1
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, Wong TW, Hidayat A, Nur H. Evaluation of in vitro corrosion behavior and biocompatibility of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron for bone scaffolds applications. Biotechnol J 2024; 19:e2300464. [PMID: 38509814 DOI: 10.1002/biot.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Wan Fahmin Faiz Wan Ali
- Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Farah Hidayah Jamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fatihhi Szali Januddi
- Advanced Facilities Engineering Technology Research Cluster (AFET), Plant Engineering Technology (PETech) Section, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Masai, Johor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tuck-Whye Wong
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Arif Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Negeri Malang, Malang, Indonesia
| | - Hadi Nur
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
- Center of Advanced Materials for Renewable Energy (CAMRY), Universiti Negeri Malang, Malang, Indonesia
| |
Collapse
|
3
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
4
|
Putra NE, Leeflang MA, Klimopoulou M, Dong J, Taheri P, Huan Z, Fratila-Apachitei LE, Mol JMC, Chang J, Zhou J, Zadpoor AA. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes. Acta Biomater 2023; 162:182-198. [PMID: 36972809 DOI: 10.1016/j.actbio.2023.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite composite scaffolds fabricated by extrusion-based 3D printing to address the unmet clinical needs associated with Fe-based biomaterials for bone regeneration, including low biodegradation rate, MRI-incompatibility, mechanical properties, and limited bioactivity. In this research, we developed inks containing Fe, 35 wt% Mn, and 20 or 30 vol% akermanite powder mixtures. 3D printing was optimized together with the debinding and sintering steps to obtain scaffolds with interconnected porosity of 69%. The Fe-matrix in the composites contained the γ-FeMn phase as well as nesosilicate phases. The former made the composites paramagnetic and, thus, MRI-friendly. The in vitro biodegradation rates of the composites with 20 and 30 vol% akermanite were respectively 0.24 and 0.27 mm/y, falling within the ideal range of biodegradation rates for bone substitution. The yield strengths of the porous composites stayed within the range of the values of the trabecular bone, despite in vitro biodegradation for 28 d. All the composite scaffolds favored the adhesion, proliferation, and osteogenic differentiation of preosteoblasts, as revealed by Runx2 assay. Moreover, osteopontin was detected in the extracellular matrix of cells on the scaffolds. Altogether, these results demonstrate the remarkable potential of these composites in fulfilling the requirements of porous biodegradable bone substitutes, motivating future in vivo research. STATEMENT OF SIGNIFICANCE: We developed FeMn-akermanite composite scaffolds by taking advantage of the multi-material capacity of extrusion-based 3D printing. Our results demonstrated that the FeMn-akermanite scaffolds showed an exceptional performance in fulfilling all the requirements for bone substitution in vitro, i.e., a sufficient biodegradation rate, having mechanical properties in the range of trabecular bone even after 4 weeks biodegradation, paramagnetic, cytocompatible and most importantly osteogenic. Our results encourage further research on Fe-based bone implants in in vivo.
Collapse
Affiliation(s)
- N E Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - M A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - M Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - J Dong
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - P Taheri
- Department of Materials Science and Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Z Huan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - J M C Mol
- Department of Materials Science and Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - J Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - J Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| |
Collapse
|
5
|
Biocompatibility and Biological Performance of Additive-Manufactured Bioabsorbable Iron-Based Porous Interference Screws in a Rabbit Model: A 1-Year Observational Study. Int J Mol Sci 2022; 23:ijms232314626. [PMID: 36498952 PMCID: PMC9740248 DOI: 10.3390/ijms232314626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the mid-term (12-month) biomechanical, biocompatibility, and biological performance of additive-manufactured bioabsorbable iron-based interference screws (ISs). Two bioabsorbable iron IS types-manufactured using pure iron powder (iron_IS) and using pure iron powder with 0.2 wt% tricalcium phosphate (TCP_IS)-were compared with conventional metallic IS (control) using in vitro biocompatibility and degradation analyses and an in vivo animal study. The in vitro ultimate failure strength was significantly higher for iron_IS and TCP_IS than for control ISs at 3 months post-operatively; however, the difference between groups were nonsignificant thereafter. Moreover, at 3 months after implantation, iron_IS and TCP_IS increased bone volume fraction, bone surface area fraction, and percent intersection surface; the changes thereafter were nonsignificant. Iron_IS and TCP_IS demonstrated degradation over time with increased implant surface, decreased implant volume, and structure thickness; nevertheless, the analyses of visceral organs and biochemistry demonstrated normal results, except for time-dependent iron deposition in the spleen. Therefore, compared with conventional ISs, bioabsorbable iron-based ISs exhibit higher initial mechanical strength. Although iron-based ISs demonstrate high biocompatibility 12 months after implantation, their corrosive iron products may accumulate in the spleen. Because they demonstrate mechanical superiority along with considerable absorption capability after implantation, iron-based ISs may have potential applications in implantable medical-device development in the future.
Collapse
|
6
|
Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Rabeeh VPM, Hanas T. Progress in manufacturing and processing of degradable Fe-based implants: a review. Prog Biomater 2022; 11:163-191. [PMID: 35583848 PMCID: PMC9156655 DOI: 10.1007/s40204-022-00189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/01/2022] [Indexed: 12/19/2022] Open
Abstract
Biodegradable metals have gained vast attention as befitting candidates for developing degradable metallic implants. Such implants are primarily employed for temporary applications and are expected to degrade or resorbed after the tissue is healed. Fe-based materials have generated considerable interest as one of the possible biodegradable metals. Like other biometals such as Mg and Zn, Fe exhibits good biocompatibility and biodegradability. The versatility in the mechanical behaviour of Fe-based materials makes them a better choice for load-bearing applications. However, the very low degradation rate of Fe in the physiological environment needs to be improved to make it compatible with tissue growth. Several studies on tailoring the degradation behaviour of Fe in the human body are already reported. Majority of these works include studies on the effect of manufacturing and processing techniques on biocompatibility and biodegradability. This article focuses on a comprehensive review and analysis of the various manufacturing and processing techniques so far reported for developing biodegradable iron-based orthopaedic implants. The current status of research in the field is neatly presented, and a summary of the works is included in the article for the benefit of researchers in the field to contextualise their research and effectively find the lacunae in the existing scholarship.
Collapse
Affiliation(s)
- V P Muhammad Rabeeh
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India
| | - T Hanas
- Nanomaterials Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India.
- Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
8
|
Wu Y, Lu Y, Zhao M, Bosiakov S, Li L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102117. [PMID: 35631999 PMCID: PMC9143308 DOI: 10.3390/polym14102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
- DUT-BSU Joint Institute, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Ming Zhao
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarusian State University, No. 4 Nezavisimosti Avenue, 220030 Minsk, Belarus;
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, China
- Correspondence:
| |
Collapse
|
9
|
Liu WC, Chang CH, Chen CH, Lu CK, Ma CH, Huang SI, Fan WL, Shen HH, Tsai PI, Yang KY, Fu YC. 3D-Printed Double-Helical Biodegradable Iron Suture Anchor: A Rabbit Rotator Cuff Tear Model. MATERIALS 2022; 15:ma15082801. [PMID: 35454494 PMCID: PMC9027822 DOI: 10.3390/ma15082801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
Suture anchors are extensively used in rotator cuff tear surgery. With the advancement of three-dimensional printing technology, biodegradable metal has been developed for orthopedic applications. This study adopted three-dimensional-printed biodegradable Fe suture anchors with double-helical threads and commercialized non-vented screw-type Ti suture anchors with a tapered tip in the experimental and control groups, respectively. The in vitro study showed that the Fe and Ti suture anchors exhibited a similar ultimate failure load in 20-pound-per-cubic-foot polyurethane foam blocks and rabbit bone. In static immersion tests, the corrosion rate of Fe suture anchors was 0.049 ± 0.002 mm/year. The in vivo study was performed on New Zealand white rabbits and SAs were employed to reattach the ruptured supraspinatus tendon. The in vivo ultimate failure load of the Fe suture anchors was superior to that of the Ti suture anchors at 6 weeks. Micro-computed tomography showed that the bone volume fraction and bone surface density in the Fe suture anchors group 2 and 6 weeks after surgery were superior, and the histology confirmed that the increased bone volume around the anchor was attributable to mineralized osteocytes. The three-dimensional-printed Fe suture anchors outperformed the currently used Ti suture anchors.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Hau Chang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chung-Hwan Chen
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Orthopedic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Park One International Hospital, Kaohsiung 81367, Taiwan;
| | - Chun-Hsien Ma
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Wei-Lun Fan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31057, Taiwan; (C.-H.M.); (S.-I.H.); (W.-L.F.); (H.-H.S.); (P.-I.T.)
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| | - Yin-Chih Fu
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (W.-C.L.); (C.-H.C.)
- Department Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (K.-Y.Y.); (Y.-C.F.)
| |
Collapse
|