1
|
Sin WX, Jagannathan NS, Teo DBL, Kairi F, Fong SY, Tan JHL, Sandikin D, Cheung KW, Luah YH, Wu X, Raymond JJ, Lim FLWI, Lee YH, Seng MSF, Soh SY, Chen Q, Ram RJ, Tucker-Kellogg L, Birnbaum ME. A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells. Nat Biomed Eng 2024; 8:1571-1591. [PMID: 38834752 DOI: 10.1038/s41551-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2024] [Indexed: 06/06/2024]
Abstract
The manufacturing of autologous chimaeric antigen receptor (CAR) T cells largely relies either on fed-batch and manual processes that often lack environmental monitoring and control or on bioreactors that cannot be easily scaled out to meet patient demands. Here we show that human primary T cells can be activated, transduced and expanded to high densities in a 2 ml automated closed-system microfluidic bioreactor to produce viable anti-CD19 CAR T cells (specifically, more than 60 million CAR T cells from donor cells derived from patients with lymphoma and more than 200 million CAR T cells from healthy donors). The in vitro secretion of cytokines, the short-term cytotoxic activity and the long-term persistence and proliferation of the cell products, as well as their in vivo anti-leukaemic activity, were comparable to those of T cells produced in a gas-permeable well. The manufacturing-process intensification enabled by the miniaturized perfusable bioreactor may facilitate the analysis of the growth and metabolic states of CAR T cells during ex vivo culture, the high-throughput optimization of cell-manufacturing processes and the scale out of cell-therapy manufacturing.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - N Suhas Jagannathan
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Faris Kairi
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dedy Sandikin
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Ka-Wai Cheung
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Yen Hoon Luah
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Xiaolin Wu
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Joshua Jebaraj Raymond
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Advanced Cell Therapy and Research Institute, Singapore (ACTRIS), Consortium for Clinical Research and Innovation, Singapore (CRIS), Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Michaela Su-Fern Seng
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Paediatric Haematology and Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rajeev J Ram
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
| | - Michael E Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Foscarini A, Romano F, Garzarelli V, Turco A, Bramanti AP, Tarantini I, Ferrara F, Visconti P, Gigli G, Chiriacò MS. A Microfluidic-Based Sensing Platform for Rapid Quality Control on Target Cells from Bioreactors. SENSORS (BASEL, SWITZERLAND) 2024; 24:7329. [PMID: 39599106 PMCID: PMC11598262 DOI: 10.3390/s24227329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
We investigated the design and characterization of a Lab-On-a-Chip (LoC) cell detection system primarily designed to support immunotherapy in cancer treatment. Immunotherapy uses Chimeric Antigen Receptors (CARs) and T Cell Receptors (TCRs) to fight cancer, engineering the response of the immune system. In recent years, it has emerged as a promising strategy for personalized cancer treatment. However, it requires bioreactor-based cell culture expansion and manual quality control (QC) of the modified cells, which is time-consuming, labour-intensive, and prone to errors. The miniaturized LoC device for automated QC demonstrated here is simple, has a low cost, and is reliable. Its final target is to become one of the building blocks of an LoC for immunotherapy, which would take the place of present labs and manual procedures to the benefit of throughput and affordability. The core of the system is a commercial, on-chip-integrated capacitive sensor managed by a microcontroller capable of sensing cells as accurately measured charge variations. The hardware is based on standardized components, which makes it suitable for mass manufacturing. Moreover, unlike in other cell detection solutions, no external AC source is required. The device has been characterized with a cell line model selectively labelled with gold nanoparticles to simulate its future use in bioreactors in which labelling can apply to successfully engineered CAR-T-cells. Experiments were run both in the air-free drop with no microfluidics-and in the channel, where the fluid volume was considerably lower than in the drop. The device showed good sensitivity even with a low number of cells-around 120, compared with the 107 to 108 needed per kilogram of body weight-which is desirable for a good outcome of the expansion process. Since cell detection is needed in several contexts other than immunotherapy, the usefulness of this LoC goes potentially beyond the scope considered here.
Collapse
Affiliation(s)
- Alessia Foscarini
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Fabio Romano
- Department of Innovation Engineering, University of Salento, Via per Monteroni, Building ‘O’, 73100 Lecce, Italy; (F.R.); (A.P.B.); (P.V.)
| | - Valeria Garzarelli
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
- Department of Mathematics and Physics, E. De Giorgi, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Antonio Turco
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
| | - Alessandro Paolo Bramanti
- Department of Innovation Engineering, University of Salento, Via per Monteroni, Building ‘O’, 73100 Lecce, Italy; (F.R.); (A.P.B.); (P.V.)
- STMicroelectronics srl, c/o Campus Ecotekne, Via per Monteroni, 165, 73100 Lecce, Italy
| | - Iolena Tarantini
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Francesco Ferrara
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
| | - Paolo Visconti
- Department of Innovation Engineering, University of Salento, Via per Monteroni, Building ‘O’, 73100 Lecce, Italy; (F.R.); (A.P.B.); (P.V.)
| | - Giuseppe Gigli
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Maria Serena Chiriacò
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.F.); (V.G.); (A.T.); (I.T.); (G.G.); (M.S.C.)
| |
Collapse
|
3
|
Elsemary MT, Maritz MF, Smith LE, Warkiani ME, Thierry B. Enrichment of T-lymphocytes from leukemic blood using inertial microfluidics toward improved chimeric antigen receptor-T cell manufacturing. Cytotherapy 2024; 26:1264-1274. [PMID: 38819362 DOI: 10.1016/j.jcyt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.
Collapse
MESH Headings
- Humans
- T-Lymphocytes/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Microfluidics/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Cell Separation/methods
- B-Lymphocytes/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Mona T Elsemary
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Michelle F Maritz
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | | | - Benjamin Thierry
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia.
| |
Collapse
|
4
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R, Magrelli A. Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility. Int J Mol Sci 2024; 25:10365. [PMID: 39408696 PMCID: PMC11476879 DOI: 10.3390/ijms251910365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Ambrosone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Anna Laura Salvati
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
| | - Robert Nisticò
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
- Agenzia Italiana del Farmaco, Via del Tritone 181, 00187 Rome, Italy
| | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| |
Collapse
|
5
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
6
|
Zhou X, Lian H, Li H, Fan M, Xu W, Jin Y. Nanotechnology in cervical cancer immunotherapy: Therapeutic vaccines and adoptive cell therapy. Front Pharmacol 2022; 13:1065793. [PMID: 36588709 PMCID: PMC9802678 DOI: 10.3389/fphar.2022.1065793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is an emerging method for the treatment of cervical cancer and is more effective than surgery and radiotherapy, especially for recurrent cervical cancer. However, immunotherapy is limited by adverse effects in clinical practice. In recent years, nanotechnology has been widely used for tumor diagnosis, drug delivery, and targeted therapy. In the setting of cervical cancer, nanotechnology can be used to actively or passively target immunotherapeutic agents to tumor sites, thereby enhancing local drug delivery, reducing drug adverse effects, achieving immunomodulation, improving the tumor immune microenvironment, and optimizing treatment efficacy. In this review, we highlight the current status of therapeutic vaccines and adoptive cell therapy in cervical cancer immunotherapy, as well as the application of lipid carriers, polymeric nanoparticles, inorganic nanoparticles, and exosomes in this context.
Collapse
Affiliation(s)
- Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haiying Lian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Gynecology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Wei Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Meiling Fan, ; Wei Xu, ; Ye Jin,
| |
Collapse
|
7
|
Ganeeva I, Zmievskaya E, Valiullina A, Kudriaeva A, Miftakhova R, Rybalov A, Bulatov E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120808. [PMID: 36551014 PMCID: PMC9774716 DOI: 10.3390/bioengineering9120808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Harnessing the human immune system as a foundation for therapeutic technologies capable of recognizing and killing tumor cells has been the central objective of anti-cancer immunotherapy. In recent years, there has been an increasing interest in improving the effectiveness and accessibility of this technology to make it widely applicable for adoptive cell therapies (ACTs) such as chimeric antigen receptor T (CAR-T) cells, tumor infiltrating lymphocytes (TILs), dendritic cells (DCs), natural killer (NK) cells, and many other. Automated, scalable, cost-effective, and GMP-compliant bioreactors for production of ACTs are urgently needed. The primary efforts in the field of GMP bioreactors development are focused on closed and fully automated point-of-care (POC) systems. However, their clinical and industrial application has not yet reached full potential, as there are numerous obstacles associated with delicate balancing of the complex and often unpredictable cell biology with the need for precision and full process control. Here we provide a brief overview of the existing and most advanced systems for ACT manufacturing, including cell culture bags, G-Rex flasks, and bioreactors (rocking motion, stirred-flask, stirred-tank, hollow-fiber), as well as semi- and fully-automated closed bioreactor systems.
Collapse
Affiliation(s)
- Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | | | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Correspondence:
| |
Collapse
|
8
|
Dai X, Li J, Chen Y, Ostrikov KK. When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Front Oncol 2022; 12:837995. [PMID: 35280746 PMCID: PMC8905244 DOI: 10.3389/fonc.2022.837995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
T cells engineered with chimeric antigen receptors (CAR) have demonstrated its widespread efficacy as a targeted immunotherapeutic modality. Yet, concerns on its specificity, efficacy and generalization prevented it from being established into a first-line approach against cancers. By reviewing challenges limiting its clinical application, ongoing efforts trying to resolve them, and opportunities that emerging oncotherapeutic modalities may bring to temper these challenges, we conclude that careful CAR design should be done to avoid the off-tumor effect, enhance the efficacy of solid tumor treatment, improve product comparability, and resolve problems such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. As a promising solution, we propose potential synergies between CAR-T therapies and cold atmospheric plasma, an emerging onco-therapeutic strategy relying on reactive species, towards improved therapeutic efficacies and enhanced safety that deserve extensive investigations.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,CAPsoul Biotechnology Company, Ltd, Beijing, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Yiming Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
van der Walle CF, Godbert S, Saito G, Azhari Z. Formulation Considerations for Autologous T Cell Drug Products. Pharmaceutics 2021; 13:pharmaceutics13081317. [PMID: 34452278 PMCID: PMC8400304 DOI: 10.3390/pharmaceutics13081317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Genetically modified autologous T cells have become an established immunotherapy in the fight against cancer. The manufacture of chimeric antigen receptor (CAR) and αβ-T cell receptor (TCR) transduced T cells poses unique challenges, including the formulation, cryopreservation and fill-finish steps, which are the focus of this review. With an increasing number of marketing approvals for CAR-T cell therapies, comparison of their formulation design and presentation for administration can be made. These differences will be discussed alongside the emergence of automated formulation and fill-finish processes, the formulation design space, Monte Carlo simulation applied to risk analysis, primary container selection, freezing profiles and thaw and the use of dimethyl sulfoxide and alternative solvents/excipients as cryopreservation agents. The review will conclude with a discussion of the pharmaceutical solutions required to meet the simplification of manufacture and flexibility in dosage form for clinical treatment.
Collapse
|
10
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|
11
|
Ran T, Eichmüller SB, Schmidt P, Schlander M. Cost of decentralized
CAR
T‐cell production in an academic nonprofit setting. Int J Cancer 2020; 147:3438-3445. [DOI: 10.1002/ijc.33156] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Ran
- Division of Health Economics German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Patrick Schmidt
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ) Heidelberg Germany
- Department of Medical Oncology National Center for Tumor Diseases (NCT) and University Hospital Heidelberg Heidelberg Germany
| | - Michael Schlander
- Division of Health Economics German Cancer Research Center (DKFZ) Heidelberg Germany
- Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| |
Collapse
|
12
|
Prendergast ME, Burdick JA. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902516. [PMID: 31512289 DOI: 10.1002/adma.201902516] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Advances in areas such as data analytics, genomics, and imaging have revealed individual patient complexities and exposed the inherent limitations of generic therapies for patient treatment. These observations have also fueled the development of precision medicine approaches, where therapies are tailored for the individual rather than the broad patient population. 3D printing is a field that intersects with precision medicine through the design of precision implants with patient-directed shapes, structures, and materials or for the development of patient-specific in vitro models that can be used for screening precision therapeutics. Toward their success, advances in 3D printing and biofabrication technologies are needed with enhanced resolution, complexity, reproducibility, and speed and that encompass a broad range of cells and materials. The overall goal of this progress report is to highlight recent advances in 3D printing technologies that are helping to enable advances important in precision medicine.
Collapse
Affiliation(s)
- Margaret E Prendergast
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| |
Collapse
|
13
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|