1
|
Lüchtrath C, Lamping F, Hansen S, Finger M, Magnus J, Büchs J. Diffusion-driven fed-batch fermentation in perforated ring flasks. Biotechnol Lett 2024; 46:571-582. [PMID: 38758336 PMCID: PMC11217090 DOI: 10.1007/s10529-024-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development. METHODS A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed. RESULTS The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L-1 h-1 were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L-1 were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L-1 to the feed reservoir, the limitation could be prevented. CONCLUSION The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Felix Lamping
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Sven Hansen
- Evonik Operations GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Maurice Finger
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Conacher CG, Watson BW, Bauer FF. Gradient boosted regression as a tool to reveal key drivers of temporal dynamics in a synthetic yeast community. FEMS Microbiol Ecol 2024; 100:fiae080. [PMID: 38777744 PMCID: PMC11212668 DOI: 10.1093/femsec/fiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.
Collapse
Affiliation(s)
- Cleo Gertrud Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bruce William Watson
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Trivellin C, Rugbjerg P, Olsson L. Performance and robustness analysis reveals phenotypic trade-offs in yeast. Life Sci Alliance 2024; 7:e202302215. [PMID: 37903627 PMCID: PMC10618107 DOI: 10.26508/lsa.202302215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
To design strains that can function efficiently in complex industrial settings, it is crucial to consider their robustness, that is, the stability of their performance when faced with perturbations. In the present study, we cultivated 24 Saccharomyces cerevisiae strains under conditions that simulated perturbations encountered during lignocellulosic bioethanol production, and assessed the performance and robustness of multiple phenotypes simultaneously. The observed negative correlations confirmed a trade-off between performance and robustness of ethanol yield, biomass yield, and cell dry weight. Conversely, the specific growth rate performance positively correlated with the robustness, presumably because of evolutionary selection for robust, fast-growing cells. The Ethanol Red strain exhibited both high performance and robustness, making it a good candidate for bioproduction in the tested perturbation space. Our results experimentally map the robustness-performance trade-offs, previously demonstrated mainly by single-phenotype and computational studies.
Collapse
Affiliation(s)
- Cecilia Trivellin
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Rugbjerg
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Enduro Genetics ApS, Copenhagen, Denmark
| | - Lisbeth Olsson
- https://ror.org/040wg7k59 Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Sparviero S, Barth L, Keil T, Dinter C, Berg C, Lattermann C, Büchs J. Black glucose-releasing silicon elastomer rings for fed-batch operation allow measurement of the oxygen transfer rate from the top and optical signals from the bottom for each well of a microtiter plate. BMC Biotechnol 2023; 23:5. [PMID: 36864427 PMCID: PMC9983259 DOI: 10.1186/s12896-023-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate®, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates® cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well. RESULTS Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix. CONCLUSION The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Laura Barth
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Timm Keil
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Carl Dinter
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Christoph Berg
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Jochen Büchs
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Wollborn D, Munkler LP, Horstmann R, Germer A, Blank LM, Büchs J. Predicting high recombinant protein producer strains of Pichia pastoris Mut S using the oxygen transfer rate as an indicator of metabolic burden. Sci Rep 2022; 12:11225. [PMID: 35780248 PMCID: PMC9250517 DOI: 10.1038/s41598-022-15086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a widely used host for recombinant protein production. In this study, a clonal library of P. pastoris MutS strains (S indicates slow methanol utilization) was screened for high green fluorescent protein (GFP) production. The expression cassette was under the control of the methanol inducible AOX promoter. The growth behavior was online-monitored in 48-well and 96-well microtiter plates by measuring the oxygen transfer rate (OTR). By comparing the different GFP producing strains, a correlation was established between the slope of the cumulative oxygen transfer during the methanol metabolization phase and the strain’s production performance. The correlation corresponds to metabolic burden during methanol induction. The findings were validated using a pre-selected strain library (7 strains) of high, medium, and low GFP producers. For those strains, the gene copy number was determined via Whole Genome Sequencing. The results were consistent with the described OTR correlation. Additionally, a larger clone library (45 strains) was tested to validate the applicability of the proposed method. The results from this study suggest that the cumulative oxygen transfer can be used as a screening criterion for protein production performance that allows for a simple primary screening process, facilitating the pre-selection of high producing strains.
Collapse
Affiliation(s)
- David Wollborn
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Lara Pauline Munkler
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Rebekka Horstmann
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Dinger R, Lattermann C, Flitsch D, Fischer JP, Kosfeld U, Büchs J. Device for respiration activity measurement enables the determination of oxygen transfer rates of microbial cultures in shaken 96-deepwell microtiter plates. Biotechnol Bioeng 2021; 119:881-894. [PMID: 34951007 DOI: 10.1002/bit.28022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
Mini-bioreactors with integrated online monitoring capabilities are well established in the early stages of process development. Mini-bioreactors fulfil the demand for high-throughput-applications and a simultaneous reduction of material costs and total experimental time. One of the most essential online monitored parameters is the oxygen transfer rate (OTR). OTR-monitoring allows fast characterization of bioprocesses and process transfer to larger scales. Currently, OTR-monitoring on a small-scale is limited to shake flasks and 48-well microtiter plates (MTP). Especially, 96-deepwell MTP are used for high-throughput-experiments during early-stage bioprocess development. However, a device for OTR monitoring in 96-deepwell MTP is still not available. To determine OTR values, the measurement of the gas composition in each well of a MTP is necessary. Therefore, a new micro(µ)-scale Transfer rate Online Measurement device (µTOM) was developed. The µTOM includes 96 parallel oxygen-sensitive sensors and a single robust sealing mechanism. Different organisms (Escherichia. coli, Hansenula polymorpha, and Ustilago maydis) were cultivated in the µTOM. The measurement precision for 96 parallel cultivations was 0.21 mmol·L-1·h-1 (pooled standard deviation). In total, a more than 15-fold increase in throughput and an up to a 50-fold decrease in media consumption, compared with the shake flask RAMOS-technology, was achieved using the µTOM for OTR-monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Dinger
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | | | - David Flitsch
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Jan P Fischer
- PyroScience GmbH, Hubertusstraße 35, 52064, Aachen, Germany
| | - Udo Kosfeld
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, Chair of Biochemical Engineering (AVT.BioVT), Forckenbeckstraße 51, 52074, Aachen, Germany
| |
Collapse
|
7
|
Habicher T, Klein T, Becker J, Daub A, Büchs J. Screening for optimal protease producing Bacillus licheniformis strains with polymer-based controlled-release fed-batch microtiter plates. Microb Cell Fact 2021; 20:51. [PMID: 33622330 PMCID: PMC7903736 DOI: 10.1186/s12934-021-01541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Substrate-limited fed-batch conditions have the favorable effect of preventing overflow metabolism, catabolite repression, oxygen limitation or inhibition caused by elevated substrate or osmotic concentrations. Due to these favorable effects, fed-batch mode is predominantly used in industrial production processes. In contrast, screening processes are usually performed in microtiter plates operated in batch mode. This leads to a different physiological state of the production organism in early screening and can misguide the selection of potential production strains. To close the gap between screening and production conditions, new techniques to enable fed-batch mode in microtiter plates have been described. One of these systems is the ready-to-use and disposable polymer-based controlled-release fed-batch microtiter plate (fed-batch MTP). In this work, the fed-batch MTP was applied to establish a glucose-limited fed-batch screening procedure for industrially relevant protease producing Bacillus licheniformis strains. Results To achieve equal initial growth conditions for different clones with the fed-batch MTP, a two-step batch preculture procedure was developed. Based on this preculture procedure, the standard deviation of the protease activity of glucose-limited fed-batch main culture cultivations in the fed-batch MTP was ± 10%. The determination of the number of replicates revealed that a minimum of 6 parallel cultivations were necessary to identify clones with a statistically significant increased or decreased protease activity. The developed glucose-limited fed-batch screening procedure was applied to 13 industrially-relevant clones from two B. licheniformis strain lineages. It was found that 12 out of 13 clones (92%) were classified similarly as in a lab-scale fed-batch fermenter process operated under glucose-limited conditions. When the microtiter plate screening process was performed in batch mode, only 5 out of 13 clones (38%) were classified similarly as in the lab-scale fed-batch fermenter process. Conclusion The glucose-limited fed-batch screening process outperformed the usual batch screening process in terms of the predictability of the clone performance under glucose-limited fed-batch fermenter conditions. These results highlight that the implementation of glucose-limited fed-batch conditions already in microtiter plate scale is crucial to increase the precision of identifying improved protease producing B. licheniformis strains. Hence, the fed-batch MTP represents an efficient high-throughput screening tool that aims at closing the gap between screening and production conditions.
Collapse
Affiliation(s)
- Tobias Habicher
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Tobias Klein
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jacqueline Becker
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Andreas Daub
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Fink M, Cserjan-Puschmann M, Reinisch D, Striedner G. High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci Rep 2021; 11:2056. [PMID: 33479431 PMCID: PMC7819997 DOI: 10.1038/s41598-021-81633-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Tremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination. This outcome demonstrates the explanatory power of HTP µ-bioreactor data and the suitability of this platform as a screening tool in upstream development of microbial systems. Fast, reliable, and transferable screening data significantly reduce experiments in fully controlled bioreactor systems and accelerate process development at lower cost.
Collapse
Affiliation(s)
- Mathias Fink
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
9
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
10
|
Keil T, Dittrich B, Lattermann C, Büchs J. Optimized polymer-based glucose release in microtiter plates for small-scale E. coli fed-batch cultivations. J Biol Eng 2020; 14:24. [PMID: 32874201 PMCID: PMC7457294 DOI: 10.1186/s13036-020-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. Results Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24–0.90 mg/h per well. Conclusions The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.
Collapse
Affiliation(s)
- Timm Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Barbara Dittrich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
11
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|