of exogenous contaminants such as mycoplasma and viruses, which impact the purity and safety of the synthesized proteins. Therefore, search for serum alternatives and development of serum-free media for CHO-based protein biomanufacturing are of great significance. This review systematically summarizes the application advantages of CHO cells and strategies for high-density expression. It highlights the developmental trends of serum substitutes from human platelet lysates to animal-free extracts and microbial-derived substances and elucidates the mechanisms by which these substitutes enhance CHO cell culture performance and recombinant protein production, aiming to provide theoretical guidance for exploring novel serum alternatives and developing serum-free media for CHO cells.
Collapse
Affiliation(s)
- Mingcan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarui Xia
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: a review. Mol Biol Rep 2022; 49:10593-10608. [PMID: 35674877 PMCID: PMC9175168 DOI: 10.1007/s11033-022-07651-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this. METHODS AND RESULTS This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects. CONCLUSIONS There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1 Jalan Menara Gading, UCSI Heights, Taman Connaught, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Fazlina Nordin
- Tissue Engineering Centre (TEC), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000, Kuala Lumpur, Cheras, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Minden, Malaysia.
| |
Collapse
|
4
|
Fang Z, Lyu J, Li J, Li C, Zhang Y, Guo Y, Wang Y, Zhang Y, Chen K. Application of bioreactor technology for cell culture-based viral vaccine production: Present status and future prospects. Front Bioeng Biotechnol 2022; 10:921755. [PMID: 36017347 PMCID: PMC9395942 DOI: 10.3389/fbioe.2022.921755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Bioreactors are widely used in cell culture-based viral vaccine production, especially during the coronavirus disease 2019 (COVID-19) pandemic. In this context, the development and application of bioreactors can provide more efficient and cost-effective vaccine production to meet the global vaccine demand. The production of viral vaccines is inseparable from the development of upstream biological processes. In particular, exploration at the laboratory-scale is urgently required for further development. Therefore, it is necessary to evaluate the existing upstream biological processes, to enable the selection of pilot-scale conditions for academic and industrial scientists to maximize the yield and quality of vaccine development and production. Reviewing methods for optimizing the upstream process of virus vaccine production, this review discusses the bioreactor concepts, significant parameters and operational strategies related to large-scale amplification of virus. On this basis, a comprehensive analysis and evaluation of the various process optimization methods for the production of various viruses (SARS-CoV-2, Influenza virus, Tropical virus, Enterovirus, Rabies virus) in bioreactors is presented. Meanwhile, the types of viral vaccines are briefly introduced, and the established animal cell lines for vaccine production are described. In addition, it is emphasized that the co-development of bioreactor and computational biology is urgently needed to meet the challenges posed by the differences in upstream production scales between the laboratory and industry.
Collapse
Affiliation(s)
- Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingting Lyu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| |
Collapse
|
5
|
Romanova N, Schmitz J, Strakeljahn M, Grünberger A, Bahnemann J, Noll T. Single-Cell Analysis of CHO Cells Reveals Clonal Heterogeneity in Hyperosmolality-Induced Stress Response. Cells 2022; 11:1763. [PMID: 35681457 PMCID: PMC9179406 DOI: 10.3390/cells11111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperosmolality can occur during industrial fed-batch cultivation processes of Chinese hamster ovary (CHO) cells as highly concentrated feed and base solutions are added to replenish nutrients and regulate pH values. Some effects of hyperosmolality, such as increased cell size and growth inhibition, have been elucidated by previous research, but the impact of hyperosmolality and the specific effects of the added osmotic-active reagents have rarely been disentangled. In this study, CHO cells were exposed to four osmotic conditions between 300 mOsm/kg (physiologic condition) and 530 mOsm/kg (extreme hyperosmolality) caused by the addition of either high-glucose-supplemented industrial feed or mannitol as an osmotic control. We present novel single-cell cultivation data revealing heterogeneity in mass gain and cell division in response to these treatments. Exposure to extreme mannitol-induced hyperosmolality and to high-glucose-oversupplemented feed causes cell cycle termination, mtDNA damage, and mitochondrial membrane depolarization, which hints at the onset of premature stress-induced senescence. Thus, this study shows that both mannitol-induced hyperosmolality (530 mOsm/kg) and glucose overfeeding induce severe negative effects on cell growth and mitochondrial activity; therefore, they need to be considered during process development for commercial production.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Marie Strakeljahn
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany;
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| |
Collapse
|
6
|
Romanova N, Schelletter L, Hoffrogge R, Noll T. Hyperosmolality in CHO cell culture: effects on the proteome. Appl Microbiol Biotechnol 2022; 106:2569-2586. [PMID: 35312825 PMCID: PMC8990941 DOI: 10.1007/s00253-022-11861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used host cell lines for therapeutic protein production. Exposure of these cells to highly concentrated feed solution during fed-batch cultivation can lead to a non-physiological increase in osmolality (> 300 mOsm/kg) that affects cell physiology, morphology, and proteome. As addressed in previous studies (and indeed, as recently addressed in our research), hyperosmolalities of up to 545 mOsm/kg force cells to abort proliferation and gradually increase their volume—almost tripling it. At the same time, CHO cells also show a significant hyperosmolality-dependent increase in mitochondrial activity. To gain deeper insight into the molecular mechanisms that are involved in these processes, as detailed in this paper, we performed a comparative quantitative label-free proteome study of hyperosmolality-exposed CHO cells compared with control cells. Our analysis revealed differentially expressed key proteins that mediate mitochondrial activation, oxidative stress amelioration, and cell cycle progression. Our studies also demonstrate a previously unknown effect: the strong regulation of proteins can alter both cell membrane stiffness and permeability. For example, we observed that three types of septins (filamentous proteins that form diffusion barriers in the cell) became strongly up-regulated in response to hyperosmolality in the experimental setup. Overall, these new observations correlate well with recent CHO-based fluxome and transcriptome studies, and reveal additional unknown proteins involved in the response to hyperosmotic pressure by over-concentrated feed in mammalian cells. Key points • First-time comparative proteome analysis of CHO cells exposed to over-concentrated feed. • Discovery of membrane barrier-forming proteins up-regulation under hyperosmolality. • Description of mitochondrial and protein chaperones activation in treated cells.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Louise Schelletter
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Noll
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Caso S, Aeby M, Jordan M, Guillot R, Bielser J. Effects of pyruvate on primary metabolism and product quality for a high‐density perfusion process. Biotechnol Bioeng 2022; 119:1053-1061. [DOI: 10.1002/bit.28033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Stefania Caso
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Mathieu Aeby
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Raphael Guillot
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | | |
Collapse
|
8
|
Chen Y, Liu X, Anderson JYL, Naik HM, Dhara VG, Chen X, Harris GA, Betenbaugh MJ. A genome-scale nutrient minimization forecast algorithm for controlling essential amino acid levels in CHO cell cultures. Biotechnol Bioeng 2021; 119:435-451. [PMID: 34811743 DOI: 10.1002/bit.27994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 11/09/2022]
Abstract
Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective. Next, the nutrient-minimized CHO genome-scale model is combined with the growth forecast model to generate essential amino acid forecast profiles of multiple CHO batch cultures. Comparison of the forecast with the measurements suggests that this algorithm can accurately predict the concentration of most essential amino acids from cell density measurement with error mitigated by incorporating off-line amino acids concentration measurements. Finally, the forecast algorithm is applied to CHO fed-batch cultures to support amino acid feeding control to control the concentration of essential amino acids below 1-2 mM for lysine, leucine, and valine as a model over a 9-day fed batch culture while maintaining comparable growth behavior to an empirical-based culture. In turn, glycine production was elevated, alanine reduced and lactate production slightly lower in control cultures due to metabolic shifts in branched-chain amino acid degradation. With the advantage of requiring minimal measurement inputs while providing valuable and in-advance information of the system based on growth measurements, this genome model-based amino acid forecast algorithm represent a powerful and cost-effective tool to facilitate enhanced control over CHO and other mammalian cell-based bioprocesses.
Collapse
Affiliation(s)
- Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiao Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiaolu Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Glenn A Harris
- Research and Development, 908 Devices Inc., Boston, Massachusetts, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Romanova N, Niemann T, Greiner JFW, Kaltschmidt B, Kaltschmidt C, Noll T. Hyperosmolality in CHO culture: Effects on cellular behavior and morphology. Biotechnol Bioeng 2021; 118:2348-2359. [PMID: 33751545 DOI: 10.1002/bit.27747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023]
Abstract
Exposure of Chinese hamster ovary cells (CHO) to highly concentrated feed solution during fed-batch cultivation is known to result in an unphysiological osmolality increase (>300 mOsm/kg), affecting cell physiology and morphology. Extending previous observation on osmotic adaptation, the present study investigates for the first time potential effects of hyperosmolality on CHO cells on both population and single-cell level. We intentionally exposed CHO cells to hyperosmolality of up to 545 mOsm/kg during fed-batch cultivation. In concordance with existing research data, hyperosmolality-exposed CHO cells showed a nearly triplicated volume accompanied by ablation of proliferation. On the molecular level, we observed a strong hyperosmolality-dependent increase in mitochondrial activity in CHO cells compared to control. In contrast to mitochondrial activity, hyperosmolality-dependent proliferation arrest of CHO cells was not accompanied by DNA accumulation or caspase-3/7-mediated apoptosis. Notably, we demonstrate for the first time a formation of up to eight multiple, small nuclei in single hyperosmolality-stressed CHO cells. The here presented observations reveal previously unknown hyperosmolality-dependent morphological changes in CHO cells and support existing data on the osmotic response in mammalian cells.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Tarek Niemann
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Alhuthali S, Kotidis P, Kontoravdi C. Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation. Int J Mol Sci 2021; 22:ijms22073290. [PMID: 33804825 PMCID: PMC8037477 DOI: 10.3390/ijms22073290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg-1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg-1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.
Collapse
|
11
|
Enhanced Production of Anti-PD1 Antibody in CHO Cells through Transient Co-Transfection with Anti-Apoptotic Gene Bcl-xL Combined with Rapamycin. Processes (Basel) 2019. [DOI: 10.3390/pr7060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CHO cells are often used to produce monoclonal antibodies in mammalian cell expression systems. In the process of large-scale cell culture, apoptosis is related to cell survival and product quality. Over-expressing an anti-apoptotic gene to delay apoptosis and improve cell growth is one of the strategies for improving productivity of monoclonal antibodies. Autophagy inducer rapamycin can extend the culture duration of CHO cells and affect the yield of antibodies. A method was developed for transient co-transfection of anti-apoptotic genes and genes of interest combined with rapamycin to increase the transient expression of the anti-PD1 antibody. Under the optimal transfection conditions, the combination of Bcl-xL and rapamycin can significantly delay cell apoptosis, inhibit cell proliferation, and prolong cell life-time. As a result, anti-PD1 monoclonal antibody expression levels are increased by more than 2 times.
Collapse
|